Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
To reduce memory costs in long-context inference with Large Language Models (LLMs), many recent works focus on compressing the key-value (KV) cache of different tokens. However, we identify that the previous KV cache compression methods measure token importance individually, neglecting the dependency between different tokens in the real-world language characterics. In light of this, we introduce ChunkKV, grouping the tokens in a chunk as a basic compressing unit, and retaining the most informative semantic chunks while discarding the less important ones. Furthermore, observing that ChunkKV exhibits higher similarity in the preserved indices across different layers, we propose layer-wise index reuse to further reduce computational overhead. We evaluated ChunkKV on cutting-edge long-context benchmarks including LongBench and Needle-In-A-HayStack, as well as the GSM8K and JailbreakV in-context learning benchmark. Our experiments with instruction tuning and multi-step reasoning (O1 and R1) LLMs, achieve up to 10\% performance improvement under aggressive compression ratios compared to existing methods.
Jailbreaking as a Reward Misspecification Problem
The widespread adoption of large language models (LLMs) has raised concerns about their safety and reliability, particularly regarding their vulnerability to adversarial attacks. In this paper, we propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process. We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness and robustness in detecting harmful backdoor prompts. Building upon these insights, we present ReMiss, a system for automated red teaming that generates adversarial prompts against various target aligned LLMs. ReMiss achieves state-of-the-art attack success rates on the AdvBench benchmark while preserving the human readability of the generated prompts. Detailed analysis highlights the unique advantages brought by the proposed reward misspecification objective compared to previous methods.
Jailbreaking with Universal Multi-Prompts
Large language models (LLMs) have seen rapid development in recent years, revolutionizing various applications and significantly enhancing convenience and productivity. However, alongside their impressive capabilities, ethical concerns and new types of attacks, such as jailbreaking, have emerged. While most prompting techniques focus on optimizing adversarial inputs for individual cases, resulting in higher computational costs when dealing with large datasets. Less research has addressed the more general setting of training a universal attacker that can transfer to unseen tasks. In this paper, we introduce JUMP, a prompt-based method designed to jailbreak LLMs using universal multi-prompts. We also adapt our approach for defense, which we term DUMP. Experimental results demonstrate that our method for optimizing universal multi-prompts outperforms existing techniques.
Jailbreaking to Jailbreak
Refusal training on Large Language Models (LLMs) prevents harmful outputs, yet this defense remains vulnerable to both automated and human-crafted jailbreaks. We present a novel LLM-as-red-teamer approach in which a human jailbreaks a refusal-trained LLM to make it willing to jailbreak itself or other LLMs. We refer to the jailbroken LLMs as J_2 attackers, which can systematically evaluate target models using various red teaming strategies and improve its performance via in-context learning from the previous failures. Our experiments demonstrate that Sonnet 3.5 and Gemini 1.5 pro outperform other LLMs as J_2, achieving 93.0% and 91.0% attack success rates (ASRs) respectively against GPT-4o (and similar results across other capable LLMs) on Harmbench. Our work not only introduces a scalable approach to strategic red teaming, drawing inspiration from human red teamers, but also highlights jailbreaking-to-jailbreak as an overlooked failure mode of the safeguard. Specifically, an LLM can bypass its own safeguards by employing a jailbroken version of itself that is willing to assist in further jailbreaking. To prevent any direct misuse with J_2, while advancing research in AI safety, we publicly share our methodology while keeping specific prompting details private.
SafeDecoding: Defending against Jailbreak Attacks via Safety-Aware Decoding
As large language models (LLMs) become increasingly integrated into real-world applications such as code generation and chatbot assistance, extensive efforts have been made to align LLM behavior with human values, including safety. Jailbreak attacks, aiming to provoke unintended and unsafe behaviors from LLMs, remain a significant/leading LLM safety threat. In this paper, we aim to defend LLMs against jailbreak attacks by introducing SafeDecoding, a safety-aware decoding strategy for LLMs to generate helpful and harmless responses to user queries. Our insight in developing SafeDecoding is based on the observation that, even though probabilities of tokens representing harmful contents outweigh those representing harmless responses, safety disclaimers still appear among the top tokens after sorting tokens by probability in descending order. This allows us to mitigate jailbreak attacks by identifying safety disclaimers and amplifying their token probabilities, while simultaneously attenuating the probabilities of token sequences that are aligned with the objectives of jailbreak attacks. We perform extensive experiments on five LLMs using six state-of-the-art jailbreak attacks and four benchmark datasets. Our results show that SafeDecoding significantly reduces the attack success rate and harmfulness of jailbreak attacks without compromising the helpfulness of responses to benign user queries. SafeDecoding outperforms six defense methods.
