Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVulnerability Detection: From Formal Verification to Large Language Models and Hybrid Approaches: A Comprehensive Overview
Software testing and verification are critical for ensuring the reliability and security of modern software systems. Traditionally, formal verification techniques, such as model checking and theorem proving, have provided rigorous frameworks for detecting bugs and vulnerabilities. However, these methods often face scalability challenges when applied to complex, real-world programs. Recently, the advent of Large Language Models (LLMs) has introduced a new paradigm for software analysis, leveraging their ability to understand insecure coding practices. Although LLMs demonstrate promising capabilities in tasks such as bug prediction and invariant generation, they lack the formal guarantees of classical methods. This paper presents a comprehensive study of state-of-the-art software testing and verification, focusing on three key approaches: classical formal methods, LLM-based analysis, and emerging hybrid techniques, which combine their strengths. We explore each approach's strengths, limitations, and practical applications, highlighting the potential of hybrid systems to address the weaknesses of standalone methods. We analyze whether integrating formal rigor with LLM-driven insights can enhance the effectiveness and scalability of software verification, exploring their viability as a pathway toward more robust and adaptive testing frameworks.
Eventual Discounting Temporal Logic Counterfactual Experience Replay
Linear temporal logic (LTL) offers a simplified way of specifying tasks for policy optimization that may otherwise be difficult to describe with scalar reward functions. However, the standard RL framework can be too myopic to find maximally LTL satisfying policies. This paper makes two contributions. First, we develop a new value-function based proxy, using a technique we call eventual discounting, under which one can find policies that satisfy the LTL specification with highest achievable probability. Second, we develop a new experience replay method for generating off-policy data from on-policy rollouts via counterfactual reasoning on different ways of satisfying the LTL specification. Our experiments, conducted in both discrete and continuous state-action spaces, confirm the effectiveness of our counterfactual experience replay approach.
Formally Specifying the High-Level Behavior of LLM-Based Agents
LLM-based agents have recently emerged as promising tools for solving challenging problems without the need for task-specific finetuned models that can be expensive to procure. Currently, the design and implementation of such agents is ad hoc, as the wide variety of tasks that LLM-based agents may be applied to naturally means there can be no one-size-fits-all approach to agent design. In this work we aim to alleviate the difficulty of designing and implementing new agents by proposing a minimalistic, high-level generation framework that simplifies the process of building agents. The framework we introduce allows the user to specify desired agent behaviors in Linear Temporal Logic (LTL). The declarative LTL specification is then used to construct a constrained decoder that guarantees the LLM will produce an output exhibiting the desired behavior. By designing our framework in this way, we obtain several benefits, including the ability to enforce complex agent behavior, the ability to formally validate prompt examples, and the ability to seamlessly incorporate content-focused logical constraints into generation. In particular, our declarative approach, in which the desired behavior is simply described without concern for how it should be implemented or enforced, enables rapid design, implementation and experimentation with different LLM-based agents. We demonstrate how the proposed framework can be used to implement recent LLM-based agents, and show how the guardrails our approach provides can lead to improvements in agent performance. In addition, we release our code for general use.
Leveraging Large Language Models for Automated Proof Synthesis in Rust
Formal verification can provably guarantee the correctness of critical system software, but the high proof burden has long hindered its wide adoption. Recently, Large Language Models (LLMs) have shown success in code analysis and synthesis. In this paper, we present a combination of LLMs and static analysis to synthesize invariants, assertions, and other proof structures for a Rust-based formal verification framework called Verus. In a few-shot setting, LLMs demonstrate impressive logical ability in generating postconditions and loop invariants, especially when analyzing short code snippets. However, LLMs lack the ability to retain and propagate context information, a strength of traditional static analysis. Based on these observations, we developed a prototype based on OpenAI's GPT-4 model. Our prototype decomposes the verification task into multiple smaller ones, iteratively queries GPT-4, and combines its output with lightweight static analysis. We evaluated the prototype with a developer in the automation loop on 20 vector-manipulating programs. The results demonstrate that it significantly reduces human effort in writing entry-level proof code.
A Deductive Verification Infrastructure for Probabilistic Programs
This paper presents a quantitative program verification infrastructure for discrete probabilistic programs. Our infrastructure can be viewed as the probabilistic analogue of Boogie: its central components are an intermediate verification language (IVL) together with a real-valued logic. Our IVL provides a programming-language-style for expressing verification conditions whose validity implies the correctness of a program under investigation. As our focus is on verifying quantitative properties such as bounds on expected outcomes, expected run-times, or termination probabilities, off-the-shelf IVLs based on Boolean first-order logic do not suffice. Instead, a paradigm shift from the standard Boolean to a real-valued domain is required. Our IVL features quantitative generalizations of standard verification constructs such as assume- and assert-statements. Verification conditions are generated by a weakest-precondition-style semantics, based on our real-valued logic. We show that our verification infrastructure supports natural encodings of numerous verification techniques from the literature. With our SMT-based implementation, we automatically verify a variety of benchmarks. To the best of our knowledge, this establishes the first deductive verification infrastructure for expectation-based reasoning about probabilistic programs.
RESTL: Reinforcement Learning Guided by Multi-Aspect Rewards for Signal Temporal Logic Transformation
Signal Temporal Logic (STL) is a powerful formal language for specifying real-time specifications of Cyber-Physical Systems (CPS). Transforming specifications written in natural language into STL formulas automatically has attracted increasing attention. Existing rule-based methods depend heavily on rigid pattern matching and domain-specific knowledge, limiting their generalizability and scalability. Recently, Supervised Fine-Tuning (SFT) of large language models (LLMs) has been successfully applied to transform natural language into STL. However, the lack of fine-grained supervision on atomic proposition correctness, semantic fidelity, and formula readability often leads SFT-based methods to produce formulas misaligned with the intended meaning. To address these issues, we propose RESTL, a reinforcement learning (RL)-based framework for the transformation from natural language to STL. RESTL introduces multiple independently trained reward models that provide fine-grained, multi-faceted feedback from four perspectives, i.e., atomic proposition consistency, semantic alignment, formula succinctness, and symbol matching. These reward models are trained with a curriculum learning strategy to improve their feedback accuracy, and their outputs are aggregated into a unified signal that guides the optimization of the STL generator via Proximal Policy Optimization (PPO). Experimental results demonstrate that RESTL significantly outperforms state-of-the-art methods in both automatic metrics and human evaluations.
FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving
Formal verification (FV) has witnessed growing significance with current emerging program synthesis by the evolving large language models (LLMs). However, current formal verification mainly resorts to symbolic verifiers or hand-craft rules, resulting in limitations for extensive and flexible verification. On the other hand, formal languages for automated theorem proving, such as Isabelle, as another line of rigorous verification, are maintained with comprehensive rules and theorems. In this paper, we propose FVEL, an interactive Formal Verification Environment with LLMs. Specifically, FVEL transforms a given code to be verified into Isabelle, and then conducts verification via neural automated theorem proving with an LLM. The joined paradigm leverages the rigorous yet abundant formulated and organized rules in Isabelle and is also convenient for introducing and adjusting cutting-edge LLMs. To achieve this goal, we extract a large-scale FVELER3. The FVELER dataset includes code dependencies and verification processes that are formulated in Isabelle, containing 758 theories, 29,125 lemmas, and 200,646 proof steps in total with in-depth dependencies. We benchmark FVELER in the FVEL environment by first fine-tuning LLMs with FVELER and then evaluating them on Code2Inv and SV-COMP. The results show that FVEL with FVELER fine-tuned Llama3- 8B solves 17.39% (69 -> 81) more problems, and Mistral-7B 12% (75 -> 84) more problems in SV-COMP. And the proportion of proof errors is reduced. Project page: https://fveler.github.io/.
A Datalog Hammer for Supervisor Verification Conditions Modulo Simple Linear Arithmetic
The Bernays-Sch\"onfinkel first-order logic fragment over simple linear real arithmetic constraints BS(SLR) is known to be decidable. We prove that BS(SLR) clause sets with both universally and existentially quantified verification conditions (conjectures) can be translated into BS(SLR) clause sets over a finite set of first-order constants. For the Horn case, we provide a Datalog hammer preserving validity and satisfiability. A toolchain from the BS(LRA) prover SPASS-SPL to the Datalog reasoner VLog establishes an effective way of deciding verification conditions in the Horn fragment. This is exemplified by the verification of supervisor code for a lane change assistant in a car and of an electronic control unit for a supercharged combustion engine.
Multi-Agent Verification and Control with Probabilistic Model Checking
Probabilistic model checking is a technique for formal automated reasoning about software or hardware systems that operate in the context of uncertainty or stochasticity. It builds upon ideas and techniques from a diverse range of fields, from logic, automata and graph theory, to optimisation, numerical methods and control. In recent years, probabilistic model checking has also been extended to integrate ideas from game theory, notably using models such as stochastic games and solution concepts such as equilibria, to formally verify the interaction of multiple rational agents with distinct objectives. This provides a means to reason flexibly about agents acting in either an adversarial or a collaborative fashion, and opens up opportunities to tackle new problems within, for example, artificial intelligence, robotics and autonomous systems. In this paper, we summarise some of the advances in this area, and highlight applications for which they have already been used. We discuss how the strengths of probabilistic model checking apply, or have the potential to apply, to the multi-agent setting and outline some of the key challenges required to make further progress in this field.
Lemur: Integrating Large Language Models in Automated Program Verification
The demonstrated code-understanding capability of LLMs raises the question of whether they can be used for automated program verification, a task that often demands high-level abstract reasoning about program properties, which is challenging for verification tools. We propose a general methodology to combine the power of LLMs and automated reasoners for automated program verification. We formally describe this methodology as a set of derivation rules and prove its soundness. We instantiate the calculus as a sound automated verification procedure, which led to practical improvements on a set of synthetic and competition benchmarks.
SELP: Generating Safe and Efficient Task Plans for Robot Agents with Large Language Models
Despite significant advancements in large language models (LLMs) that enhance robot agents' understanding and execution of natural language (NL) commands, ensuring the agents adhere to user-specified constraints remains challenging, particularly for complex commands and long-horizon tasks. To address this challenge, we present three key insights, equivalence voting, constrained decoding, and domain-specific fine-tuning, which significantly enhance LLM planners' capability in handling complex tasks. Equivalence voting ensures consistency by generating and sampling multiple Linear Temporal Logic (LTL) formulas from NL commands, grouping equivalent LTL formulas, and selecting the majority group of formulas as the final LTL formula. Constrained decoding then uses the generated LTL formula to enforce the autoregressive inference of plans, ensuring the generated plans conform to the LTL. Domain-specific fine-tuning customizes LLMs to produce safe and efficient plans within specific task domains. Our approach, Safe Efficient LLM Planner (SELP), combines these insights to create LLM planners to generate plans adhering to user commands with high confidence. We demonstrate the effectiveness and generalizability of SELP across different robot agents and tasks, including drone navigation and robot manipulation. For drone navigation tasks, SELP outperforms state-of-the-art planners by 10.8% in safety rate (i.e., finishing tasks conforming to NL commands) and by 19.8% in plan efficiency. For robot manipulation tasks, SELP achieves 20.4% improvement in safety rate. Our datasets for evaluating NL-to-LTL and robot task planning will be released in github.com/lt-asset/selp.
APE-Bench I: Towards File-level Automated Proof Engineering of Formal Math Libraries
Recent progress in large language models (LLMs) has shown promise in formal theorem proving, yet existing benchmarks remain limited to isolated, static proof tasks, failing to capture the iterative, engineering-intensive workflows of real-world formal mathematics libraries. Motivated by analogous advances in software engineering, we introduce the paradigm of Automated Proof Engineering (APE), which aims to automate proof engineering tasks such as feature addition, proof refactoring, and bug fixing using LLMs. To facilitate research in this direction, we present APE-Bench I, the first realistic benchmark built from real-world commit histories of Mathlib4, featuring diverse file-level tasks described in natural language and verified via a hybrid approach combining the Lean compiler and LLM-as-a-Judge. We further develop Eleanstic, a scalable parallel verification infrastructure optimized for proof checking across multiple versions of Mathlib. Empirical results on state-of-the-art LLMs demonstrate strong performance on localized edits but substantial degradation on handling complex proof engineering. This work lays the foundation for developing agentic workflows in proof engineering, with future benchmarks targeting multi-file coordination, project-scale verification, and autonomous agents capable of planning, editing, and repairing formal libraries.
A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification
In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.
Neural Theorem Proving: Generating and Structuring Proofs for Formal Verification
Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textnormal{ER} dataset for future training tasks.
NL2TL: Transforming Natural Languages to Temporal Logics using Large Language Models
Temporal Logic (TL) can be used to rigorously specify complex high-level specification for systems in many engineering applications. The translation between natural language (NL) and TL has been under-explored due to the lack of dataset and generalizable model across different application domains. In this paper, we propose an accurate and generalizable transformation framework of English instructions from NL to TL, exploring the use of Large Language Models (LLMs) at multiple stages. Our contributions are twofold. First, we develop a framework to create a dataset of NL-TL pairs combining LLMs and human annotation. We publish a dataset with 28K NL-TL pairs. Then, we finetune T5 models on the lifted versions (i.e., the specific Atomic Propositions (AP) are hidden) of the NL and TL. The enhanced generalizability originates from two aspects: 1) Usage of lifted NL-TL characterizes common logical structures, without constraints of specific domains. 2) Application of LLMs in dataset creation largely enhances corpus richness. We test the generalization of trained models on five varied domains. To achieve full NL-TL transformation, we either combine the lifted model with AP recognition task or do the further finetuning on each specific domain. During the further finetuning, our model achieves higher accuracy (>95%) using only <10% training data, compared with the baseline sequence to sequence (Seq2Seq) model.
RLang: A Declarative Language for Describing Partial World Knowledge to Reinforcement Learning Agents
We introduce RLang, a domain-specific language (DSL) for communicating domain knowledge to an RL agent. Unlike existing RL DSLs that ground to single elements of a decision-making formalism (e.g., the reward function or policy), RLang can specify information about every element of a Markov decision process. We define precise syntax and grounding semantics for RLang, and provide a parser that grounds RLang programs to an algorithm-agnostic partial world model and policy that can be exploited by an RL agent. We provide a series of example RLang programs demonstrating how different RL methods can exploit the resulting knowledge, encompassing model-free and model-based tabular algorithms, policy gradient and value-based methods, hierarchical approaches, and deep methods.
FormalML: A Benchmark for Evaluating Formal Subgoal Completion in Machine Learning Theory
Large language models (LLMs) have recently demonstrated remarkable progress in formal theorem proving. Yet their ability to serve as practical assistants for mathematicians, filling in missing steps within complex proofs, remains underexplored. We identify this challenge as the task of subgoal completion, where an LLM must discharge short but nontrivial proof obligations left unresolved in a human-provided sketch. To study this problem, we introduce FormalML, a Lean 4 benchmark built from foundational theories of machine learning. Using a translation tactic that converts procedural proofs into declarative form, we extract 4937 problems spanning optimization and probability inequalities, with varying levels of difficulty. FormalML is the first subgoal completion benchmark to combine premise retrieval and complex research-level contexts. Evaluation of state-of-the-art provers highlights persistent limitations in accuracy and efficiency, underscoring the need for more capable LLM-based theorem provers for effective subgoal completion,
Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation
We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration.