Jailbreak in pieces: Compositional Adversarial Attacks on Multi-Modal Language Models
We introduce new jailbreak attacks on vision language models (VLMs), which use aligned LLMs and are resilient to text-only jailbreak attacks. Specifically, we develop cross-modality attacks on alignment where we pair adversarial images going through the vision encoder with textual prompts to break the alignment of the language model. Our attacks employ a novel compositional strategy that combines an image, adversarially targeted towards toxic embeddings, with generic prompts to accomplish the jailbreak. Thus, the LLM draws the context to answer the generic prompt from the adversarial image. The generation of benign-appearing adversarial images leverages a novel embedding-space-based methodology, operating with no access to the LLM model. Instead, the attacks require access only to the vision encoder and utilize one of our four embedding space targeting strategies. By not requiring access to the LLM, the attacks lower the entry barrier for attackers, particularly when vision encoders such as CLIP are embedded in closed-source LLMs. The attacks achieve a high success rate across different VLMs, highlighting the risk of cross-modality alignment vulnerabilities, and the need for new alignment approaches for multi-modal models.
COLD-Attack: Jailbreaking LLMs with Stealthiness and Controllability
Jailbreaks on large language models (LLMs) have recently received increasing attention. For a comprehensive assessment of LLM safety, it is essential to consider jailbreaks with diverse attributes, such as contextual coherence and sentiment/stylistic variations, and hence it is beneficial to study controllable jailbreaking, i.e. how to enforce control on LLM attacks. In this paper, we formally formulate the controllable attack generation problem, and build a novel connection between this problem and controllable text generation, a well-explored topic of natural language processing. Based on this connection, we adapt the Energy-based Constrained Decoding with Langevin Dynamics (COLD), a state-of-the-art, highly efficient algorithm in controllable text generation, and introduce the COLD-Attack framework which unifies and automates the search of adversarial LLM attacks under a variety of control requirements such as fluency, stealthiness, sentiment, and left-right-coherence. The controllability enabled by COLD-Attack leads to diverse new jailbreak scenarios which not only cover the standard setting of generating fluent (suffix) attack with continuation constraint, but also allow us to address new controllable attack settings such as revising a user query adversarially with paraphrasing constraint, and inserting stealthy attacks in context with position constraint. Our extensive experiments on various LLMs (Llama-2, Mistral, Vicuna, Guanaco, GPT-3.5, and GPT-4) show COLD-Attack's broad applicability, strong controllability, high success rate, and attack transferability. Our code is available at https://github.com/Yu-Fangxu/COLD-Attack.
Jailbreaking Multimodal Large Language Models via Shuffle Inconsistency
Multimodal Large Language Models (MLLMs) have achieved impressive performance and have been put into practical use in commercial applications, but they still have potential safety mechanism vulnerabilities. Jailbreak attacks are red teaming methods that aim to bypass safety mechanisms and discover MLLMs' potential risks. Existing MLLMs' jailbreak methods often bypass the model's safety mechanism through complex optimization methods or carefully designed image and text prompts. Despite achieving some progress, they have a low attack success rate on commercial closed-source MLLMs. Unlike previous research, we empirically find that there exists a Shuffle Inconsistency between MLLMs' comprehension ability and safety ability for the shuffled harmful instruction. That is, from the perspective of comprehension ability, MLLMs can understand the shuffled harmful text-image instructions well. However, they can be easily bypassed by the shuffled harmful instructions from the perspective of safety ability, leading to harmful responses. Then we innovatively propose a text-image jailbreak attack named SI-Attack. Specifically, to fully utilize the Shuffle Inconsistency and overcome the shuffle randomness, we apply a query-based black-box optimization method to select the most harmful shuffled inputs based on the feedback of the toxic judge model. A series of experiments show that SI-Attack can improve the attack's performance on three benchmarks. In particular, SI-Attack can obviously improve the attack success rate for commercial MLLMs such as GPT-4o or Claude-3.5-Sonnet.
Improved Large Language Model Jailbreak Detection via Pretrained Embeddings
The adoption of large language models (LLMs) in many applications, from customer service chat bots and software development assistants to more capable agentic systems necessitates research into how to secure these systems. Attacks like prompt injection and jailbreaking attempt to elicit responses and actions from these models that are not compliant with the safety, privacy, or content policies of organizations using the model in their application. In order to counter abuse of LLMs for generating potentially harmful replies or taking undesirable actions, LLM owners must apply safeguards during training and integrate additional tools to block the LLM from generating text that abuses the model. Jailbreaking prompts play a vital role in convincing an LLM to generate potentially harmful content, making it important to identify jailbreaking attempts to block any further steps. In this work, we propose a novel approach to detect jailbreak prompts based on pairing text embeddings well-suited for retrieval with traditional machine learning classification algorithms. Our approach outperforms all publicly available methods from open source LLM security applications.
SQL Injection Jailbreak: a structural disaster of large language models
In recent years, the rapid development of large language models (LLMs) has brought new vitality to the various domains and generated substantial social and economic benefits. However, the swift advancement of LLMs has introduced new security vulnerabilities. Jailbreak, a form of attack that induces LLMs to output harmful content through carefully crafted prompts, poses a challenge to the safe and trustworthy development of LLMs. Previous jailbreak attack methods primarily exploited the internal capabilities of the model. Among them, one category leverages the model's implicit capabilities for jailbreak attacks, where the attacker is unaware of the exact reasons for the attack's success. The other category utilizes the model's explicit capabilities for jailbreak attacks, where the attacker understands the reasons for the attack's success. For example, these attacks exploit the model's abilities in coding, contextual learning, or understanding ASCII characters. However, these earlier jailbreak attacks have certain limitations, as they only exploit the inherent capabilities of the model. In this paper, we propose a novel jailbreak method, SQL Injection Jailbreak (SIJ), which utilizes the construction of input prompts by LLMs to inject jailbreak information into user prompts, enabling successful jailbreak of the LLMs. Our SIJ method achieves nearly 100\% attack success rates on five well-known open-source LLMs in the context of AdvBench, while incurring lower time costs compared to previous methods. More importantly, SIJ reveals a new vulnerability in LLMs that urgently needs to be addressed. To this end, we propose a defense method called Self-Reminder-Key and demonstrate its effectiveness through experiments. Our code is available at https://github.com/weiyezhimeng/SQL-Injection-Jailbreak{https://github.com/weiyezhimeng/SQL-Injection-Jailbreak}.
Jailbreaking Large Language Models with Symbolic Mathematics
Recent advancements in AI safety have led to increased efforts in training and red-teaming large language models (LLMs) to mitigate unsafe content generation. However, these safety mechanisms may not be comprehensive, leaving potential vulnerabilities unexplored. This paper introduces MathPrompt, a novel jailbreaking technique that exploits LLMs' advanced capabilities in symbolic mathematics to bypass their safety mechanisms. By encoding harmful natural language prompts into mathematical problems, we demonstrate a critical vulnerability in current AI safety measures. Our experiments across 13 state-of-the-art LLMs reveal an average attack success rate of 73.6\%, highlighting the inability of existing safety training mechanisms to generalize to mathematically encoded inputs. Analysis of embedding vectors shows a substantial semantic shift between original and encoded prompts, helping explain the attack's success. This work emphasizes the importance of a holistic approach to AI safety, calling for expanded red-teaming efforts to develop robust safeguards across all potential input types and their associated risks.
How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States
Large language models (LLMs) rely on safety alignment to avoid responding to malicious user inputs. Unfortunately, jailbreak can circumvent safety guardrails, resulting in LLMs generating harmful content and raising concerns about LLM safety. Due to language models with intensive parameters often regarded as black boxes, the mechanisms of alignment and jailbreak are challenging to elucidate. In this paper, we employ weak classifiers to explain LLM safety through the intermediate hidden states. We first confirm that LLMs learn ethical concepts during pre-training rather than alignment and can identify malicious and normal inputs in the early layers. Alignment actually associates the early concepts with emotion guesses in the middle layers and then refines them to the specific reject tokens for safe generations. Jailbreak disturbs the transformation of early unethical classification into negative emotions. We conduct experiments on models from 7B to 70B across various model families to prove our conclusion. Overall, our paper indicates the intrinsical mechanism of LLM safety and how jailbreaks circumvent safety guardrails, offering a new perspective on LLM safety and reducing concerns. Our code is available at https://github.com/ydyjya/LLM-IHS-Explanation.
Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks
We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize the target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve nearly 100\% attack success rate -- according to GPT-4 as a judge -- on GPT-3.5/4, Llama-2-Chat-7B/13B/70B, Gemma-7B, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with 100\% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). We provide the code, prompts, and logs of the attacks at https://github.com/tml-epfl/llm-adaptive-attacks.
JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models
Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) an evolving repository of state-of-the-art adversarial prompts, which we refer to as jailbreak artifacts; (2) a jailbreaking dataset comprising 100 behaviors -- both original and sourced from prior work -- which align with OpenAI's usage policies; (3) a standardized evaluation framework that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community. Over time, we will expand and adapt the benchmark to reflect technical and methodological advances in the research community.
EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models
Jailbreak attacks are crucial for identifying and mitigating the security vulnerabilities of Large Language Models (LLMs). They are designed to bypass safeguards and elicit prohibited outputs. However, due to significant differences among various jailbreak methods, there is no standard implementation framework available for the community, which limits comprehensive security evaluations. This paper introduces EasyJailbreak, a unified framework simplifying the construction and evaluation of jailbreak attacks against LLMs. It builds jailbreak attacks using four components: Selector, Mutator, Constraint, and Evaluator. This modular framework enables researchers to easily construct attacks from combinations of novel and existing components. So far, EasyJailbreak supports 11 distinct jailbreak methods and facilitates the security validation of a broad spectrum of LLMs. Our validation across 10 distinct LLMs reveals a significant vulnerability, with an average breach probability of 60% under various jailbreaking attacks. Notably, even advanced models like GPT-3.5-Turbo and GPT-4 exhibit average Attack Success Rates (ASR) of 57% and 33%, respectively. We have released a wealth of resources for researchers, including a web platform, PyPI published package, screencast video, and experimental outputs.