PRO-V: An Efficient Program Generation Multi-Agent System for Automatic RTL Verification
LLM-assisted hardware verification is gaining substantial attention due to its potential to significantly reduce the cost and effort of crafting effective testbenches. It also serves as a critical enabler for LLM-aided end-to-end hardware language design. However, existing current LLMs often struggle with Register Transfer Level (RTL) code generation, resulting in testbenches that exhibit functional errors in Hardware Description Languages (HDL) logic. Motivated by the strong performance of LLMs in Python code generation under inference-time sampling strategies, and their promising capabilities as judge agents, we propose PRO-V a fully program generation multi-agent system for robust RTL verification. Pro-V incorporates an efficient best-of-n iterative sampling strategy to enhance the correctness of generated testbenches. Moreover, it introduces an LLM-as-a-judge aid validation framework featuring an automated prompt generation pipeline. By converting rule-based static analysis from the compiler into natural language through in-context learning, this pipeline enables LLMs to assist the compiler in determining whether verification failures stem from errors in the RTL design or the testbench. PRO-V attains a verification accuracy of 87.17% on golden RTL implementations and 76.28% on RTL mutants. Our code is open-sourced at https://github.com/stable-lab/Pro-V.
APOLLO: Automated LLM and Lean Collaboration for Advanced Formal Reasoning
Formal reasoning and automated theorem proving constitute a challenging subfield of machine learning, in which machines are tasked with proving mathematical theorems using formal languages like Lean. A formal verification system can check whether a formal proof is correct or not almost instantaneously, but generating a completely correct formal proof with large language models (LLMs) remains a formidable task. The usual approach in the literature is to prompt the LLM many times (up to several thousands) until one of the generated proofs passes the verification system. In this work, we present APOLLO (Automated PrOof repair via LLM and Lean cOllaboration), a modular, model-agnostic pipeline that combines the strengths of the Lean compiler with an LLM's reasoning abilities to achieve better proof-generation results at a low sampling budget. Apollo directs a fully automated process in which the LLM generates proofs for theorems, a set of agents analyze the proofs, fix the syntax errors, identify the mistakes in the proofs using Lean, isolate failing sub-lemmas, utilize automated solvers, and invoke an LLM on each remaining goal with a low top-K budget. The repaired sub-proofs are recombined and reverified, iterating up to a user-controlled maximum number of attempts. On the miniF2F benchmark, we establish a new state-of-the-art accuracy of 75.0% among 7B-parameter models while keeping the sampling budget below one thousand. Moreover, Apollo raises the state-of-the-art accuracy for Goedel-Prover-SFT to 65.6% while cutting sample complexity from 25,600 to a few hundred. General-purpose models (o3-mini, o4-mini) jump from 3-7% to over 40% accuracy. Our results demonstrate that targeted, compiler-guided repair of LLM outputs yields dramatic gains in both efficiency and correctness, suggesting a general paradigm for scalable automated theorem proving.
Towards Automated Formal Verification of Backend Systems with LLMs
Software testing plays a critical role in ensuring that systems behave as intended. However, existing automated testing approaches struggle to match the capabilities of human engineers due to key limitations such as test locality, lack of general reliability, and business logic blindness. In this work, we propose a novel framework that leverages functional programming and type systems to translate Scala backend code into formal Lean representations. Our pipeline automatically generates theorems that specify the intended behavior of APIs and database operations, and uses LLM-based provers to verify them. When a theorem is proved, the corresponding logic is guaranteed to be correct and no further testing is needed. If the negation of a theorem is proved instead, it confirms a bug. In cases where neither can be proved, human intervention is required. We evaluate our method on realistic backend systems and find that it can formally verify over 50% of the test requirements, which suggests that half of a testing engineer's workload can be automated. Additionally, with an average cost of only $2.19 per API, LLM-based verification is significantly more cost-effective than manual testing and can be scaled easily through parallel execution. Our results indicate a promising direction for scalable, AI-powered software testing, with the potential to greatly improve engineering productivity as models continue to advance.
RLTF: Reinforcement Learning from Unit Test Feedback
The goal of program synthesis, or code generation, is to generate executable code based on given descriptions. Recently, there has been an increasing number of studies employing reinforcement learning (RL) to improve the performance of large language models (LLMs) for code. However, these RL methods have only used offline frameworks, limiting their exploration of new sample spaces. Additionally, current approaches that utilize unit test signals are rather simple, not accounting for specific error locations within the code. To address these issues, we proposed RLTF, i.e., Reinforcement Learning from Unit Test Feedback, a novel online RL framework with unit test feedback of multi-granularity for refining code LLMs. Our approach generates data in real-time during training and simultaneously utilizes fine-grained feedback signals to guide the model towards producing higher-quality code. Extensive experiments show that RLTF achieves state-of-the-art performance on the APPS and the MBPP benchmarks. Our code can be found at: https://github.com/Zyq-scut/RLTF.
Safe LLM-Controlled Robots with Formal Guarantees via Reachability Analysis
The deployment of Large Language Models (LLMs) in robotic systems presents unique safety challenges, particularly in unpredictable environments. Although LLMs, leveraging zero-shot learning, enhance human-robot interaction and decision-making capabilities, their inherent probabilistic nature and lack of formal guarantees raise significant concerns for safety-critical applications. Traditional model-based verification approaches often rely on precise system models, which are difficult to obtain for real-world robotic systems and may not be fully trusted due to modeling inaccuracies, unmodeled dynamics, or environmental uncertainties. To address these challenges, this paper introduces a safety assurance framework for LLM-controlled robots based on data-driven reachability analysis, a formal verification technique that ensures all possible system trajectories remain within safe operational limits. Our framework specifically investigates the problem of instructing an LLM to navigate the robot to a specified goal and assesses its ability to generate low-level control actions that successfully guide the robot safely toward that goal. By leveraging historical data to construct reachable sets of states for the robot-LLM system, our approach provides rigorous safety guarantees against unsafe behaviors without relying on explicit analytical models. We validate the framework through experimental case studies in autonomous navigation and task planning, demonstrating its effectiveness in mitigating risks associated with LLM-generated commands. This work advances the integration of formal methods into LLM-based robotics, offering a principled and practical approach to ensuring safety in next-generation autonomous systems.
CodeV-R1: Reasoning-Enhanced Verilog Generation
Large language models (LLMs) trained via reinforcement learning with verifiable reward (RLVR) have achieved breakthroughs on tasks with explicit, automatable verification, such as software programming and mathematical problems. Extending RLVR to electronic design automation (EDA), especially automatically generating hardware description languages (HDLs) like Verilog from natural-language (NL) specifications, however, poses three key challenges: the lack of automated and accurate verification environments, the scarcity of high-quality NL-code pairs, and the prohibitive computation cost of RLVR. To this end, we introduce CodeV-R1, an RLVR framework for training Verilog generation LLMs. First, we develop a rule-based testbench generator that performs robust equivalence checking against golden references. Second, we propose a round-trip data synthesis method that pairs open-source Verilog snippets with LLM-generated NL descriptions, verifies code-NL-code consistency via the generated testbench, and filters out inequivalent examples to yield a high-quality dataset. Third, we employ a two-stage "distill-then-RL" training pipeline: distillation for the cold start of reasoning abilities, followed by adaptive DAPO, our novel RLVR algorithm that can reduce training cost by adaptively adjusting sampling rate. The resulting model, CodeV-R1-7B, achieves 68.6% and 72.9% pass@1 on VerilogEval v2 and RTLLM v1.1, respectively, surpassing prior state-of-the-art by 12~20%, while matching or even exceeding the performance of 671B DeepSeek-R1. We will release our model, training pipeline, and dataset to facilitate research in EDA and LLM communities.
Permission-Based Separation Logic for Multithreaded Java Programs
This paper presents a program logic for reasoning about multithreaded Java-like programs with dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary variables keep track of multisets of currently held monitors. Data abstraction and behavioral subtyping are facilitated through abstract predicates, which are also used to represent monitor invariants, preconditions for thread starting and postconditions for thread joining. Value-parametrized types allow to conveniently capture common strong global invariants, like static object ownership relations. The program logic is presented for a model language with Java-like classes and interfaces, the soundness of the program logic is proven, and a number of illustrative examples are presented.
Model Checking a C++ Software Framework, a Case Study
This paper presents a case study on applying two model checkers, SPIN and DIVINE, to verify key properties of a C++ software framework, known as ADAPRO, originally developed at CERN. SPIN was used for verifying properties on the design level. DIVINE was used for verifying simple test applications that interacted with the implementation. Both model checkers were found to have their own respective sets of pros and cons, but the overall experience was positive. Because both model checkers were used in a complementary manner, they provided valuable new insights into the framework, which would arguably have been hard to gain by traditional testing and analysis tools only. Translating the C++ source code into the modeling language of the SPIN model checker helped to find flaws in the original design. With DIVINE, defects were found in parts of the code base that had already been subject to hundreds of hours of unit tests, integration tests, and acceptance tests. Most importantly, model checking was found to be easy to integrate into the workflow of the software project and bring added value, not only as verification, but also validation methodology. Therefore, using model checking for developing library-level code seems realistic and worth the effort.
Generating consistent PDDL domains with Large Language Models
Large Language Models (LLMs) are capable of transforming natural language domain descriptions into plausibly looking PDDL markup. However, ensuring that actions are consistent within domains still remains a challenging task. In this paper we present a novel concept to significantly improve the quality of LLM-generated PDDL models by performing automated consistency checking during the generation process. Although the proposed consistency checking strategies still can't guarantee absolute correctness of generated models, they can serve as valuable source of feedback reducing the amount of correction efforts expected from a human in the loop. We demonstrate the capabilities of our error detection approach on a number of classical and custom planning domains (logistics, gripper, tyreworld, household, pizza).
Do Large Language Models Excel in Complex Logical Reasoning with Formal Language?
Large Language Models (LLMs) have been shown to achieve breakthrough performance on complex logical reasoning tasks. Nevertheless, most existing research focuses on employing formal language to guide LLMs to derive reliable reasoning paths, while systematic evaluations of these capabilities are still limited. In this paper, we aim to conduct a comprehensive evaluation of LLMs across various logical reasoning problems utilizing formal languages. From the perspective of three dimensions, i.e., spectrum of LLMs, taxonomy of tasks, and format of trajectories, our key findings are: 1) Thinking models significantly outperform Instruct models, especially when formal language is employed; 2) All LLMs exhibit limitations in inductive reasoning capability, irrespective of whether they use a formal language; 3) Data with PoT format achieves the best generalization performance across other languages. Additionally, we also curate the formal-relative training data to further enhance the small language models, and the experimental results indicate that a simple rejected fine-tuning method can better enable LLMs to generalize across formal languages and achieve the best overall performance. Our codes and reports are available at https://github.com/jiangjin1999/FormalEval.
Re:Form -- Reducing Human Priors in Scalable Formal Software Verification with RL in LLMs: A Preliminary Study on Dafny
Existing informal language-based (e.g., human language) Large Language Models (LLMs) trained with Reinforcement Learning (RL) face a significant challenge: their verification processes, which provide crucial training signals, are neither reliable nor scalable. In fact, the prevalent large proprietary models could hardly generate verifiable programs. A promising yet largely uncharted alternative is formal language-based reasoning. Grounding LLMs in rigorous formal systems where generative models operate in formal language spaces (e.g., Dafny) enables the automatic and mathematically provable verification of their reasoning processes and outcomes. This capability is pivotal for achieving large-scale, reliable formal software verification. It is a common practice to employ human-annotated chain-of-thought and other human priors to induce the reasoning and coding capabilities of LLMs. Unfortunately, it becomes unacceptably all-consuming to provide such priors for supervising complex programming tasks. In this work, we systematically explore ways to reduce human priors with the formal language, Dafny, as the main environment for our pilot study. Our pipeline mainly relies on introducing an automatic and scalable data curation pipeline, and careful RL designs integrated with feedback from the formal language verifier. We introduce DafnyComp, a benchmark of compositional formal programs with auto-formalized specifications for specification reasoning. Our supervised fine-tuning (SFT) stage enables even small models (e.g., 0.5B) to generate syntactically valid and verifiable Dafny code, surpassing proprietary models. RL with regularization further improves performance, achieving stronger generalization to out-of-domain tasks and outperforming all strong baselines on the challenging DafnyComp benchmark.
TheoremLlama: Transforming General-Purpose LLMs into Lean4 Experts
Proving mathematical theorems using computer-verifiable formal languages like Lean significantly impacts mathematical reasoning. One approach to formal theorem proving involves generating complete proofs using Large Language Models (LLMs) based on Natural Language (NL) proofs. Similar methods have shown promising results in code generation. However, most modern LLMs exhibit suboptimal performance due to the scarcity of aligned NL and Formal Language (FL) theorem-proving data. This scarcity results in a paucity of methodologies for training LLMs and techniques to fully utilize their capabilities in composing formal proofs. To address the challenges, this paper proposes **TheoremLlama**, an end-to-end framework to train a general-purpose LLM to become a Lean4 expert. This framework encompasses NL-FL aligned dataset generation methods, training approaches for the LLM formal theorem prover, and techniques for LLM Lean4 proof writing. Using the dataset generation method, we provide *Open Bootstrapped Theorems* (OBT), an NL-FL aligned and bootstrapped dataset. A key innovation in this framework is the NL-FL bootstrapping method, where NL proofs are integrated into Lean4 code for training datasets, leveraging the NL reasoning ability of LLMs for formal reasoning. The **TheoremLlama** framework achieves cumulative accuracies of 36.48% and 33.61% on MiniF2F-Valid and Test datasets respectively, surpassing the GPT-4 baseline of 22.95% and 25.41%. We have also open-sourced our model checkpoints and generated dataset, and will soon make all the code publicly available.
VerIF: Verification Engineering for Reinforcement Learning in Instruction Following
Reinforcement learning with verifiable rewards (RLVR) has become a key technique for enhancing large language models (LLMs), with verification engineering playing a central role. However, best practices for RL in instruction following remain underexplored. In this work, we explore the verification challenge in RL for instruction following and propose VerIF, a verification method that combines rule-based code verification with LLM-based verification from a large reasoning model (e.g., QwQ-32B). To support this approach, we construct a high-quality instruction-following dataset, VerInstruct, containing approximately 22,000 instances with associated verification signals. We apply RL training with VerIF to two models, achieving significant improvements across several representative instruction-following benchmarks. The trained models reach state-of-the-art performance among models of comparable size and generalize well to unseen constraints. We further observe that their general capabilities remain unaffected, suggesting that RL with VerIF can be integrated into existing RL recipes to enhance overall model performance. We have released our datasets, codes, and models to facilitate future research at https://github.com/THU-KEG/VerIF.
Graph of Verification: Structured Verification of LLM Reasoning with Directed Acyclic Graphs
Verifying the reliability of complex, multi-step reasoning in Large Language Models (LLMs) remains a fundamental challenge, as existing methods often lack both faithfulness and precision. To address this issue, we propose the Graph of Verification (GoV) framework. GoV offers three key contributions: First, it explicitly models the underlying deductive process as a directed acyclic graph (DAG), whether this structure is implicit or explicitly constructed. Second, it enforces a topological order over the DAG to guide stepwise verification. Third, GoV introduces the notion of customizable node blocks, which flexibly define the verification granularity, from atomic propositions to full paragraphs, while ensuring that all requisite premises derived from the graph are provided as contextual input for each verification unit. We evaluate GoV on the Number Triangle Summation task and the ProcessBench benchmark with varying levels of reasoning complexity. Experimental results show that GoV substantially improves verification accuracy, faithfulness, and error localization when compared to conventional end-to-end verification approaches. Our code and data are available at https://github.com/Frevor/Graph-of-Verification.
Towards Repository-Level Program Verification with Large Language Models
Recent advancements in large language models (LLMs) suggest great promises in code and proof generations. However, scaling automated formal verification to real-world projects requires resolving cross-module dependencies and global contexts, which are crucial challenges overlooked by existing LLM-based methods with a special focus on targeting isolated, function-level verification tasks. To systematically explore and address the significant challenges of verifying entire software repositories, we introduce RVBench, the first verification benchmark explicitly designed for repository-level evaluation, constructed from four diverse and complex open-source Verus projects. We further introduce RagVerus, an extensible framework that synergizes retrieval-augmented generation with context-aware prompting to automate proof synthesis for multi-module repositories. RagVerus triples proof pass rates on existing benchmarks under constrained model inference budgets, and achieves a 27% relative improvement on the more challenging RVBench benchmark, demonstrating a scalable and sample-efficient verification solution.
Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem
The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1
FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving
Many challenging reasoning tasks require not just rapid, intuitive responses, but a more deliberate, multi-step approach. Recent progress in large language models (LLMs) highlights an important shift from the "System 1" way of quick reactions to the "System 2" style of reflection-and-correction problem solving. However, current benchmarks heavily rely on the final-answer accuracy, leaving much of a model's intermediate reasoning steps unexamined. This fails to assess the model's ability to reflect and rectify mistakes within the reasoning process. To bridge this gap, we introduce FINEREASON, a logic-puzzle benchmark for fine-grained evaluation of LLMs' reasoning capabilities. Each puzzle can be decomposed into atomic steps, making it ideal for rigorous validation of intermediate correctness. Building on this, we introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move. To support broader research, we also provide a puzzle training set aimed at enhancing performance on general mathematical tasks. We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
SATBench: Benchmarking LLMs' Logical Reasoning via Automated Puzzle Generation from SAT Formulas
We introduce SATBench, a benchmark for evaluating the logical reasoning capabilities of large language models (LLMs) through logical puzzles derived from Boolean satisfiability (SAT) problems. Unlike prior work that focuses on inference rule-based reasoning, which often involves deducing conclusions from a set of premises, our approach leverages the search-based nature of SAT problems, where the objective is to find a solution that fulfills a specified set of logical constraints. Each instance in SATBench is generated from a SAT formula, then translated into a story context and conditions using LLMs. The generation process is fully automated and allows for adjustable difficulty by varying the number of clauses. All 2100 puzzles are validated through both LLM-assisted and solver-based consistency checks, with human validation on a subset. Experimental results show that even the strongest model, o4-mini, achieves only 65.0% accuracy on hard UNSAT problems, close to the random baseline of 50%. SATBench exposes fundamental limitations in the search-based logical reasoning abilities of current LLMs and provides a scalable testbed for future research in logical reasoning.
Inference-Time Intervention in Large Language Models for Reliable Requirement Verification
Steering the behavior of Large Language Models (LLMs) remains a challenge, particularly in engineering applications where precision and reliability are critical. While fine-tuning and prompting methods can modify model behavior, they lack the dynamic and exact control necessary for engineering applications. Inference-time intervention techniques provide a promising alternative, allowing targeted adjustments to LLM outputs. In this work, we demonstrate how interventions enable fine-grained control for automating the usually time-intensive requirement verification process in Model-Based Systems Engineering (MBSE). Using two early-stage Capella SysML models of space missions with associated requirements, we apply the intervened LLMs to reason over a graph representation of the model to determine whether a requirement is fulfilled. Our method achieves robust and reliable outputs, significantly improving over both a baseline model and a fine-tuning approach. By identifying and modifying as few as one to three specialised attention heads, we can significantly change the model's behavior. When combined with self-consistency, this allows us to achieve perfect precision on our holdout test set.
Theorem Prover as a Judge for Synthetic Data Generation
The demand for synthetic data in mathematical reasoning has increased due to its potential to enhance the mathematical capabilities of large language models (LLMs). However, ensuring the validity of intermediate reasoning steps remains a significant challenge, affecting data quality. While formal verification via theorem provers effectively validates LLM reasoning, the autoformalisation of mathematical proofs remains error-prone. In response, we introduce iterative autoformalisation, an approach that iteratively refines theorem prover formalisation to mitigate errors, thereby increasing the execution rate on the Lean prover from 60% to 87%. Building upon that, we introduce Theorem Prover as a Judge (TP-as-a-Judge), a method that employs theorem prover formalisation to rigorously assess LLM intermediate reasoning, effectively integrating autoformalisation with synthetic data generation. Finally, we present Reinforcement Learning from Theorem Prover Feedback (RLTPF), a framework that replaces human annotation with theorem prover feedback in Reinforcement Learning from Human Feedback (RLHF). Across multiple LLMs, applying TP-as-a-Judge and RLTPF improves benchmarks with only 3,508 samples, achieving 5.56% accuracy gain on Mistral-7B for MultiArith, 6.00% on Llama-2-7B for SVAMP, and 3.55% on Llama-3.1-8B for AQUA.
CriticLean: Critic-Guided Reinforcement Learning for Mathematical Formalization
Translating natural language mathematical statements into formal, executable code is a fundamental challenge in automated theorem proving. While prior work has focused on generation and compilation success, little attention has been paid to the critic phase-the evaluation of whether generated formalizations truly capture the semantic intent of the original problem. In this paper, we introduce CriticLean, a novel critic-guided reinforcement learning framework that elevates the role of the critic from a passive validator to an active learning component. Specifically, first, we propose the CriticLeanGPT, trained via supervised fine-tuning and reinforcement learning, to rigorously assess the semantic fidelity of Lean 4 formalizations. Then, we introduce CriticLeanBench, a benchmark designed to measure models' ability to distinguish semantically correct from incorrect formalizations, and demonstrate that our trained CriticLeanGPT models can significantly outperform strong open- and closed-source baselines. Building on the CriticLean framework, we construct FineLeanCorpus, a dataset comprising over 285K problems that exhibits rich domain diversity, broad difficulty coverage, and high correctness based on human evaluation. Overall, our findings highlight that optimizing the critic phase is essential for producing reliable formalizations, and we hope our CriticLean will provide valuable insights for future advances in formal mathematical reasoning.
MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving
Solving mathematical problems using computer-verifiable languages like Lean has significantly impacted mathematical and computer science communities. State-of-the-art methods utilize single Large Language Models (LLMs) as agents or provers to either generate complete proof or perform tree searches. However, single-agent methods inherently lack a structured way to combine high-level reasoning in Natural Language (NL) with Formal Language (FL) verification feedback. To solve these issues, we propose MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought framework, (to the best of our knowledge), the first multi-agent framework for Lean4 theorem proving that balance high-level NL reasoning and FL verification in Long CoT. Using this structured interaction, our approach enables deeper insights and long-term coherence in proof generation, with which past methods struggle. We do this by leveraging emergent formal reasoning ability in Long CoT using our novel LoT-Transfer Learning training-inference pipeline. Extensive experiments show that our framework achieves 54.51% accuracy rate on the Lean4 version of MiniF2F-Test dataset, largely outperforming GPT-4 (22.95%), single-agent tree search (InternLM-Step-Prover, 50.70%), and whole-proof generation (DeepSeek-Prover-v1.5, 48.36%) baselines. Furthermore, our findings highlight the potential of combining Long CoT with formal verification for a more insightful generation in a broader perspective.
LLM-Augmented Symbolic Reinforcement Learning with Landmark-Based Task Decomposition
One of the fundamental challenges in reinforcement learning (RL) is to take a complex task and be able to decompose it to subtasks that are simpler for the RL agent to learn. In this paper, we report on our work that would identify subtasks by using some given positive and negative trajectories for solving the complex task. We assume that the states are represented by first-order predicate logic using which we devise a novel algorithm to identify the subtasks. Then we employ a Large Language Model (LLM) to generate first-order logic rule templates for achieving each subtask. Such rules were then further fined tuned to a rule-based policy via an Inductive Logic Programming (ILP)-based RL agent. Through experiments, we verify the accuracy of our algorithm in detecting subtasks which successfully detect all of the subtasks correctly. We also investigated the quality of the common-sense rules produced by the language model to achieve the subtasks. Our experiments show that our LLM-guided rule template generation can produce rules that are necessary for solving a subtask, which leads to solving complex tasks with fewer assumptions about predefined first-order logic predicates of the environment.
Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification
Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.
OpenLLM-RTL: Open Dataset and Benchmark for LLM-Aided Design RTL Generation
The automated generation of design RTL based on large language model (LLM) and natural language instructions has demonstrated great potential in agile circuit design. However, the lack of datasets and benchmarks in the public domain prevents the development and fair evaluation of LLM solutions. This paper highlights our latest advances in open datasets and benchmarks from three perspectives: (1) RTLLM 2.0, an updated benchmark assessing LLM's capability in design RTL generation. The benchmark is augmented to 50 hand-crafted designs. Each design provides the design description, test cases, and a correct RTL code. (2) AssertEval, an open-source benchmark assessing the LLM's assertion generation capabilities for RTL verification. The benchmark includes 18 designs, each providing specification, signal definition, and correct RTL code. (3) RTLCoder-Data, an extended open-source dataset with 80K instruction-code data samples. Moreover, we propose a new verification-based method to verify the functionality correctness of training data samples. Based on this technique, we further release a dataset with 7K verified high-quality samples. These three studies are integrated into one framework, providing off-the-shelf support for the development and evaluation of LLMs for RTL code generation and verification. Finally, extensive experiments indicate that LLM performance can be boosted by enlarging the training dataset, improving data quality, and improving the training scheme.
Veritas: Deterministic Verilog Code Synthesis from LLM-Generated Conjunctive Normal Form
Automated Verilog code synthesis poses significant challenges and typically demands expert oversight. Traditional high-level synthesis (HLS) methods often fail to scale for real-world designs. While large language models (LLMs) have enhanced scalability, they often introduce syntactical and logical errors requiring extensive post-generation verification. Here, we introduce a novel conjunctive normal form (CNF)-guided synthesis methodology. The idea is to have an LLM generate CNF clauses, a format widely used for formal verification and synthesis validation in hardware design, but here it is used to formally describe the desired circuit functionality. These CNF specifications are then deterministically converted into Verilog, ensuring correctness by construction. Our approach fine-tunes an open-source and lightweight LLM, namely the CPU-deployable LLama-3.2-3B-Instruct model (parameters < 4B), on a dataset of standard RTL components. Experimental results demonstrate that our approach reliably produces functionally correct Verilog code on the first attempt, compared to other lightweight open-source SoTA works such as Verigen (2B parameters) and RTLCoder (4-bit quantized with around 7B parameters). We will release our method and data in full post peer-review.
From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs
The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical competitions like IMO, showing significant progress. However, these studies intertwined multiple skills simultaneously, i.e., problem-solving, reasoning, and writing formal specifications, making it hard to precisely identify the LLMs' strengths and weaknesses in each task. This paper focuses on formal verification, an immediate application scenario of formal reasoning, and decomposes it into six sub-tasks. We constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six formal-verification-related tasks by distilling GPT-4o. They are split into a 14k+ fine-tuning dataset FM-alpaca and a 4k benchmark FM-Bench. We found that LLMs are good at writing proof segments when given either the code, or the detailed description of proof steps. Also, the fine-tuning brought about a nearly threefold improvement at most. Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding abilities. We hope our findings inspire further research. Fine-tuned models are released to facilitate subsequent studies
AlphaVerus: Bootstrapping Formally Verified Code Generation through Self-Improving Translation and Treefinement
Automated code generation with large language models has gained significant traction, but there remains no guarantee on the correctness of generated code. We aim to use formal verification to provide mathematical guarantees that the generated code is correct. However, generating formally verified code with LLMs is hindered by the scarcity of training data and the complexity of formal proofs. To tackle this challenge, we introduce AlphaVerus, a self-improving framework that bootstraps formally verified code generation by iteratively translating programs from a higher-resource language and leveraging feedback from a verifier. AlphaVerus operates in three phases: exploration of candidate translations, Treefinement -- a novel tree search algorithm for program refinement using verifier feedback, and filtering misaligned specifications and programs to prevent reward hacking. Through this iterative process, AlphaVerus enables a LLaMA-3.1-70B model to generate verified code without human intervention or model finetuning. AlphaVerus shows an ability to generate formally verified solutions for HumanEval and MBPP, laying the groundwork for truly trustworthy code-generation agents.
Logic.py: Bridging the Gap between LLMs and Constraint Solvers
We present a novel approach to formalise and solve search-based problems using large language models, which significantly improves upon previous state-of-the-art results. We demonstrate the efficacy of this approach on the logic puzzles benchmark ZebraLogicBench. Instead of letting the LLM attempt to directly solve the puzzles, our method prompts the model to formalise the problem in a logic-focused domain-specific language (DSL) called Logic.py. This formalised representation is then solved using a constraint solver, leveraging the strengths of both the language model and the solver. Our approach achieves a remarkable 65% absolute improvement over the baseline performance of Llama 3.1 70B on ZebraLogicBench, setting a new state-of-the-art with an accuracy of over 90%. This significant advancement demonstrates the potential of combining language models with domain-specific languages and auxiliary tools on traditionally challenging tasks for LLMs.
Coarse-Tuning Models of Code with Reinforcement Learning Feedback
Large Language Models (LLMs) pre-trained on code have recently emerged as the dominant approach to program synthesis. However, these models are trained using next-token prediction, which ignores the syntax and semantics of code. We propose RLCF, that further trains a pre-trained LLM via reinforcement learning, using feedback from a grounding function that scores the quality of the code. The grounding function uses (i) compiler-derived feedback on whether the code it generates passes a set of correctness checks; and (ii) feedback from a different LLM that compares the generated code to a reference code. RLCF is model- and language-agnostic. We empirically evaluate it on the MBJP and MathQA tasks for Java. Our experiments show that RLCF raises the odds that an LLM-generated program compiles, is executable, and produces the right output on tests, often allowing LLMs to match the performance of 2x-8x larger LLMs.