A StrongREJECT for Empty Jailbreaks
The rise of large language models (LLMs) has drawn attention to the existence of "jailbreaks" that allow the models to be used maliciously. However, there is no standard benchmark for measuring the severity of a jailbreak, leaving authors of jailbreak papers to create their own. We show that these benchmarks often include vague or unanswerable questions and use grading criteria that are biased towards overestimating the misuse potential of low-quality model responses. Some jailbreak techniques make the problem worse by decreasing the quality of model responses even on benign questions: we show that several jailbreaking techniques substantially reduce the zero-shot performance of GPT-4 on MMLU. Jailbreaks can also make it harder to elicit harmful responses from an "uncensored" open-source model. We present a new benchmark, StrongREJECT, which better discriminates between effective and ineffective jailbreaks by using a higher-quality question set and a more accurate response grading algorithm. We show that our new grading scheme better accords with human judgment of response quality and overall jailbreak effectiveness, especially on the sort of low-quality responses that contribute the most to over-estimation of jailbreak performance on existing benchmarks. We release our code and data at https://github.com/alexandrasouly/strongreject.
Jailbreaking Black Box Large Language Models in Twenty Queries
There is growing interest in ensuring that large language models (LLMs) align with human values. However, the alignment of such models is vulnerable to adversarial jailbreaks, which coax LLMs into overriding their safety guardrails. The identification of these vulnerabilities is therefore instrumental in understanding inherent weaknesses and preventing future misuse. To this end, we propose Prompt Automatic Iterative Refinement (PAIR), an algorithm that generates semantic jailbreaks with only black-box access to an LLM. PAIR -- which is inspired by social engineering attacks -- uses an attacker LLM to automatically generate jailbreaks for a separate targeted LLM without human intervention. In this way, the attacker LLM iteratively queries the target LLM to update and refine a candidate jailbreak. Empirically, PAIR often requires fewer than twenty queries to produce a jailbreak, which is orders of magnitude more efficient than existing algorithms. PAIR also achieves competitive jailbreaking success rates and transferability on open and closed-source LLMs, including GPT-3.5/4, Vicuna, and PaLM-2.
Jailbreak and Guard Aligned Language Models with Only Few In-Context Demonstrations
Large Language Models (LLMs) have shown remarkable success in various tasks, but concerns about their safety and the potential for generating malicious content have emerged. In this paper, we explore the power of In-Context Learning (ICL) in manipulating the alignment ability of LLMs. We find that by providing just few in-context demonstrations without fine-tuning, LLMs can be manipulated to increase or decrease the probability of jailbreaking, i.e. answering malicious prompts. Based on these observations, we propose In-Context Attack (ICA) and In-Context Defense (ICD) methods for jailbreaking and guarding aligned language model purposes. ICA crafts malicious contexts to guide models in generating harmful outputs, while ICD enhances model robustness by demonstrations of rejecting to answer harmful prompts. Our experiments show the effectiveness of ICA and ICD in increasing or reducing the success rate of adversarial jailbreaking attacks. Overall, we shed light on the potential of ICL to influence LLM behavior and provide a new perspective for enhancing the safety and alignment of LLMs.
Jailbreaking ChatGPT via Prompt Engineering: An Empirical Study
Large Language Models (LLMs), like ChatGPT, have demonstrated vast potential but also introduce challenges related to content constraints and potential misuse. Our study investigates three key research questions: (1) the number of different prompt types that can jailbreak LLMs, (2) the effectiveness of jailbreak prompts in circumventing LLM constraints, and (3) the resilience of ChatGPT against these jailbreak prompts. Initially, we develop a classification model to analyze the distribution of existing prompts, identifying ten distinct patterns and three categories of jailbreak prompts. Subsequently, we assess the jailbreak capability of prompts with ChatGPT versions 3.5 and 4.0, utilizing a dataset of 3,120 jailbreak questions across eight prohibited scenarios. Finally, we evaluate the resistance of ChatGPT against jailbreak prompts, finding that the prompts can consistently evade the restrictions in 40 use-case scenarios. The study underscores the importance of prompt structures in jailbreaking LLMs and discusses the challenges of robust jailbreak prompt generation and prevention.
Weak-to-Strong Jailbreaking on Large Language Models
Although significant efforts have been dedicated to aligning large language models (LLMs), red-teaming reports suggest that these carefully aligned LLMs could still be jailbroken through adversarial prompts, tuning, or decoding. Upon examining the jailbreaking vulnerability of aligned LLMs, we observe that the decoding distributions of jailbroken and aligned models differ only in the initial generations. This observation motivates us to propose the weak-to-strong jailbreaking attack, where adversaries can utilize smaller unsafe/aligned LLMs (e.g., 7B) to guide jailbreaking against significantly larger aligned LLMs (e.g., 70B). To jailbreak, one only needs to additionally decode two smaller LLMs once, which involves minimal computation and latency compared to decoding the larger LLMs. The efficacy of this attack is demonstrated through experiments conducted on five models from three different organizations. Our study reveals a previously unnoticed yet efficient way of jailbreaking, exposing an urgent safety issue that needs to be considered when aligning LLMs. As an initial attempt, we propose a defense strategy to protect against such attacks, but creating more advanced defenses remains challenging. The code for replicating the method is available at https://github.com/XuandongZhao/weak-to-strong
Red Teaming GPT-4V: Are GPT-4V Safe Against Uni/Multi-Modal Jailbreak Attacks?