Grammars of Formal Uncertainty: When to Trust LLMs in Automated Reasoning Tasks
Large language models (LLMs) show remarkable promise for democratizing automated reasoning by generating formal specifications. However, a fundamental tension exists: LLMs are probabilistic, while formal verification demands deterministic guarantees. This paper addresses this epistemological gap by comprehensively investigating failure modes and uncertainty quantification (UQ) in LLM-generated formal artifacts. Our systematic evaluation of five frontier LLMs reveals Satisfiability Modulo Theories (SMT) based autoformalization's domain-specific impact on accuracy (from +34.8% on logical tasks to -44.5% on factual ones), with known UQ techniques like the entropy of token probabilities failing to identify these errors. We introduce a probabilistic context-free grammar (PCFG) framework to model LLM outputs, yielding a refined uncertainty taxonomy. We find uncertainty signals are task-dependent (e.g., grammar entropy for logic, AUROC>0.93). Finally, a lightweight fusion of these signals enables selective verification, drastically reducing errors (14-100%) with minimal abstention, transforming LLM-driven formalization into a reliable engineering discipline.
Unsupervised Evaluation of Code LLMs with Round-Trip Correctness
To evaluate code large language models (LLMs), research has relied on a few small manually curated benchmarks, such as HumanEval and MBPP, which represent a narrow part of the real-world software domains. In this work, we introduce round-trip correctness (RTC) as an alternative evaluation method. RTC allows Code LLM evaluation on a broader spectrum of real-world software domains without the need for costly human curation. RTC rests on the idea that we can ask a model to make a prediction (e.g., describe some code using natural language), feed that prediction back (e.g., synthesize code from the predicted description), and check if this round-trip leads to code that is semantically equivalent to the original input. We show how to employ RTC to evaluate code synthesis and editing. We find that RTC strongly correlates with model performance on existing narrow-domain code synthesis benchmarks while allowing us to expand to a much broader set of domains and tasks which was not previously possible without costly human annotations.
Planning-Driven Programming: A Large Language Model Programming Workflow
The strong performance of large language models (LLMs) on natural language processing tasks raises extensive discussion on their application to code generation. Recent work suggests multiple sampling approaches to improve initial code generation accuracy or program repair approaches to refine the code. However, these methods suffer from LLMs' inefficiencies and limited reasoning capacity. In this work, we propose an LLM programming workflow (LPW) designed to improve both initial code generation and subsequent refinements within a structured two-phase workflow. Specifically, in the solution generation phase, the LLM first outlines a solution plan that decomposes the problem into manageable sub-problems and then verifies the generated solution plan through visible test cases. Subsequently, in the code implementation phase, the LLM initially drafts a code according to the solution plan and its verification. If the generated code fails the visible tests, the plan verification serves as the intended natural language solution to inform the refinement process for correcting bugs. We further introduce SLPW, a sampling variant of LPW, which initially generates multiple solution plans and plan verifications, produces a program for each plan and its verification, and refines each program as necessary until one successfully passes the visible tests. Compared to the state-of-the-art methods across various existing LLMs, our experimental results show that LPW significantly improves the Pass@1 accuracy by up to 16.4% on well-established text-to-code generation benchmarks, especially with a notable improvement of around 10% on challenging benchmarks. Additionally, SLPW demonstrates up to a 5.6% improvement over LPW and sets new state-of-the-art Pass@1 accuracy on various benchmarks, e.g., 98.2% on HumanEval, 84.8% on MBPP, 64.0% on APPS, and 35.3% on CodeContest, using GPT-4o as the backbone.
MCTS-Judge: Test-Time Scaling in LLM-as-a-Judge for Code Correctness Evaluation
The LLM-as-a-Judge paradigm shows promise for evaluating generative content but lacks reliability in reasoning-intensive scenarios, such as programming. Inspired by recent advances in reasoning models and shifts in scaling laws, we pioneer bringing test-time computation into LLM-as-a-Judge, proposing MCTS-Judge, a resource-efficient, System-2 thinking framework for code correctness evaluation. MCTS-Judge leverages Monte Carlo Tree Search (MCTS) to decompose problems into simpler, multi-perspective evaluations. Through a node-selection strategy that combines self-assessment based on historical actions in the current trajectory and the Upper Confidence Bound for Trees based on prior rollouts, MCTS-Judge balances global optimization and refinement of the current trajectory. We further designed a high-precision, unit-test-level reward mechanism to encourage the Large Language Model (LLM) to perform line-by-line analysis. Extensive experiments on three benchmarks and five LLMs demonstrate the effectiveness of MCTS-Judge, which improves the base model's accuracy from 41% to 80%, surpassing the o1-series models with 3x fewer tokens. Further evaluations validate the superiority of its reasoning trajectory in logic, analytics, thoroughness, and overall quality, while revealing the test-time scaling law of the LLM-as-a-Judge paradigm.
Towards Advanced Mathematical Reasoning for LLMs via First-Order Logic Theorem Proving
Large language models (LLMs) have shown promising first-order logic (FOL) reasoning capabilities with applications in various areas. However, their effectiveness in complex mathematical reasoning involving multi-step FOL deductions is still under-researched. While LLMs perform competitively on established mathematical reasoning benchmarks, they struggle with multi-step FOL tasks, as demonstrated by Deepseek-Prover-V2-7B's low accuracy (4.2%) on our proposed theorem proving dataset. This issue arises from the limited exploration of diverse proof strategies and the potential for early reasoning mistakes to undermine entire proofs. To address these issues, we propose DREAM, a self-adaptive solution that enhances the Diversity and REAsonability of LLMs' generation strategies. DREAM incorporates an Axiom-Driven Strategy Diversification mechanism to promote varied strategic outcomes and a Sub-Proposition Error Feedback to help LLMs reflect on and correct their proofs. Our contributions include pioneering advancements in LLMs' mathematical reasoning through FOL theorem proving, introducing a novel inference stage solution that improves performance by 0.6% to 6.4%, and providing a curated dataset of 447 mathematical theorems in Lean 4 format for evaluation.
LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities. Understanding and executing complex rules, along with multi-step planning, are fundamental to logical reasoning and critical for practical LLM agents and decision-making systems. However, evaluating LLMs as effective rule-based executors and planners remains underexplored. In this paper, we introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs. Unlike traditional benchmarks, LogicGame provides diverse games that contain a series of rules with an initial state, requiring models to comprehend and apply predefined regulations to solve problems. We create simulated scenarios in which models execute or plan operations to achieve specific outcomes. These game scenarios are specifically designed to distinguish logical reasoning from mere knowledge by relying exclusively on predefined rules. This separation allows for a pure assessment of rule-based reasoning capabilities. The evaluation considers not only final outcomes but also intermediate steps, providing a comprehensive assessment of model performance. Moreover, these intermediate steps are deterministic and can be automatically verified. LogicGame defines game scenarios with varying difficulty levels, from simple rule applications to complex reasoning chains, in order to offer a precise evaluation of model performance on rule understanding and multi-step execution. Utilizing LogicGame, we test various LLMs and identify notable shortcomings in their rule-based logical reasoning abilities.
On the Design and Analysis of LLM-Based Algorithms
We initiate a formal investigation into the design and analysis of LLM-based algorithms, i.e. algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While LLM-based algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agent systems and compound AI systems, have achieved remarkable empirical success, the design and optimization of them have mostly relied on heuristics and trial-and-errors, which is largely due to a lack of formal and analytical study for these algorithms. To fill this gap, we start by identifying the computational-graph representation of LLM-based algorithms, the design principle of task decomposition, and some key abstractions, which then facilitate our formal analysis for the accuracy and efficiency of LLM-based algorithms, despite the black-box nature of LLMs. Through extensive analytical and empirical investigation in a series of case studies, we demonstrate that the proposed framework is broadly applicable to a wide range of scenarios and diverse patterns of LLM-based algorithms, such as parallel, hierarchical and recursive task decomposition. Our proposed framework holds promise for advancing LLM-based algorithms, by revealing the reasons behind curious empirical phenomena, guiding the choices of hyperparameters, predicting the empirical performance of algorithms, and inspiring new algorithm design. To promote further study of LLM-based algorithms, we release our source code at https://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithm.
Hilbert: Recursively Building Formal Proofs with Informal Reasoning
Large Language Models (LLMs) demonstrate impressive mathematical reasoning abilities, but their solutions frequently contain errors that cannot be automatically verified. Formal theorem proving systems such as Lean 4 offer automated verification with complete accuracy, motivating recent efforts to build specialized prover LLMs that generate verifiable proofs in formal languages. However, a significant gap remains: current prover LLMs solve substantially fewer problems than general-purpose LLMs operating in natural language. We introduce Hilbert, an agentic framework that bridges this gap by combining the complementary strengths of informal reasoning and formal verification. Our system orchestrates four components: an informal LLM that excels at mathematical reasoning, a specialized prover LLM optimized for Lean 4 tactics, a formal verifier, and a semantic theorem retriever. Given a problem that the prover is unable to solve, Hilbert employs recursive decomposition to split the problem into subgoals that it solves with the prover or reasoner LLM. It leverages verifier feedback to refine incorrect proofs as necessary. Experimental results demonstrate that Hilbert substantially outperforms existing approaches on key benchmarks, achieving 99.2% on miniF2F, 6.6% points above the best publicly available method. Hilbert achieves the best known result on PutnamBench. It solves 462/660 problems (70.0%), outperforming proprietary approaches like SeedProver (50.4%) and achieving a 422% improvement over the best publicly available baseline. Thus, Hilbert effectively narrows the gap between informal reasoning and formal proof generation.
VERINA: Benchmarking Verifiable Code Generation
Large language models (LLMs) are increasingly integrated in software development, but ensuring correctness in LLM-generated code remains challenging and often requires costly manual review. Verifiable code generation -- jointly generating code, specifications, and proofs of code-specification alignment -- offers a promising path to address this limitation and further unleash LLMs' benefits in coding. Yet, there exists a significant gap in evaluation: current benchmarks often lack support for end-to-end verifiable code generation. In this paper, we introduce Verina (Verifiable Code Generation Arena), a high-quality benchmark enabling a comprehensive and modular evaluation of code, specification, and proof generation as well as their compositions. Verina consists of 189 manually curated coding tasks in Lean, with detailed problem descriptions, reference implementations, formal specifications, and extensive test suites. Our extensive evaluation of state-of-the-art LLMs reveals significant challenges in verifiable code generation, especially in proof generation, underscoring the need for improving LLM-based theorem provers in verification domains. The best model, OpenAI o4-mini, generates only 61.4% correct code, 51.0% sound and complete specifications, and 3.6% successful proofs, with one trial per task. We hope Verina will catalyze progress in verifiable code generation by providing a rigorous and comprehensive benchmark. We release our dataset on https://huggingface.co/datasets/sunblaze-ucb/verina and our evaluation code on https://github.com/sunblaze-ucb/verina.
Insights from Verification: Training a Verilog Generation LLM with Reinforcement Learning with Testbench Feedback
Large language models (LLMs) have shown strong performance in Verilog generation from natural language description. However, ensuring the functional correctness of the generated code remains a significant challenge. This paper introduces a method that integrates verification insights from testbench into the training of Verilog generation LLMs, aligning the training with the fundamental goal of hardware design: functional correctness. The main obstacle in using LLMs for Verilog code generation is the lack of sufficient functional verification data, particularly testbenches paired with design specifications and code. To address this problem, we introduce an automatic testbench generation pipeline that decomposes the process and uses feedback from the Verilog compiler simulator (VCS) to reduce hallucination and ensure correctness. We then use the testbench to evaluate the generated codes and collect them for further training, where verification insights are introduced. Our method applies reinforcement learning (RL), specifically direct preference optimization (DPO), to align Verilog code generation with functional correctness by training preference pairs based on testbench outcomes. In evaluations on VerilogEval-Machine, VerilogEval-Human, RTLLM v1.1, RTLLM v2, and VerilogEval v2, our approach consistently outperforms state-of-the-art baselines in generating functionally correct Verilog code. We open source all training code, data, and models at https://anonymous.4open.science/r/VeriPrefer-E88B.
Enhancing Formal Theorem Proving: A Comprehensive Dataset for Training AI Models on Coq Code
In the realm of formal theorem proving, the Coq proof assistant stands out for its rigorous approach to verifying mathematical assertions and software correctness. Despite the advances in artificial intelligence and machine learning, the specialized nature of Coq syntax and semantics poses unique challenges for Large Language Models (LLMs). Addressing this gap, we present a comprehensive dataset specifically designed to enhance LLMs' proficiency in interpreting and generating Coq code. This dataset, derived from a collection of over 10,000 Coq source files, encompasses a wide array of propositions, proofs, and definitions, enriched with metadata including source references and licensing information. Our primary aim is to facilitate the development of LLMs capable of generating syntactically correct and semantically meaningful Coq constructs, thereby advancing the frontier of automated theorem proving. Initial experiments with this dataset have showcased its significant potential; models trained on this data exhibited enhanced accuracy in Coq code generation. Notably, a particular experiment revealed that a fine-tuned LLM was capable of generating 141 valid proofs for a basic lemma, highlighting the dataset's utility in facilitating the discovery of diverse and valid proof strategies. This paper discusses the dataset's composition, the methodology behind its creation, and the implications of our findings for the future of machine learning in formal verification. The dataset is accessible for further research and exploration: https://huggingface.co/datasets/florath/coq-facts-props-proofs-gen0-v1
Teaching LLMs to Plan: Logical Chain-of-Thought Instruction Tuning for Symbolic Planning
Large language models (LLMs) have demonstrated impressive capabilities across diverse tasks, yet their ability to perform structured symbolic planning remains limited, particularly in domains requiring formal representations like the Planning Domain Definition Language (PDDL). In this paper, we present a novel instruction tuning framework, PDDL-Instruct, designed to enhance LLMs' symbolic planning capabilities through logical chain-of-thought reasoning. Our approach focuses on teaching models to rigorously reason about action applicability, state transitions, and plan validity using explicit logical inference steps. By developing instruction prompts that guide models through the precise logical reasoning required to determine when actions can be applied in a given state, we enable LLMs to self-correct their planning processes through structured reflection. The framework systematically builds verification skills by decomposing the planning process into explicit reasoning chains about precondition satisfaction, effect application, and invariant preservation. Experimental results on multiple planning domains show that our chain-of-thought reasoning based instruction-tuned models are significantly better at planning, achieving planning accuracy of up to 94% on standard benchmarks, representing a 66% absolute improvement over baseline models. This work bridges the gap between the general reasoning capabilities of LLMs and the logical precision required for automated planning, offering a promising direction for developing better AI planning systems.
Superposition for Lambda-Free Higher-Order Logic
We introduce refutationally complete superposition calculi for intentional and extensional clausal lambda-free higher-order logic, two formalisms that allow partial application and applied variables. The calculi are parameterized by a term order that need not be fully monotonic, making it possible to employ the lambda-free higher-order lexicographic path and Knuth-Bendix orders. We implemented the calculi in the Zipperposition prover and evaluated them on Isabelle/HOL and TPTP benchmarks. They appear promising as a stepping stone towards complete, highly efficient automatic theorem provers for full higher-order logic.