Various jailbreak attacks have been proposed to red-team Large Language Models (LLMs) and revealed the vulnerable safeguards of LLMs. Besides, some methods are not limited to the textual modality and extend the jailbreak attack to Multimodal Large Language Models (MLLMs) by perturbing the visual input. However, the absence of a universal evaluation benchmark complicates the performance reproduction and fair comparison. Besides, there is a lack of comprehensive evaluation of closed-source state-of-the-art (SOTA) models, especially MLLMs, such as GPT-4V. To address these issues, this work first builds a comprehensive jailbreak evaluation dataset with 1445 harmful questions covering 11 different safety policies. Based on this dataset, extensive red-teaming experiments are conducted on 11 different LLMs and MLLMs, including both SOTA proprietary models and open-source models. We then conduct a deep analysis of the evaluated results and find that (1) GPT4 and GPT-4V demonstrate better robustness against jailbreak attacks compared to open-source LLMs and MLLMs. (2) Llama2 and Qwen-VL-Chat are more robust compared to other open-source models. (3) The transferability of visual jailbreak methods is relatively limited compared to textual jailbreak methods. The dataset and code can be found here https://anonymous.4open.science/r/red_teaming_gpt4-C1CE/README.md .
Universal Jailbreak Backdoors from Poisoned Human Feedback
Reinforcement Learning from Human Feedback (RLHF) is used to align large language models to produce helpful and harmless responses. Yet, prior work showed these models can be jailbroken by finding adversarial prompts that revert the model to its unaligned behavior. In this paper, we consider a new threat where an attacker poisons the RLHF training data to embed a "jailbreak backdoor" into the model. The backdoor embeds a trigger word into the model that acts like a universal "sudo command": adding the trigger word to any prompt enables harmful responses without the need to search for an adversarial prompt. Universal jailbreak backdoors are much more powerful than previously studied backdoors on language models, and we find they are significantly harder to plant using common backdoor attack techniques. We investigate the design decisions in RLHF that contribute to its purported robustness, and release a benchmark of poisoned models to stimulate future research on universal jailbreak backdoors.
Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense
As large language models (LLMs) are increasingly deployed in diverse applications, including chatbot assistants and code generation, aligning their behavior with safety and ethical standards has become paramount. However, jailbreak attacks, which exploit vulnerabilities to elicit unintended or harmful outputs, threaten LLMs' safety significantly. In this paper, we introduce Layer-AdvPatcher, a novel methodology designed to defend against jailbreak attacks by utilizing an unlearning strategy to patch specific layers within LLMs through self-augmented datasets. Our insight is that certain layer(s), tend to produce affirmative tokens when faced with harmful prompts. By identifying these layers and adversarially exposing them to generate more harmful data, one can understand their inherent and diverse vulnerabilities to attacks. With these exposures, we then "unlearn" these issues, reducing the impact of affirmative tokens and hence minimizing jailbreak risks while keeping the model's responses to safe queries intact. We conduct extensive experiments on two models, four benchmark datasets, and multiple state-of-the-art jailbreak benchmarks to demonstrate the efficacy of our approach. Results indicate that our framework reduces the harmfulness and attack success rate of jailbreak attacks without compromising utility for benign queries compared to recent defense methods.
Model-Editing-Based Jailbreak against Safety-aligned Large Language Models
Large Language Models (LLMs) have transformed numerous fields by enabling advanced natural language interactions but remain susceptible to critical vulnerabilities, particularly jailbreak attacks. Current jailbreak techniques, while effective, often depend on input modifications, making them detectable and limiting their stealth and scalability. This paper presents Targeted Model Editing (TME), a novel white-box approach that bypasses safety filters by minimally altering internal model structures while preserving the model's intended functionalities. TME identifies and removes safety-critical transformations (SCTs) embedded in model matrices, enabling malicious queries to bypass restrictions without input modifications. By analyzing distinct activation patterns between safe and unsafe queries, TME isolates and approximates SCTs through an optimization process. Implemented in the D-LLM framework, our method achieves an average Attack Success Rate (ASR) of 84.86% on four mainstream open-source LLMs, maintaining high performance. Unlike existing methods, D-LLM eliminates the need for specific triggers or harmful response collections, offering a stealthier and more effective jailbreak strategy. This work reveals a covert and robust threat vector in LLM security and emphasizes the need for stronger safeguards in model safety alignment.
SequentialBreak: Large Language Models Can be Fooled by Embedding Jailbreak Prompts into Sequential Prompt Chains
As the integration of the Large Language Models (LLMs) into various applications increases, so does their susceptibility to misuse, raising significant security concerns. Numerous jailbreak attacks have been proposed to assess the security defense of LLMs. Current jailbreak attacks mainly rely on scenario camouflage, prompt obfuscation, prompt optimization, and prompt iterative optimization to conceal malicious prompts. In particular, sequential prompt chains in a single query can lead LLMs to focus on certain prompts while ignoring others, facilitating context manipulation. This paper introduces SequentialBreak, a novel jailbreak attack that exploits this vulnerability. We discuss several scenarios, not limited to examples like Question Bank, Dialog Completion, and Game Environment, where the harmful prompt is embedded within benign ones that can fool LLMs into generating harmful responses. The distinct narrative structures of these scenarios show that SequentialBreak is flexible enough to adapt to various prompt formats beyond those discussed. Extensive experiments demonstrate that SequentialBreak uses only a single query to achieve a substantial gain of attack success rate over existing baselines against both open-source and closed-source models. Through our research, we highlight the urgent need for more robust and resilient safeguards to enhance LLM security and prevent potential misuse. All the result files and website associated with this research are available in this GitHub repository: https://anonymous.4open.science/r/JailBreakAttack-4F3B/.
BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
While large language models (LLMs) exhibit remarkable capabilities across various tasks, they encounter potential security risks such as jailbreak attacks, which exploit vulnerabilities to bypass security measures and generate harmful outputs. Existing jailbreak strategies mainly focus on maximizing attack success rate (ASR), frequently neglecting other critical factors, including the relevance of the jailbreak response to the query and the level of stealthiness. This narrow focus on single objectives can result in ineffective attacks that either lack contextual relevance or are easily recognizable. In this work, we introduce BlackDAN, an innovative black-box attack framework with multi-objective optimization, aiming to generate high-quality prompts that effectively facilitate jailbreaking while maintaining contextual relevance and minimizing detectability. BlackDAN leverages Multiobjective Evolutionary Algorithms (MOEAs), specifically the NSGA-II algorithm, to optimize jailbreaks across multiple objectives including ASR, stealthiness, and semantic relevance. By integrating mechanisms like mutation, crossover, and Pareto-dominance, BlackDAN provides a transparent and interpretable process for generating jailbreaks. Furthermore, the framework allows customization based on user preferences, enabling the selection of prompts that balance harmfulness, relevance, and other factors. Experimental results demonstrate that BlackDAN outperforms traditional single-objective methods, yielding higher success rates and improved robustness across various LLMs and multimodal LLMs, while ensuring jailbreak responses are both relevant and less detectable.
FlipAttack: Jailbreak LLMs via Flipping
This paper proposes a simple yet effective jailbreak attack named FlipAttack against black-box LLMs. First, from the autoregressive nature, we reveal that LLMs tend to understand the text from left to right and find that they struggle to comprehend the text when noise is added to the left side. Motivated by these insights, we propose to disguise the harmful prompt by constructing left-side noise merely based on the prompt itself, then generalize this idea to 4 flipping modes. Second, we verify the strong ability of LLMs to perform the text-flipping task, and then develop 4 variants to guide LLMs to denoise, understand, and execute harmful behaviors accurately. These designs keep FlipAttack universal, stealthy, and simple, allowing it to jailbreak black-box LLMs within only 1 query. Experiments on 8 LLMs demonstrate the superiority of FlipAttack. Remarkably, it achieves sim98\% attack success rate on GPT-4o, and sim98\% bypass rate against 5 guardrail models on average. The codes are available at GitHubhttps://github.com/yueliu1999/FlipAttack.
Effective and Evasive Fuzz Testing-Driven Jailbreaking Attacks against LLMs
Large Language Models (LLMs) have excelled in various tasks but are still vulnerable to jailbreaking attacks, where attackers create jailbreak prompts to mislead the model to produce harmful or offensive content. Current jailbreak methods either rely heavily on manually crafted templates, which pose challenges in scalability and adaptability, or struggle to generate semantically coherent prompts, making them easy to detect. Additionally, most existing approaches involve lengthy prompts, leading to higher query costs.In this paper, to remedy these challenges, we introduce a novel jailbreaking attack framework, which is an automated, black-box jailbreaking attack framework that adapts the black-box fuzz testing approach with a series of customized designs. Instead of relying on manually crafted templates, our method starts with an empty seed pool, removing the need to search for any related jailbreaking templates. We also develop three novel question-dependent mutation strategies using an LLM helper to generate prompts that maintain semantic coherence while significantly reducing their length. Additionally, we implement a two-level judge module to accurately detect genuine successful jailbreaks. We evaluated our method on 7 representative LLMs and compared it with 5 state-of-the-art jailbreaking attack strategies. For proprietary LLM APIs, such as GPT-3.5 turbo, GPT-4, and Gemini-Pro, our method achieves attack success rates of over 90%,80% and 74%, respectively, exceeding existing baselines by more than 60%. Additionally, our method can maintain high semantic coherence while significantly reducing the length of jailbreak prompts. When targeting GPT-4, our method can achieve over 78% attack success rate even with 100 tokens. Moreover, our method demonstrates transferability and is robust to state-of-the-art defenses. We will open-source our codes upon publication.
LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks Yet
Recent large language model (LLM) defenses have greatly improved models' ability to refuse harmful queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities, exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens of commercial red teaming engagements, supporting research towards stronger LLM defenses.
Unlocking Adversarial Suffix Optimization Without Affirmative Phrases: Efficient Black-box Jailbreaking via LLM as Optimizer
Despite prior safety alignment efforts, mainstream LLMs can still generate harmful and unethical content when subjected to jailbreaking attacks. Existing jailbreaking methods fall into two main categories: template-based and optimization-based methods. The former requires significant manual effort and domain knowledge, while the latter, exemplified by Greedy Coordinate Gradient (GCG), which seeks to maximize the likelihood of harmful LLM outputs through token-level optimization, also encounters several limitations: requiring white-box access, necessitating pre-constructed affirmative phrase, and suffering from low efficiency. In this paper, we present ECLIPSE, a novel and efficient black-box jailbreaking method utilizing optimizable suffixes. Drawing inspiration from LLMs' powerful generation and optimization capabilities, we employ task prompts to translate jailbreaking goals into natural language instructions. This guides the LLM to generate adversarial suffixes for malicious queries. In particular, a harmfulness scorer provides continuous feedback, enabling LLM self-reflection and iterative optimization to autonomously and efficiently produce effective suffixes. Experimental results demonstrate that ECLIPSE achieves an average attack success rate (ASR) of 0.92 across three open-source LLMs and GPT-3.5-Turbo, significantly surpassing GCG in 2.4 times. Moreover, ECLIPSE is on par with template-based methods in ASR while offering superior attack efficiency, reducing the average attack overhead by 83%.
Poisoned LangChain: Jailbreak LLMs by LangChain
With the development of natural language processing (NLP), large language models (LLMs) are becoming increasingly popular. LLMs are integrating more into everyday life, raising public concerns about their security vulnerabilities. Consequently, the security of large language models is becoming critically important. Currently, the techniques for attacking and defending against LLMs are continuously evolving. One significant method type of attack is the jailbreak attack, which designed to evade model safety mechanisms and induce the generation of inappropriate content. Existing jailbreak attacks primarily rely on crafting inducement prompts for direct jailbreaks, which are less effective against large models with robust filtering and high comprehension abilities. Given the increasing demand for real-time capabilities in large language models, real-time updates and iterations of new knowledge have become essential. Retrieval-Augmented Generation (RAG), an advanced technique to compensate for the model's lack of new knowledge, is gradually becoming mainstream. As RAG enables the model to utilize external knowledge bases, it provides a new avenue for jailbreak attacks. In this paper, we conduct the first work to propose the concept of indirect jailbreak and achieve Retrieval-Augmented Generation via LangChain. Building on this, we further design a novel method of indirect jailbreak attack, termed Poisoned-LangChain (PLC), which leverages a poisoned external knowledge base to interact with large language models, thereby causing the large models to generate malicious non-compliant dialogues.We tested this method on six different large language models across three major categories of jailbreak issues. The experiments demonstrate that PLC successfully implemented indirect jailbreak attacks under three different scenarios, achieving success rates of 88.56%, 79.04%, and 82.69% respectively.
Enhancing Jailbreak Attack Against Large Language Models through Silent Tokens
Along with the remarkable successes of Language language models, recent research also started to explore the security threats of LLMs, including jailbreaking attacks. Attackers carefully craft jailbreaking prompts such that a target LLM will respond to the harmful question. Existing jailbreaking attacks require either human experts or leveraging complicated algorithms to craft jailbreaking prompts. In this paper, we introduce BOOST, a simple attack that leverages only the eos tokens. We demonstrate that rather than constructing complicated jailbreaking prompts, the attacker can simply append a few eos tokens to the end of a harmful question. It will bypass the safety alignment of LLMs and lead to successful jailbreaking attacks. We further apply BOOST to four representative jailbreak methods and show that the attack success rates of these methods can be significantly enhanced by simply adding eos tokens to the prompt. To understand this simple but novel phenomenon, we conduct empirical analyses. Our analysis reveals that adding eos tokens makes the target LLM believe the input is much less harmful, and eos tokens have low attention values and do not affect LLM's understanding of the harmful questions, leading the model to actually respond to the questions. Our findings uncover how fragile an LLM is against jailbreak attacks, motivating the development of strong safety alignment approaches.
Boosting Jailbreak Attack with Momentum
Large Language Models (LLMs) have achieved remarkable success across diverse tasks, yet they remain vulnerable to adversarial attacks, notably the well-known jailbreak attack. In particular, the Greedy Coordinate Gradient (GCG) attack has demonstrated efficacy in exploiting this vulnerability by optimizing adversarial prompts through a combination of gradient heuristics and greedy search. However, the efficiency of this attack has become a bottleneck in the attacking process. To mitigate this limitation, in this paper we rethink the generation of the adversarial prompts through an optimization lens, aiming to stabilize the optimization process and harness more heuristic insights from previous optimization iterations. Specifically, we propose the Momentum Accelerated GCG (MAC) attack, which integrates a momentum term into the gradient heuristic to boost and stabilize the random search for tokens in adversarial prompts. Experimental results showcase the notable enhancement achieved by MAC over baselines in terms of attack success rate and optimization efficiency. Moreover, we demonstrate that MAC can still exhibit superior performance for transfer attacks and models under defense mechanisms. Our code is available at https://github.com/weizeming/momentum-attack-llm.