Solving Formal Math Problems by Decomposition and Iterative Reflection
General-purpose Large Language Models (LLMs) have achieved remarkable success in intelligence, performing comparably to human experts on complex reasoning tasks such as coding and mathematical reasoning. However, generating formal proofs in specialized languages like Lean 4 remains a significant challenge for these models, limiting their application in complex theorem proving and automated verification. Current approaches typically require specializing models through fine-tuning on dedicated formal corpora, incurring high costs for data collection and training. In this work, we introduce Delta Prover, an agent-based framework that orchestrates the interaction between a general-purpose LLM and the Lean 4 proof environment. Delta Prover leverages the reflection and reasoning capabilities of general-purpose LLMs to interactively construct formal proofs in Lean 4, circumventing the need for model specialization. At its core, the agent integrates two novel, interdependent components: an algorithmic framework for reflective decomposition and iterative proof repair, and a custom Domain-Specific Language (DSL) built upon Lean 4 for streamlined subproblem management. Delta Prover achieves a state-of-the-art 95.9\% success rate on the miniF2F-test benchmark, surpassing all existing approaches, including those requiring model specialization. Furthermore, Delta Prover exhibits a significantly stronger test-time scaling law compared to standard Best-of-N proof strategies. Crucially, our findings demonstrate that general-purpose LLMs, when guided by an effective agentic structure, possess substantial untapped theorem-proving capabilities. This presents a computationally efficient alternative to specialized models for robust automated reasoning in formal environments.
Scaling up Multi-Turn Off-Policy RL and Multi-Agent Tree Search for LLM Step-Provers
The integration of Large Language Models (LLMs) into automated theorem proving has shown immense promise, yet is fundamentally constrained by challenges in scaling up both training-time reinforcement learning (RL) and inference-time compute. This paper introduces BFS-Prover-V2, a system designed to address this dual scaling problem. We present two primary innovations. The first is a novel multi-turn off-policy RL framework for continually improving the performance of LLM step-prover at training time. This framework, inspired by the principles of AlphaZero, utilizes a multi-stage expert iteration pipeline featuring adaptive tactic-level data filtering and periodic retraining to surmount the performance plateaus that typically curtail long-term RL in LLM-based agents. The second innovation is a planner-enhanced multi-agent search architecture that scales reasoning capabilities at inference time. This architecture employs a general reasoning model as a high-level planner to iteratively decompose complex theorems into a sequence of simpler subgoals. This hierarchical approach substantially reduces the search space, enabling a team of parallel prover agents to collaborate efficiently by leveraging a shared proof cache. We demonstrate that this dual approach to scaling yields state-of-the-art results on established formal mathematics benchmarks. BFS-Prover-V2 achieves 95.08\% and 41.4\% on the MiniF2F and ProofNet test sets respectively. While demonstrated in the domain of formal mathematics, the RL and inference techniques presented in this work are of broader interest and may be applied to other domains requiring long-horizon multi-turn reasoning and complex search.
Reasoning Language Models: A Blueprint
Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAI's o1 and o3, DeepSeek-V3, and Alibaba's QwQ, have redefined AI's problem-solving capabilities by extending large language models (LLMs) with advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures - uniquely combining Reinforcement Learning (RL), search heuristics, and LLMs - present accessibility and scalability challenges. To address these, we propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies (e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), and supervision schemes (Output-Based and Process-Based Supervision). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models, and the importance of familiar training distributions. Finally, we outline how RLMs can integrate with a broader LLM ecosystem, including tools and databases. Our work demystifies RLM construction, democratizes advanced reasoning capabilities, and fosters innovation, aiming to mitigate the gap between "rich AI" and "poor AI" by lowering barriers to RLM development and experimentation.
Dynamic Early Exit in Reasoning Models
Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on 10 reasoning benchmarks (e.g., GSM8K, MATH-500, AMC, GPQA, AIME and LiveCodeBench) show that the proposed method is consistently effective on 11 cutting-edge reasoning LLMs of varying series and sizes, reducing the length of CoT sequences by an average of 19.1% to 80.1% while improving accuracy by 0.3% to 5.0%.
PLSEMANTICSBENCH: Large Language Models As Programming Language Interpreters
As large language models (LLMs) excel at code reasoning, a natural question arises: can an LLM execute programs (i.e., act as an interpreter) purely based on a programming language's formal semantics? If so, it will enable rapid prototyping of new programming languages and language features. We study this question using the imperative language IMP (a subset of C), formalized via small-step operational semantics (SOS) and rewriting-based operational semantics (K-semantics). We introduce three evaluation sets-Human-Written, LLM-Translated, and Fuzzer- Generated-whose difficulty is controlled by code-complexity metrics spanning the size, control-flow, and data-flow axes. Given a program and its semantics formalized with SOS/K-semantics, models are evaluated on three tasks ranging from coarse to fine: (1) final-state prediction, (2) semantic rule prediction, and (3) execution trace prediction. To distinguish pretraining memorization from semantic competence, we define two nonstandard semantics obtained through systematic mutations of the standard rules. Across strong code/reasoning LLMs, performance drops under nonstandard semantics despite high performance under the standard one. We further find that (i) there are patterns to different model failures, (ii) most reasoning models perform exceptionally well on coarse grained tasks involving reasoning about highly complex programs often containing nested loop depths beyond five, and surprisingly, (iii) providing formal semantics helps on simple programs but often hurts on more complex ones. Overall, the results show a promise that LLMs could serve as programming language interpreters, but points to the lack of their robust semantics understanding. We release the benchmark and the supporting code at https://github.com/EngineeringSoftware/PLSemanticsBench.
Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving
We introduce Goedel-Prover, an open-source large language model (LLM) that achieves the state-of-the-art (SOTA) performance in automated formal proof generation for mathematical problems. The key challenge in this field is the scarcity of formalized math statements and proofs, which we tackle in the following ways. We train statement formalizers to translate the natural language math problems from Numina into formal language (Lean 4), creating a dataset of 1.64 million formal statements. LLMs are used to check that the formal statements accurately preserve the content of the original natural language problems. We then iteratively build a large dataset of formal proofs by training a series of provers. Each prover succeeds in proving many statements that the previous ones could not, and these new proofs are added to the training set for the next prover. The final prover outperforms all existing open-source models in whole-proof generation. On the miniF2F benchmark, it achieves a 57.6% success rate (Pass@32), exceeding the previous best open-source model by 7.6%. On PutnamBench, Goedel-Prover successfully solves 7 problems (Pass@512), ranking first on the leaderboard. Furthermore, it generates 29.7K formal proofs for Lean Workbook problems, nearly doubling the 15.7K produced by earlier works.
Relational Reasoning for Markov Chains in a Probabilistic Guarded Lambda Calculus
We extend the simply-typed guarded lambda-calculus with discrete probabilities and endow it with a program logic for reasoning about relational properties of guarded probabilistic computations. This provides a framework for programming and reasoning about infinite stochastic processes like Markov chains. We demonstrate the logic sound by interpreting its judgements in the topos of trees and by using probabilistic couplings for the semantics of relational assertions over distributions on discrete types. The program logic is designed to support syntax-directed proofs in the style of relational refinement types, but retains the expressiveness of higher-order logic extended with discrete distributions, and the ability to reason relationally about expressions that have different types or syntactic structure. In addition, our proof system leverages a well-known theorem from the coupling literature to justify better proof rules for relational reasoning about probabilistic expressions. We illustrate these benefits with a broad range of examples that were beyond the scope of previous systems, including shift couplings and lump couplings between random walks.
LLM-FuncMapper: Function Identification for Interpreting Complex Clauses in Building Codes via LLM
As a vital stage of automated rule checking (ARC), rule interpretation of regulatory texts requires considerable effort. However, interpreting regulatory clauses with implicit properties or complex computational logic is still challenging due to the lack of domain knowledge and limited expressibility of conventional logic representations. Thus, LLM-FuncMapper, an approach to identifying predefined functions needed to interpret various regulatory clauses based on the large language model (LLM), is proposed. First, by systematically analysis of building codes, a series of atomic functions are defined to capture shared computational logics of implicit properties and complex constraints, creating a database of common blocks for interpreting regulatory clauses. Then, a prompt template with the chain of thought is developed and further enhanced with a classification-based tuning strategy, to enable common LLMs for effective function identification. Finally, the proposed approach is validated with statistical analysis, experiments, and proof of concept. Statistical analysis reveals a long-tail distribution and high expressibility of the developed function database, with which almost 100% of computer-processible clauses can be interpreted and represented as computer-executable codes. Experiments show that LLM-FuncMapper achieve promising results in identifying relevant predefined functions for rule interpretation. Further proof of concept in automated rule interpretation also demonstrates the possibility of LLM-FuncMapper in interpreting complex regulatory clauses. To the best of our knowledge, this study is the first attempt to introduce LLM for understanding and interpreting complex regulatory clauses, which may shed light on further adoption of LLM in the construction domain.
Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy
Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information. This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning. Using Large Language Models (LLMs), we propose a two-step approach to translate multi-sentence instructions into a structured language, Hierarchical Linear Temporal Logic (LTL), which serves as a formal representation for planning. Initially, LLMs transform the instructions into a hierarchical representation defined as Hierarchical Task Tree, capturing the logical and temporal relations among tasks. Following this, a domain-specific fine-tuning of LLM translates sub-tasks of each task into flat LTL formulas, aggregating them to form hierarchical LTL specifications. These specifications are then leveraged for planning using off-the-shelf planners. Our framework not only bridges the gap between instructions and algorithmic planning but also showcases the potential of LLMs in harnessing hierarchical reasoning to automate multi-robot task planning. Through evaluations in both simulation and real-world experiments involving human participants, we demonstrate that our method can handle more complex instructions compared to existing methods. The results indicate that our approach achieves higher success rates and lower costs in multi-robot task allocation and plan generation. Demos videos are available at https://youtu.be/7WOrDKxIMIs .
L-Mosaics and Bounded Join-Semilattices in Isabelle/HOL
We present a complete formalization in Isabelle/HOL of the object part of an equivalence between L-mosaics and bounded join-semilattices, employing an AI-assisted methodology that integrates large language models as reasoning assistants throughout the proof development process. The equivalence was originally established by Cangiotti, Linzi, and Talotti in their study of hypercompositional structures related to orthomodular lattices and quantum logic. Our formalization rigorously verifies the main theoretical result and demonstrates the mutual inverse property of the transformations establishing this equivalence. The development showcases both the mathematical depth of multivalued algebraic operations and the potential for AI-enhanced interactive theorem proving in tackling complex formalization projects.
ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning
We investigate the logical reasoning capabilities of large language models (LLMs) and their scalability in complex non-monotonic reasoning. To this end, we introduce ZebraLogic, a comprehensive evaluation framework for assessing LLM reasoning performance on logic grid puzzles derived from constraint satisfaction problems (CSPs). ZebraLogic enables the generation of puzzles with controllable and quantifiable complexity, facilitating a systematic study of the scaling limits of models such as Llama, o1 models, and DeepSeek-R1. By encompassing a broad range of search space complexities and diverse logical constraints, ZebraLogic provides a structured environment to evaluate reasoning under increasing difficulty. Our results reveal a significant decline in accuracy as problem complexity grows -- a phenomenon we term the curse of complexity. This limitation persists even with larger models and increased inference-time computation, suggesting inherent constraints in current LLM reasoning capabilities. Additionally, we explore strategies to enhance logical reasoning, including Best-of-N sampling, backtracking mechanisms, and self-verification prompts. Our findings offer critical insights into the scalability of LLM reasoning, highlight fundamental limitations, and outline potential directions for improvement.
Self-Steering Language Models
While test-time reasoning enables language models to tackle complex tasks, searching or planning in natural language can be slow, costly, and error-prone. But even when LMs struggle to emulate the precise reasoning steps needed to solve a problem, they often excel at describing its abstract structure--both how to verify solutions and how to search for them. This paper introduces DisCIPL, a method for "self-steering" LMs where a Planner model generates a task-specific inference program that is executed by a population of Follower models. Our approach equips LMs with the ability to write recursive search procedures that guide LM inference, enabling new forms of verifiable and efficient reasoning. When instantiated with a small Follower (e.g., Llama-3.2-1B), DisCIPL matches (and sometimes outperforms) much larger models, including GPT-4o and o1, on challenging constrained generation tasks. In decoupling planning from execution, our work opens up a design space of highly-parallelized Monte Carlo inference strategies that outperform standard best-of-N sampling, require no finetuning, and can be implemented automatically by existing LMs.
Test-Driven Development for Code Generation
Recent Large Language Models (LLMs) have demonstrated significant capabilities in generating code snippets directly from problem statements. This increasingly automated process mirrors traditional human-led software development, where code is often written in response to a requirement. Historically, Test-Driven Development (TDD) has proven its merit, requiring developers to write tests before the functional code, ensuring alignment with the initial problem statements. Applying TDD principles to LLM-based code generation offers one distinct benefit: it enables developers to verify the correctness of generated code against predefined tests. This paper investigates if and how TDD can be incorporated into AI-assisted code-generation processes. We experimentally evaluate our hypothesis that providing LLMs like GPT-4 and Llama 3 with tests in addition to the problem statements enhances code generation outcomes. We experimented with established function-level code generation benchmarks such as MBPP and HumanEval. Our results consistently demonstrate that including test cases leads to higher success in solving programming challenges. We assert that TDD is a promising paradigm for helping ensure that the code generated by LLMs effectively captures the requirements.
Instantiation-based Formalization of Logical Reasoning Tasks using Language Models and Logical Solvers
Robustness of reasoning remains a significant challenge for large language models, and addressing it is essential for the practical applicability of AI-driven reasoning systems. We introduce Semantic Self-Verification (SSV), a novel approach that addresses the key challenge in combining language models with the rigor of logical solvers: to accurately formulate the reasoning problem from natural language to the formal language of the solver. SSV uses a consistency-based approach to produce strong abstract formalizations of problems using concrete instantiations that are generated by the model and verified by the solver. In addition to significantly advancing the overall reasoning accuracy over the state-of-the-art, a key novelty that this approach presents is a feature of verification that has near-perfect precision over a significant coverage of cases, as we demonstrate on open reasoning benchmarks. We propose such *near-certain reasoning* as a new approach to reduce the need for manual verification in many cases, taking us closer to more dependable and autonomous AI reasoning systems.
Automating Thought of Search: A Journey Towards Soundness and Completeness
Planning remains one of the last standing bastions for large language models (LLMs), which now turn their attention to search. Most of the literature uses the language models as world models to define the search space, forgoing soundness for the sake of flexibility. A recent work, Thought of Search (ToS), proposed defining the search space with code, having the language models produce that code. ToS requires a human in the loop, collaboratively producing a sound successor function and goal test. The result, however, is worth the effort: all the tested datasets were solved with 100% accuracy. At the same time LLMs have demonstrated significant progress in code generation and refinement for complex reasoning tasks. In this work, we automate ToS (AutoToS), completely taking the human out of the loop of solving planning problems. AutoToS guides the language model step by step towards the generation of sound and complete search components, through feedback from both generic and domain specific unit tests. We achieve 100% accuracy, with minimal feedback iterations, using LLMs of various sizes on all evaluated domains.
Ranking LLM-Generated Loop Invariants for Program Verification
Synthesizing inductive loop invariants is fundamental to automating program verification. In this work, we observe that Large Language Models (such as gpt-3.5 or gpt-4) are capable of synthesizing loop invariants for a class of programs in a 0-shot setting, yet require several samples to generate the correct invariants. This can lead to a large number of calls to a program verifier to establish an invariant. To address this issue, we propose a {\it re-ranking} approach for the generated results of LLMs. We have designed a ranker that can distinguish between correct inductive invariants and incorrect attempts based on the problem definition. The ranker is optimized as a contrastive ranker. Experimental results demonstrate that this re-ranking mechanism significantly improves the ranking of correct invariants among the generated candidates, leading to a notable reduction in the number of calls to a verifier.
S^2R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning
Recent studies have demonstrated the effectiveness of LLM test-time scaling. However, existing approaches to incentivize LLMs' deep thinking abilities generally require large-scale data or significant training efforts. Meanwhile, it remains unclear how to improve the thinking abilities of less powerful base models. In this work, we introduce S^2R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference. Specifically, we first initialize LLMs with iterative self-verification and self-correction behaviors through supervised fine-tuning on carefully curated data. The self-verification and self-correction skills are then further strengthened by both outcome-level and process-level reinforcement learning, with minimized resource requirements, enabling the model to adaptively refine its reasoning process during inference. Our results demonstrate that, with only 3.1k self-verifying and self-correcting behavior initialization samples, Qwen2.5-math-7B achieves an accuracy improvement from 51.0\% to 81.6\%, outperforming models trained on an equivalent amount of long-CoT distilled data. Extensive experiments and analysis based on three base models across both in-domain and out-of-domain benchmarks validate the effectiveness of S^2R. Our code and data are available at https://github.com/NineAbyss/S2R.
Reasoning over Boundaries: Enhancing Specification Alignment via Test-time Delibration
Large language models (LLMs) are increasingly applied in diverse real-world scenarios, each governed by bespoke behavioral and safety specifications (spec) custom-tailored by users or organizations. These spec, categorized into safety-spec and behavioral-spec, vary across scenarios and evolve with changing preferences and requirements. We formalize this challenge as specification alignment, focusing on LLMs' ability to follow dynamic, scenario-specific spec from both behavioral and safety perspectives. To address this challenge, we propose Align3, a lightweight method that employs Test-Time Deliberation (TTD) with hierarchical reflection and revision to reason over the specification boundaries. We further present SpecBench, a unified benchmark for measuring specification alignment, covering 5 scenarios, 103 spec, and 1,500 prompts. Experiments on 15 reasoning and 18 instruct models with several TTD methods, including Self-Refine, TPO, and MoreThink, yield three key findings: (i) test-time deliberation enhances specification alignment; (ii) Align3 advances the safety-helpfulness trade-off frontier with minimal overhead; (iii) SpecBench effectively reveals alignment gaps. These results highlight the potential of test-time deliberation as an effective strategy for reasoning over the real-world specification boundaries.
SATURN: SAT-based Reinforcement Learning to Unleash Language Model Reasoning
How to design reinforcement learning (RL) tasks that effectively unleash the reasoning capability of large language models (LLMs) remains an open question. Existing RL tasks (e.g., math, programming, and constructing reasoning tasks) suffer from three key limitations: (1) Scalability. They rely heavily on human annotation or expensive LLM synthesis to generate sufficient training data. (2) Verifiability. LLMs' outputs are hard to verify automatically and reliably. (3) Controllable Difficulty. Most tasks lack fine-grained difficulty control, making it hard to train LLMs to develop reasoning ability from easy to hard. To address these limitations, we propose Saturn, a SAT-based RL framework that uses Boolean Satisfiability (SAT) problems to train and evaluate LLM reasoning. Saturn enables scalable task construction, rule-based verification, and precise difficulty control. Saturn designs a curriculum learning pipeline that continuously improves LLMs' reasoning capability by constructing SAT tasks of increasing difficulty and training LLMs from easy to hard. To ensure stable training, we design a principled mechanism to control difficulty transitions. We introduce Saturn-2.6k, a dataset of 2,660 SAT problems with varying difficulty. It supports the evaluation of how LLM reasoning changes with problem difficulty. We apply Saturn to DeepSeek-R1-Distill-Qwen and obtain Saturn-1.5B and Saturn-7B. We achieve several notable results: (1) On SAT problems, Saturn-1.5B and Saturn-7B achieve average pass@3 improvements of +14.0 and +28.1, respectively. (2) On math and programming tasks, Saturn-1.5B and Saturn-7B improve average scores by +4.9 and +1.8 on benchmarks (e.g., AIME, LiveCodeBench). (3) Compared to the state-of-the-art (SOTA) approach in constructing RL tasks, Saturn achieves further improvements of +8.8%. We release the source code, data, and models to support future research.
Scoring Verifiers: Evaluating Synthetic Verification in Code and Reasoning
Code verification has recently found great success as a critical component in training large scale reasoning models for coding. Synthetic techniques such as self-generated test cases and reward models provide a way to enhance code capabilities beyond predefined tests. Building on these advancements, we propose new benchmarks designed to systematically evaluate the impact of synthetic verification methods on assessing solution correctness. We introduce HE-R, HE-R+, MBPP-R, and MBPP-R+, which transform existing coding benchmarks into scoring and ranking datasets to evaluate the effectiveness of synthetic verifiers. Using these benchmarks, we analyze synthetic verification methods in standard, reasoning-based, and reward-based LLMs. Our results show that recent reasoning models significantly improve test case generation and that scaling test cases enhances verification accuracy.
LR^2Bench: Evaluating Long-chain Reflective Reasoning Capabilities of Large Language Models via Constraint Satisfaction Problems
Recent progress in o1-like models has significantly enhanced the reasoning abilities of Large Language Models (LLMs), empowering them to tackle increasingly complex tasks through reflection capabilities, such as making assumptions, backtracking, and self-refinement. However, effectively evaluating such reflection capabilities remains challenging due to the lack of appropriate benchmarks. To bridge this gap, we introduce LR^2Bench, a novel benchmark designed to evaluate the Long-chain Reflective Reasoning capabilities of LLMs. LR^2Bench comprises 850 samples across six Constraint Satisfaction Problems (CSPs) where reflective reasoning is crucial for deriving solutions that meet all given constraints. Each type of task focuses on distinct constraint patterns, such as knowledge-based, logical, and spatial constraints, providing a comprehensive evaluation of diverse problem-solving scenarios. We conduct extensive evaluation on both conventional models and o1-like models. Our experimental results reveal that even the most advanced reasoning-specific models, such as DeepSeek-R1 and OpenAI o1-preview, struggle with tasks in LR^2Bench, achieving an average Exact Match score of only 20.0% and 23.6%, respectively. These findings underscore the significant room for improvement in the reflective reasoning capabilities of current LLMs. The leaderboard of our benchmark is available at https://huggingface.co/spaces/UltraRonin/LR2Bench
MPS-Prover: Advancing Stepwise Theorem Proving by Multi-Perspective Search and Data Curation
Automated Theorem Proving (ATP) in formal languages remains a formidable challenge in AI, demanding rigorous logical deduction and navigating vast search spaces. While large language models (LLMs) have shown promising performance, existing stepwise provers often suffer from biased search guidance, leading to inefficiencies and suboptimal proof strategies. This paper introduces the Multi-Perspective Search Prover (MPS-Prover), a novel stepwise ATP system designed to overcome these limitations. MPS-Prover incorporates two key innovations: a highly effective post-training data curation strategy that prunes approximately 40% of redundant training data without sacrificing performance, and a multi-perspective tree search mechanism. This search integrates a learned critic model with strategically designed heuristic rules to diversify tactic selection, prevent getting trapped in unproductive states, and enhance search robustness. Extensive evaluations demonstrate that MPS-Prover achieves state-of-the-art performance on multiple challenging benchmarks, including miniF2F and ProofNet, outperforming prior 7B parameter models. Furthermore, our analyses reveal that MPS-Prover generates significantly shorter and more diverse proofs compared to existing stepwise and whole-proof methods, highlighting its efficiency and efficacy. Our work advances the capabilities of LLM-based formal reasoning and offers a robust framework and a comprehensive analysis for developing more powerful theorem provers.
HybridProver: Augmenting Theorem Proving with LLM-Driven Proof Synthesis and Refinement
Formal methods is pivotal for verifying the reliability of critical systems through rigorous mathematical proofs. However, its adoption is hindered by labor-intensive manual proofs and the expertise required to use theorem provers. Recent advancements in large language models (LLMs) offer new opportunities for automated theorem proving. Two promising approaches are generating tactics step by step and generating a whole proof directly with an LLM. However, existing work makes no attempt to combine the two approaches. In this work, we introduce HybridProver, a dual-model proof synthesis framework that combines tactic-based generation and whole-proof synthesis to harness the benefits of both approaches. HybridProver generates whole proof candidates for evaluation directly, then extracts proof sketches from those candidates. It then uses a tactic-based generation model that integrates automated tools to complete the sketches via stepwise refinement. We implement HybridProver for the Isabelle theorem prover and fine-tune LLMs on our optimized Isabelle datasets. Evaluation on the miniF2F dataset illustrates HybridProver's effectiveness. We achieve a 59.4% success rate on miniF2F, where the previous SOTA is 56.1%. Our ablation studies show that this SOTA result is attributable to combining whole-proof and tactic-based generation. Additionally, we show how the dataset quality, training parameters, and sampling diversity affect the final result during automated theorem proving with LLMs. All of our code, datasets, and LLMs are open source.
Question Decomposition Improves the Faithfulness of Model-Generated Reasoning
As large language models (LLMs) perform more difficult tasks, it becomes harder to verify the correctness and safety of their behavior. One approach to help with this issue is to prompt LLMs to externalize their reasoning, e.g., by having them generate step-by-step reasoning as they answer a question (Chain-of-Thought; CoT). The reasoning may enable us to check the process that models use to perform tasks. However, this approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case. To improve over the faithfulness of CoT reasoning, we have models generate reasoning by decomposing questions into subquestions. Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT while improving the faithfulness of the model's stated reasoning on several recently-proposed metrics. By forcing the model to answer simpler subquestions in separate contexts, we greatly increase the faithfulness of model-generated reasoning over CoT, while still achieving some of the performance gains of CoT. Our results show it is possible to improve the faithfulness of model-generated reasoning; continued improvements may lead to reasoning that enables us to verify the correctness and safety of LLM behavior.
CORE: Benchmarking LLMs Code Reasoning Capabilities through Static Analysis Tasks
Large language models (LLMs) have been widely adopted across diverse software engineering domains, such as code generation, program repair, and vulnerability detection. These applications require understanding beyond surface-level code patterns: value propagation, control flow, and interdependence between program elements. However, existing benchmarks primarily evaluate end-to-end outcomes, such as whether code is correctly repaired or generated, leaving the models ability for program semantic reasoning underexplored. This work presents CoRe, a high-quality, human-verified benchmark designed to evaluate LLMs on fundamental static analysis tasks. CoRe includes 12,553 task instances spanning data dependency, control dependency, and information flow across programs written in C/C++, Java, and Python. To ensure semantic diversity and reasoning complexity, we propose a semantics-aware diverse sampling strategy that selects targets and task instances based on structural coverage and dependency depth. We evaluate 10 mainstream LLMs and show that, while they perform well at identifying dependencies, models still struggle with tasks that require deeper semantic understanding and multi-step reasoning. We further conduct qualitative analyses to uncover key challenges, such as complex control structures and backward dependency patterns, offering insights into improving LLMs code reasoning capabilities.
SymRTLO: Enhancing RTL Code Optimization with LLMs and Neuron-Inspired Symbolic Reasoning
Optimizing Register Transfer Level (RTL) code is crucial for improving the power, performance, and area (PPA) of digital circuits in the early stages of synthesis. Manual rewriting, guided by synthesis feedback, can yield high-quality results but is time-consuming and error-prone. Most existing compiler-based approaches have difficulty handling complex design constraints. Large Language Model (LLM)-based methods have emerged as a promising alternative to address these challenges. However, LLM-based approaches often face difficulties in ensuring alignment between the generated code and the provided prompts. This paper presents SymRTLO, a novel neuron-symbolic RTL optimization framework that seamlessly integrates LLM-based code rewriting with symbolic reasoning techniques. Our method incorporates a retrieval-augmented generation (RAG) system of optimization rules and Abstract Syntax Tree (AST)-based templates, enabling LLM-based rewriting that maintains syntactic correctness while minimizing undesired circuit behaviors. A symbolic module is proposed for analyzing and optimizing finite state machine (FSM) logic, allowing fine-grained state merging and partial specification handling beyond the scope of pattern-based compilers. Furthermore, a fast verification pipeline, combining formal equivalence checks with test-driven validation, further reduces the complexity of verification. Experiments on the RTL-Rewriter benchmark with Synopsys Design Compiler and Yosys show that SymRTLO improves power, performance, and area (PPA) by up to 43.9%, 62.5%, and 51.1%, respectively, compared to the state-of-the-art methods.
Comparing Channel Restrictions of Communicating State Machines, High-level Message Sequence Charts, and Multiparty Session Types
Communicating state machines provide a formal foundation for distributed computation. Unfortunately, they are Turing-complete and, thus, challenging to analyse. In this paper, we classify restrictions on channels which have been proposed to work around the undecidability of verification questions. We compare half-duplex communication, existential B-boundedness, and k-synchronisability. These restrictions do not prevent the communication channels from growing arbitrarily large but still restrict the power of the model. Each restriction gives rise to a set of languages so, for every pair of restrictions, we check whether one subsumes the other or if they are incomparable. We investigate their relationship in two different contexts: first, the one of communicating state machines, and, second, the one of communication protocol specifications using high-level message sequence charts. Surprisingly, these two contexts yield different conclusions. In addition, we integrate multiparty session types, another approach to specify communication protocols, into our classification. We show that multiparty session type languages are half-duplex, existentially 1-bounded, and 1-synchronisable. To~show this result, we provide the first formal embedding of multiparty session types into high-level message sequence charts.
Lyra: Orchestrating Dual Correction in Automated Theorem Proving
Large Language Models (LLMs) present an intriguing avenue for exploration in the field of formal theorem proving. Nevertheless, their full potential, particularly concerning the mitigation of hallucinations and refinement through prover error messages, remains an area that has yet to be thoroughly investigated. To enhance the effectiveness of LLMs in the field, we introduce the Lyra, a new framework that employs two distinct correction mechanisms: Tool Correction (TC) and Conjecture Correction (CC). To implement Tool Correction in the post-processing of formal proofs, we leverage prior knowledge to utilize predefined prover tools (e.g., Sledgehammer) for guiding the replacement of incorrect tools. Tool Correction significantly contributes to mitigating hallucinations, thereby improving the overall accuracy of the proof. In addition, we introduce Conjecture Correction, an error feedback mechanism designed to interact with prover to refine formal proof conjectures with prover error messages. Compared to the previous refinement framework, the proposed Conjecture Correction refines generation with instruction but does not collect paired (generation, error & refinement) prompts. Our method has achieved state-of-the-art (SOTA) performance on both miniF2F validation (48.0% -> 55.3%) and test (45.5% -> 51.2%). We also present 3 IMO problems solved by Lyra. We believe Tool Correction (post-process for hallucination mitigation) and Conjecture Correction (subgoal adjustment from interaction with environment) could provide a promising avenue for future research in this field.
Use Property-Based Testing to Bridge LLM Code Generation and Validation
Large Language Models (LLMs) excel at code generation, but ensuring their outputs to be functionally correct, especially in complex programming tasks, is a persistent challenge. While traditional Test-Driven Development (TDD) offers a path for code refinement, its efficacy with LLMs is often undermined by the scarcity of high-quality test cases or the pitfalls of automated test generation, including biased tests or inaccurate output predictions that can misdirect the correction process. This paper introduces Property-Generated Solver, a novel framework that leverages Property-Based Testing (PBT) to validate high-level program properties or invariants, instead of relying on specific input-output examples. These properties are often simpler to define and verify than directly predicting exhaustive test oracles, breaking the "cycle of self-deception" where tests might share flaws with the code they are meant to validate. Property-Generated Solver employs two collaborative LLM-based agents: a Generator dedicated to code generation and iterative refinement, and a Tester that manages the PBT life-cycle and formulate semantically rich feedback from property violations. The resulting comprehensive and actionable feedback then guides the Generator in its refinement efforts. By establishing PBT as the core validation engine within this iterative, closed-loop paradigm, Property-Generated Solver provides a robust mechanism for steering LLMs towards more correct and generalizable code. Extensive experimental results on multiple code generation benchmarks demonstrate that Property-Generated Solver achieves substantial pass@1 improvements, ranging from 23.1% to 37.3% relative gains over established TDD methods.
Enabling Memory Safety of C Programs using LLMs
Memory safety violations in low-level code, written in languages like C, continues to remain one of the major sources of software vulnerabilities. One method of removing such violations by construction is to port C code to a safe C dialect. Such dialects rely on programmer-supplied annotations to guarantee safety with minimal runtime overhead. This porting, however, is a manual process that imposes significant burden on the programmer and, hence, there has been limited adoption of this technique. The task of porting not only requires inferring annotations, but may also need refactoring/rewriting of the code to make it amenable to such annotations. In this paper, we use Large Language Models (LLMs) towards addressing both these concerns. We show how to harness LLM capabilities to do complex code reasoning as well as rewriting of large codebases. We also present a novel framework for whole-program transformations that leverages lightweight static analysis to break the transformation into smaller steps that can be carried out effectively by an LLM. We implement our ideas in a tool called MSA that targets the CheckedC dialect. We evaluate MSA on several micro-benchmarks, as well as real-world code ranging up to 20K lines of code. We showcase superior performance compared to a vanilla LLM baseline, as well as demonstrate improvement over a state-of-the-art symbolic (non-LLM) technique.
LLM-based Automated Theorem Proving Hinges on Scalable Synthetic Data Generation
Recent advancements in large language models (LLMs) have sparked considerable interest in automated theorem proving and a prominent line of research integrates stepwise LLM-based provers into tree search. In this paper, we introduce a novel proof-state exploration approach for training data synthesis, designed to produce diverse tactics across a wide range of intermediate proof states, thereby facilitating effective one-shot fine-tuning of LLM as the policy model. We also propose an adaptive beam size strategy, which effectively takes advantage of our data synthesis method and achieves a trade-off between exploration and exploitation during tree search. Evaluations on the MiniF2F and ProofNet benchmarks demonstrate that our method outperforms strong baselines under the stringent Pass@1 metric, attaining an average pass rate of 60.74% on MiniF2F and 21.18% on ProofNet. These results underscore the impact of large-scale synthetic data in advancing automated theorem proving.
Not All Votes Count! Programs as Verifiers Improve Self-Consistency of Language Models for Math Reasoning
Large language models (LLMs) have shown increasing competence in solving mathematical reasoning problems. However, many open-source LLMs still struggle with errors in calculation and semantic understanding during intermediate reasoning steps. In this work, we introduce Prove, a simple yet effective framework that leverages translated programs derived from natural language solutions as a verification mechanism to filter out potentially incorrect reasoning paths before aggregating final answers. Unlike vanilla majority voting, our approach filters out solutions whose corresponding program output is inconsistent with the generated solution, aggregating only those that pass verification. We conducted extensive experiments using 13 open-source LLMs from various model families and sizes, ranging from 0.5B to 13B parameters, across eight mathematical benchmarks. Our results show that Prove consistently outperforms vanilla majority voting as a heuristic for solving mathematical reasoning tasks across all model sizes and datasets, achieving improvements of up to 18% on GSM8K and 8% on MATH-500. Our codes are available at https://github.com/declare-lab/prove.
RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning
Large language models (LLMs) deployed as agents solve user-specified tasks over multiple steps while keeping the required manual engagement to a minimum. Crucially, such LLMs need to ground their generations in any feedback obtained to reliably achieve desired outcomes. We propose an end-to-end reinforcement learning method for teaching models to leverage execution feedback in the realm of code synthesis, where state-of-the-art LLMs struggle to improve code iteratively compared to independent sampling. We benchmark on competitive programming tasks, where we achieve new start-of-the art results with both small (8B parameters) and large (70B) models while reducing the amount of samples required by an order of magnitude. Our analysis of inference-time behavior demonstrates that our method produces LLMs that effectively leverage automatic feedback over multiple steps.
Reasoning LLMs are Wandering Solution Explorers
Large Language Models (LLMs) have demonstrated impressive reasoning abilities through test-time computation (TTC) techniques such as chain-of-thought prompting and tree-based reasoning. However, we argue that current reasoning LLMs (RLLMs) lack the ability to systematically explore the solution space. This paper formalizes what constitutes systematic problem solving and identifies common failure modes that reveal reasoning LLMs to be wanderers rather than systematic explorers. Through qualitative and quantitative analysis across multiple state-of-the-art LLMs, we uncover persistent issues: invalid reasoning steps, redundant explorations, hallucinated or unfaithful conclusions, and so on. Our findings suggest that current models' performance can appear to be competent on simple tasks yet degrade sharply as complexity increases. Based on the findings, we advocate for new metrics and tools that evaluate not just final outputs but the structure of the reasoning process itself.
AssertionBench: A Benchmark to Evaluate Large-Language Models for Assertion Generation
Assertions have been the de facto collateral for simulation-based and formal verification of hardware designs for over a decade. The quality of hardware verification, \ie, detection and diagnosis of corner-case design bugs, is critically dependent on the quality of the assertions. There has been a considerable amount of research leveraging a blend of data-driven statistical analysis and static analysis to generate high-quality assertions from hardware design source code and design execution trace data. Despite such concerted effort, all prior research struggles to scale to industrial-scale large designs, generates too many low-quality assertions, often fails to capture subtle and non-trivial design functionality, and does not produce any easy-to-comprehend explanations of the generated assertions to understand assertions' suitability to different downstream validation tasks. Recently, with the advent of Large-Language Models (LLMs), there has been a widespread effort to leverage prompt engineering to generate assertions. However, there is little effort to quantitatively establish the effectiveness and suitability of various LLMs for assertion generation. In this paper, we present AssertionBench, a novel benchmark to evaluate LLMs' effectiveness for assertion generation quantitatively. AssertioBench contains 100 curated Verilog hardware designs from OpenCores and formally verified assertions for each design generated from GoldMine and HARM. We use AssertionBench to compare state-of-the-art LLMs to assess their effectiveness in inferring functionally correct assertions for hardware designs. Our experiments demonstrate how LLMs perform relative to each other, the benefits of using more in-context exemplars in generating a higher fraction of functionally correct assertions, and the significant room for improvement for LLM-based assertion generators.
Logic-LM: Empowering Large Language Models with Symbolic Solvers for Faithful Logical Reasoning
Large Language Models (LLMs) have shown human-like reasoning abilities but still struggle with complex logical problems. This paper introduces a novel framework, Logic-LM, which integrates LLMs with symbolic solvers to improve logical problem-solving. Our method first utilizes LLMs to translate a natural language problem into a symbolic formulation. Afterward, a deterministic symbolic solver performs inference on the formulated problem. We also introduce a self-refinement module, which utilizes the symbolic solver's error messages to revise symbolic formalizations. We demonstrate Logic-LM's effectiveness on five logical reasoning datasets: ProofWriter, PrOntoQA, FOLIO, LogicalDeduction, and AR-LSAT. On average, Logic-LM achieves a significant performance boost of 39.2% over using LLM alone with standard prompting and 18.4% over LLM with chain-of-thought prompting. Our findings suggest that Logic-LM, by combining LLMs with symbolic logic, offers a promising avenue for faithful logical reasoning. Code and data are publicly available at https://github.com/teacherpeterpan/Logic-LLM.
Rethinking Optimal Verification Granularity for Compute-Efficient Test-Time Scaling
Test-time scaling (TTS) has proven effective in enhancing the reasoning capabilities of large language models (LLMs). Verification plays a key role in TTS, simultaneously influencing (1) reasoning performance and (2) compute efficiency, due to the quality and computational cost of verification. In this work, we challenge the conventional paradigms of verification, and make the first attempt toward systematically investigating the impact of verification granularity-that is, how frequently the verifier is invoked during generation, beyond verifying only the final output or individual generation steps. To this end, we introduce Variable Granularity Search (VG-Search), a unified algorithm that generalizes beam search and Best-of-N sampling via a tunable granularity parameter g. Extensive experiments with VG-Search under varying compute budgets, generator-verifier configurations, and task attributes reveal that dynamically selecting g can improve the compute efficiency and scaling behavior. Building on these findings, we propose adaptive VG-Search strategies that achieve accuracy gains of up to 3.1\% over Beam Search and 3.6\% over Best-of-N, while reducing FLOPs by over 52\%. We will open-source the code to support future research.
Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving
LLMs have demonstrated strong mathematical reasoning abilities by leveraging reinforcement learning with long chain-of-thought, yet they continue to struggle with theorem proving due to the lack of clear supervision signals when solely using natural language. Dedicated domain-specific languages like Lean provide clear supervision via formal verification of proofs, enabling effective training through reinforcement learning. In this work, we propose Seed-Prover, a lemma-style whole-proof reasoning model. Seed-Prover can iteratively refine its proof based on Lean feedback, proved lemmas, and self-summarization. To solve IMO-level contest problems, we design three test-time inference strategies that enable both deep and broad reasoning. Seed-Prover proves 78.1% of formalized past IMO problems, saturates MiniF2F, and achieves over 50\% on PutnamBench, outperforming the previous state-of-the-art by a large margin. To address the lack of geometry support in Lean, we introduce a geometry reasoning engine Seed-Geometry, which outperforms previous formal geometry engines. We use these two systems to participate in IMO 2025 and fully prove 5 out of 6 problems. This work represents a significant advancement in automated mathematical reasoning, demonstrating the effectiveness of formal verification with long chain-of-thought reasoning.
VeriThoughts: Enabling Automated Verilog Code Generation using Reasoning and Formal Verification
This paper introduces VeriThoughts, a novel dataset designed for reasoning-based Verilog code generation. We establish a new benchmark framework grounded in formal verification methods to evaluate the quality and correctness of generated hardware descriptions. Additionally, we present a suite of specialized small-scale models optimized specifically for Verilog generation. Our work addresses the growing need for automated hardware design tools that can produce verifiably correct implementations from high-level specifications, potentially accelerating the hardware development process while maintaining rigorous correctness guarantees. Our code and data are available at https://github.com/wilyub/VeriThoughts{this URL}.
RefactorBench: Evaluating Stateful Reasoning in Language Agents Through Code
Recent advances in language model (LM) agents and function calling have enabled autonomous, feedback-driven systems to solve problems across various digital domains. To better understand the unique limitations of LM agents, we introduce RefactorBench, a benchmark consisting of 100 large handcrafted multi-file refactoring tasks in popular open-source repositories. Solving tasks within RefactorBench requires thorough exploration of dependencies across multiple files and strong adherence to relevant instructions. Every task is defined by 3 natural language instructions of varying specificity and is mutually exclusive, allowing for the creation of longer combined tasks on the same repository. Baselines on RefactorBench reveal that current LM agents struggle with simple compositional tasks, solving only 22% of tasks with base instructions, in contrast to a human developer with short time constraints solving 87%. Through trajectory analysis, we identify various unique failure modes of LM agents, and further explore the failure mode of tracking past actions. By adapting a baseline agent to condition on representations of state, we achieve a 43.9% improvement in solving RefactorBench tasks. We further extend our state-aware approach to encompass entire digital environments and outline potential directions for future research. RefactorBench aims to support the study of LM agents by providing a set of real-world, multi-hop tasks within the realm of code.
PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving
Recent agent frameworks and inference-time algorithms often struggle with complex planning problems due to limitations in verifying generated plans or reasoning and varying complexity of instances within a single task. Many existing methods for these tasks either perform task-level verification without considering constraints or apply inference-time algorithms without adapting to instance-level complexity. To address these limitations, we propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents. Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms--Best of N, Tree-of-Thought, and REBASE. In PlanGEN framework, the selection agent optimizes algorithm choice based on instance complexity, ensuring better adaptability to complex planning problems. Experimental results demonstrate significant improvements over the strongest baseline across multiple benchmarks, achieving state-of-the-art results on NATURAL PLAN (sim8%uparrow), OlympiadBench (sim4%uparrow), DocFinQA (sim7%uparrow), and GPQA (sim1%uparrow). Our key finding highlights that constraint-guided iterative verification improves inference-time algorithms, and adaptive selection further boosts performance on complex planning and reasoning problems.
EDA-Aware RTL Generation with Large Language Models
Large Language Models (LLMs) have become increasingly popular for generating RTL code. However, producing error-free RTL code in a zero-shot setting remains highly challenging for even state-of-the-art LLMs, often leading to issues that require manual, iterative refinement. This additional debugging process can dramatically increase the verification workload, underscoring the need for robust, automated correction mechanisms to ensure code correctness from the start. In this work, we introduce AIvril2, a self-verifying, LLM-agnostic agentic framework aimed at enhancing RTL code generation through iterative corrections of both syntax and functional errors. Our approach leverages a collaborative multi-agent system that incorporates feedback from error logs generated by EDA tools to automatically identify and resolve design flaws. Experimental results, conducted on the VerilogEval-Human benchmark suite, demonstrate that our framework significantly improves code quality, achieving nearly a 3.4times enhancement over prior methods. In the best-case scenario, functional pass rates of 77% for Verilog and 66% for VHDL were obtained, thus substantially improving the reliability of LLM-driven RTL code generation.
VerifiAgent: a Unified Verification Agent in Language Model Reasoning
Large language models demonstrate remarkable reasoning capabilities but often produce unreliable or incorrect responses. Existing verification methods are typically model-specific or domain-restricted, requiring significant computational resources and lacking scalability across diverse reasoning tasks. To address these limitations, we propose VerifiAgent, a unified verification agent that integrates two levels of verification: meta-verification, which assesses completeness and consistency in model responses, and tool-based adaptive verification, where VerifiAgent autonomously selects appropriate verification tools based on the reasoning type, including mathematical, logical, or commonsense reasoning. This adaptive approach ensures both efficiency and robustness across different verification scenarios. Experimental results show that VerifiAgent outperforms baseline verification methods (e.g., deductive verifier, backward verifier) among all reasoning tasks. Additionally, it can further enhance reasoning accuracy by leveraging feedback from verification results. VerifiAgent can also be effectively applied to inference scaling, achieving better results with fewer generated samples and costs compared to existing process reward models in the mathematical reasoning domain. Code is available at https://github.com/Jiuzhouh/VerifiAgent
One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs
Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.
TestBench: Evaluating Class-Level Test Case Generation Capability of Large Language Models
Software testing is a crucial phase in the software life cycle, helping identify potential risks and reduce maintenance costs. With the advancement of Large Language Models (LLMs), researchers have proposed an increasing number of LLM-based software testing techniques, particularly in the area of test case generation. Despite the growing interest, limited efforts have been made to thoroughly evaluate the actual capabilities of LLMs in this task. In this paper, we introduce TestBench, a benchmark for class-level LLM-based test case generation. We construct a dataset of 108 Java programs from 9 real-world, large-scale projects on GitHub, each representing a different thematic domain. We then design three distinct types of prompts based on context descriptions, including self-contained context, full context, and simple context. Besides, we propose a fine-grained evaluation framework that considers five aspects of test cases: syntactic correctness, compilation correctness, test correctness, code coverage rate, and defect detection rate. Furthermore, we propose a heuristic algorithm to repair erroneous test cases generated by LLMs. We evaluate CodeLlama-13b, GPT-3.5, and GPT-4 on the TestBench, and our experimental results indicate that larger models demonstrate a greater ability to effectively utilize contextual information, thus generating higher-quality test cases. Smaller models may struggle with the noise introduced by the extensive information contained within the full context. However, when using the simplified version, namely the simple context, which is derived from the full context via abstract syntax tree analysis, the performance of these models improves significantly. Our analysis highlights the current progress and pinpoints future directions to further enhance the effectiveness of models by handling contextual information for test case generation.
T1: Tool-integrated Self-verification for Test-time Compute Scaling in Small Language Models
Recent studies have demonstrated that test-time compute scaling effectively improves the performance of small language models (sLMs). However, prior research has mainly examined test-time compute scaling with an additional larger model as a verifier, leaving self-verification by sLMs underexplored. In this work, we investigate whether sLMs can reliably self-verify their outputs under test-time scaling. We find that even with knowledge distillation from larger verifiers, sLMs struggle with verification tasks requiring memorization, such as numerical calculations and fact-checking. To address this limitation, we propose Tool-integrated self-verification (T1), which delegates memorization-heavy verification steps to external tools, such as a code interpreter. Our theoretical analysis shows that tool integration reduces memorization demands and improves test-time scaling performance. Experiments on the MATH benchmark demonstrate that, with T1, a Llama-3.2 1B model under test-time scaling outperforms the significantly larger Llama-3.1 8B model. Moreover, T1 generalizes effectively to both mathematical (MATH500) and multi-domain knowledge-intensive tasks (MMLU-Pro). Our findings highlight the potential of tool integration to substantially improve the self-verification abilities of sLMs.
Helping LLMs Improve Code Generation Using Feedback from Testing and Static Analysis
Large Language Models (LLMs) are one of the most promising developments in the field of artificial intelligence, and the software engineering community has readily noticed their potential role in the software development life-cycle. Developers routinely ask LLMs to generate code snippets, increasing productivity but also potentially introducing ownership, privacy, correctness, and security issues. Previous work highlighted how code generated by mainstream commercial LLMs is often not safe, containing vulnerabilities, bugs, and code smells. In this paper, we present a framework that leverages testing and static analysis to assess the quality, and guide the self-improvement, of code generated by general-purpose, open-source LLMs. First, we ask LLMs to generate C code to solve a number of programming tasks. Then we employ ground-truth tests to assess the (in)correctness of the generated code, and a static analysis tool to detect potential safety vulnerabilities. Next, we assess the models ability to evaluate the generated code, by asking them to detect errors and vulnerabilities. Finally, we test the models ability to fix the generated code, providing the reports produced during the static analysis and incorrectness evaluation phases as feedback. Our results show that models often produce incorrect code, and that the generated code can include safety issues. Moreover, they perform very poorly at detecting either issue. On the positive side, we observe a substantial ability to fix flawed code when provided with information about failed tests or potential vulnerabilities, indicating a promising avenue for improving the safety of LLM-based code generation tools.
Signal Temporal Logic Neural Predictive Control
Ensuring safety and meeting temporal specifications are critical challenges for long-term robotic tasks. Signal temporal logic (STL) has been widely used to systematically and rigorously specify these requirements. However, traditional methods of finding the control policy under those STL requirements are computationally complex and not scalable to high-dimensional or systems with complex nonlinear dynamics. Reinforcement learning (RL) methods can learn the policy to satisfy the STL specifications via hand-crafted or STL-inspired rewards, but might encounter unexpected behaviors due to ambiguity and sparsity in the reward. In this paper, we propose a method to directly learn a neural network controller to satisfy the requirements specified in STL. Our controller learns to roll out trajectories to maximize the STL robustness score in training. In testing, similar to Model Predictive Control (MPC), the learned controller predicts a trajectory within a planning horizon to ensure the satisfaction of the STL requirement in deployment. A backup policy is designed to ensure safety when our controller fails. Our approach can adapt to various initial conditions and environmental parameters. We conduct experiments on six tasks, where our method with the backup policy outperforms the classical methods (MPC, STL-solver), model-free and model-based RL methods in STL satisfaction rate, especially on tasks with complex STL specifications while being 10X-100X faster than the classical methods.
Thinking Machines: Mathematical Reasoning in the Age of LLMs
Large Language Models (LLMs) have shown remarkable abilities in structured reasoning and symbolic tasks, with coding emerging as a particular area of strength. This success has sparked growing interest in applying LLMs to mathematics, both in informal problem-solving and formal theorem proving. However, progress in formal mathematics has proven to be significantly more difficult, despite surface-level similarities between programming and proof construction. This discrepancy raises important questions about how LLMs ``reason'', how they are supervised, and whether they internally track a notion of computational or deductive state. In this article, we address the state-of-the-art of the discipline, focusing on recent models and benchmarks, and explore three central issues at the intersection of machine learning and mathematical cognition: (i) the trade-offs between formal and informal mathematics as training domains; (ii) the deeper reasons why proof generation remains more brittle than code synthesis; (iii) and the question of whether LLMs represent, or merely mimic, a notion of evolving logical state. Our goal is not to draw hard boundaries, but to identify where the current limits lie, and how they might be extended.
Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation
First-order logic (FOL) reasoning, which involves sequential deduction, is pivotal for intelligent systems and serves as a valuable task for evaluating reasoning capabilities, particularly in chain-of-thought (CoT) contexts. Existing benchmarks often rely on extensive human annotation or handcrafted templates, making it difficult to achieve the necessary complexity, scalability, and diversity for robust evaluation. To address these limitations, we propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models (LLMs) with the rigor and precision of symbolic provers, enabling the creation of a scalable, diverse, and high-quality FOL reasoning dataset, ProverQA. ProverQA is also distinguished by its inclusion of accessible and logically coherent intermediate reasoning steps for each problem. Our evaluation shows that state-of-the-art LLMs struggle to solve ProverQA problems, even with CoT prompting, highlighting the dataset's challenging nature. We also finetune Llama3.1-8B-Instruct on a separate training set generated by our framework. The finetuned model demonstrates consistent improvements on both in-distribution and out-of-distribution test sets, suggesting the value of our proposed data generation framework. Code available at: https://github.com/opendatalab/ProverGen
Large Language Models are Better Reasoners with Self-Verification
Recently, with the chain of thought (CoT) prompting, large language models (LLMs), e.g., GPT-3, have shown strong reasoning ability in several natural language processing tasks such as arithmetic, commonsense, and logical reasoning. However, LLMs with CoT require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes and vulnerable to error accumulation. The above issues make the LLMs need the ability to verify the answers. In fact, after inferring conclusions in some thinking decision tasks, people often check them by re-verifying steps to avoid some mistakes. In this paper, we propose and prove that LLMs also have similar self-verification abilities. We take the conclusion obtained by CoT as one of the conditions for solving the original problem. By taking turns masking the original conditions and predicting their results, we calculate an explainable answer verification score based on whether the re-predicted conditions are correct. Experimental results demonstrate that the proposed method can improve the reasoning performance on various arithmetic, commonsense, and logical reasoning datasets. Our code is publicly available at: https://github.com/WENGSYX/Self-Verification.
Towards Solving More Challenging IMO Problems via Decoupled Reasoning and Proving
Automated Theorem Proving (ATP) in formal languages is a foundational challenge for AI. While Large Language Models (LLMs) have driven remarkable progress, a significant gap remains between their powerful informal reasoning capabilities and their weak formal proving performance. Recent studies show that the informal accuracy exceeds 80% while formal success remains below 8% on benchmarks like PutnamBench. We argue this gap persists because current state-of-the-art provers, by tightly coupling reasoning and proving, are trained with paradigms that inadvertently punish deep reasoning in favor of shallow, tactic-based strategies. To bridge this fundamental gap, we propose a novel framework that decouples high-level reasoning from low-level proof generation. Our approach utilizes two distinct, specialized models: a powerful, general-purpose Reasoner to generate diverse, strategic subgoal lemmas, and an efficient Prover to rigorously verify them. This modular design liberates the model's full reasoning potential and bypasses the pitfalls of end-to-end training. We evaluate our method on a challenging set of post-2000 IMO problems, a problem set on which no prior open-source prover has reported success. Our decoupled framework successfully solves 5 of these problems, demonstrating a significant step towards automated reasoning on exceptionally difficult mathematical challenges. To foster future research, we release our full dataset of generated and verified lemmas for a wide range of IMO problems, available at https://tencent-imo.github.io/ .
Chain-of-Thought Hub: A Continuous Effort to Measure Large Language Models' Reasoning Performance
As large language models (LLMs) are continuously being developed, their evaluation becomes increasingly important yet challenging. This work proposes Chain-of-Thought Hub, an open-source evaluation suite on the multi-step reasoning capabilities of large language models. We are interested in this setting for two reasons: (1) from the behavior of GPT and PaLM model family, we observe that complex reasoning is likely to be a key differentiator between weaker and stronger LLMs; (2) we envisage large language models to become the next-generation computational platform and foster an ecosystem of LLM-based new applications, this naturally requires the foundation models to perform complex tasks that often involve the composition of linguistic and logical operations. Our approach is to compile a suite of challenging reasoning benchmarks to track the progress of LLMs. Our current results show that: (1) model scale clearly correlates with reasoning capabilities; (2) As of May 2023, Claude-v1.3 and PaLM-2 are the only two models that are comparable with GPT-4, while open-sourced models still lag behind; (3) LLaMA-65B performs closely to code-davinci-002, indicating that with successful further development such as reinforcement learning from human feedback (RLHF), it has great potential to be close to GPT-3.5-Turbo. Our results also suggest that for the open-source efforts to catch up, the community may focus more on building better base models and exploring RLHF.
StepCoder: Improve Code Generation with Reinforcement Learning from Compiler Feedback
The advancement of large language models (LLMs) has significantly propelled the field of code generation. Previous work integrated reinforcement learning (RL) with compiler feedback for exploring the output space of LLMs to enhance code generation quality. However, the lengthy code generated by LLMs in response to complex human requirements makes RL exploration a challenge. Also, since the unit tests may not cover the complicated code, optimizing LLMs by using these unexecuted code snippets is ineffective. To tackle these challenges, we introduce StepCoder, a novel RL framework for code generation, consisting of two main components: CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks, while FGO only optimizes the model by masking the unexecuted code segments to provide Fine-Grained Optimization. In addition, we furthermore construct the APPS+ dataset for RL training, which is manually verified to ensure the correctness of unit tests. Experimental results show that our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
Scaling Generative Verifiers For Natural Language Mathematical Proof Verification And Selection
Large language models have achieved remarkable success on final-answer mathematical problems, largely due to the ease of applying reinforcement learning with verifiable rewards. However, the reasoning underlying these solutions is often flawed. Advancing to rigorous proof-based mathematics requires reliable proof verification capabilities. We begin by analyzing multiple evaluation setups and show that focusing on a single benchmark can lead to brittle or misleading conclusions. To address this, we evaluate both proof-based and final-answer reasoning to obtain a more reliable measure of model performance. We then scale two major generative verification methods (GenSelect and LLM-as-a-Judge) to millions of tokens and identify their combination as the most effective framework for solution verification and selection. We further show that the choice of prompt for LLM-as-a-Judge significantly affects the model's performance, but reinforcement learning can reduce this sensitivity. However, despite improving proof-level metrics, reinforcement learning does not enhance final-answer precision, indicating that current models often reward stylistic or procedural correctness rather than mathematical validity. Our results establish practical guidelines for designing and evaluating scalable proof-verification and selection systems.
Local Success Does Not Compose: Benchmarking Large Language Models for Compositional Formal Verification
We introduce DafnyCOMP, a benchmark for evaluating large language models (LLMs) on compositional specification generation in Dafny. Unlike prior benchmarks that focus on single-function tasks, DafnyCOMP targets programs composed of multiple interacting functions with data dependencies, requiring reasoning across component boundaries. The benchmark consists of 300 automatically synthesized multi-function programs. We evaluate several state-of-the-art LLM families and find that, while they perform well on single-function verification, their performance drops sharply on compositional tasks. Analysis reveals systematic failures in cross-functional reasoning, including fragile specifications, misalignment between implementations and proofs, and unstable reasoning. DafnyCOMP thus provides a diagnostic tool for measuring progress toward reliable, verifiable, and compositional code generation with LLMs.
Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought
Large language models (LLMs) have shown remarkable reasoning capabilities given chain-of-thought prompts (examples with intermediate reasoning steps). Existing benchmarks measure reasoning ability indirectly, by evaluating accuracy on downstream tasks such as mathematical reasoning. However, it is unclear how these models obtain the answers and whether they rely on simple heuristics rather than the generated chain-of-thought. To enable systematic exploration of the reasoning ability of LLMs, we present a new synthetic question-answering dataset called PrOntoQA, where each example is generated from a synthetic world model represented in first-order logic. This allows us to parse the generated chain-of-thought into symbolic proofs for formal analysis. Our analysis on InstructGPT and GPT-3 shows that LLMs are quite capable of making correct individual deduction steps, and so are generally capable of reasoning, even in fictional contexts. However, they have difficulty with proof planning: When multiple valid deduction steps are available, they are not able to systematically explore the different options.
Autoformalization of Game Descriptions using Large Language Models
Game theory is a powerful framework for reasoning about strategic interactions, with applications in domains ranging from day-to-day life to international politics. However, applying formal reasoning tools in such contexts is challenging, as these scenarios are often expressed in natural language. To address this, we introduce a framework for the autoformalization of game-theoretic scenarios, which translates natural language descriptions into formal logic representations suitable for formal solvers. Our approach utilizes one-shot prompting and a solver that provides feedback on syntactic correctness to allow LLMs to refine the code. We evaluate the framework using GPT-4o and a dataset of natural language problem descriptions, achieving 98% syntactic correctness and 88% semantic correctness. These results show the potential of LLMs to bridge the gap between real-life strategic interactions and formal reasoning.