Tastle: Distract Large Language Models for Automatic Jailbreak Attack
Large language models (LLMs) have achieved significant advances in recent days. Extensive efforts have been made before the public release of LLMs to align their behaviors with human values. The primary goal of alignment is to ensure their helpfulness, honesty and harmlessness. However, even meticulously aligned LLMs remain vulnerable to malicious manipulations such as jailbreaking, leading to unintended behaviors. The jailbreak is to intentionally develop a malicious prompt that escapes from the LLM security restrictions to produce uncensored detrimental contents. Previous works explore different jailbreak methods for red teaming LLMs, yet they encounter challenges regarding to effectiveness and scalability. In this work, we propose Tastle, a novel black-box jailbreak framework for automated red teaming of LLMs. We designed malicious content concealing and memory reframing with an iterative optimization algorithm to jailbreak LLMs, motivated by the research about the distractibility and over-confidence phenomenon of LLMs. Extensive experiments of jailbreaking both open-source and proprietary LLMs demonstrate the superiority of our framework in terms of effectiveness, scalability and transferability. We also evaluate the effectiveness of existing jailbreak defense methods against our attack and highlight the crucial need to develop more effective and practical defense strategies.
A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily
Large Language Models (LLMs), such as ChatGPT and GPT-4, are designed to provide useful and safe responses. However, adversarial prompts known as 'jailbreaks' can circumvent safeguards, leading LLMs to generate potentially harmful content. Exploring jailbreak prompts can help to better reveal the weaknesses of LLMs and further steer us to secure them. Unfortunately, existing jailbreak methods either suffer from intricate manual design or require optimization on other white-box models, which compromises either generalization or efficiency. In this paper, we generalize jailbreak prompt attacks into two aspects: (1) Prompt Rewriting and (2) Scenario Nesting. Based on this, we propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts. Extensive experiments demonstrate that ReNeLLM significantly improves the attack success rate while greatly reducing the time cost compared to existing baselines. Our study also reveals the inadequacy of current defense methods in safeguarding LLMs. Finally, we analyze the failure of LLMs defense from the perspective of prompt execution priority, and propose corresponding defense strategies. We hope that our research can catalyze both the academic community and LLMs developers towards the provision of safer and more regulated LLMs. The code is available at https://github.com/NJUNLP/ReNeLLM.
FigStep: Jailbreaking Large Vision-Language Models via Typographic Visual Prompts
Large Vision-Language Models (LVLMs) signify a groundbreaking paradigm shift within the Artificial Intelligence (AI) community, extending beyond the capabilities of Large Language Models (LLMs) by assimilating additional modalities (e.g., images). Despite this advancement, the safety of LVLMs remains adequately underexplored, with a potential overreliance on the safety assurances purported by their underlying LLMs. In this paper, we propose FigStep, a straightforward yet effective black-box jailbreak algorithm against LVLMs. Instead of feeding textual harmful instructions directly, FigStep converts the prohibited content into images through typography to bypass the safety alignment. The experimental results indicate that FigStep can achieve an average attack success rate of 82.50% on six promising open-source LVLMs. Not merely to demonstrate the efficacy of FigStep, we conduct comprehensive ablation studies and analyze the distribution of the semantic embeddings to uncover that the reason behind the success of FigStep is the deficiency of safety alignment for visual embeddings. Moreover, we compare FigStep with five text-only jailbreaks and four image-based jailbreaks to demonstrate the superiority of FigStep, i.e., negligible attack costs and better attack performance. Above all, our work reveals that current LVLMs are vulnerable to jailbreak attacks, which highlights the necessity of novel cross-modality safety alignment techniques. Our code and datasets are available at https://github.com/ThuCCSLab/FigStep .
Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation
The rapid progress in open-source large language models (LLMs) is significantly advancing AI development. Extensive efforts have been made before model release to align their behavior with human values, with the primary goal of ensuring their helpfulness and harmlessness. However, even carefully aligned models can be manipulated maliciously, leading to unintended behaviors, known as "jailbreaks". These jailbreaks are typically triggered by specific text inputs, often referred to as adversarial prompts. In this work, we propose the generation exploitation attack, an extremely simple approach that disrupts model alignment by only manipulating variations of decoding methods. By exploiting different generation strategies, including varying decoding hyper-parameters and sampling methods, we increase the misalignment rate from 0% to more than 95% across 11 language models including LLaMA2, Vicuna, Falcon, and MPT families, outperforming state-of-the-art attacks with 30times lower computational cost. Finally, we propose an effective alignment method that explores diverse generation strategies, which can reasonably reduce the misalignment rate under our attack. Altogether, our study underscores a major failure in current safety evaluation and alignment procedures for open-source LLMs, strongly advocating for more comprehensive red teaming and better alignment before releasing such models. Our code is available at https://github.com/Princeton-SysML/Jailbreak_LLM.
Multilingual Jailbreak Challenges in Large Language Models
While large language models (LLMs) exhibit remarkable capabilities across a wide range of tasks, they pose potential safety concerns, such as the ``jailbreak'' problem, wherein malicious instructions can manipulate LLMs to exhibit undesirable behavior. Although several preventive measures have been developed to mitigate the potential risks associated with LLMs, they have primarily focused on English data. In this study, we reveal the presence of multilingual jailbreak challenges within LLMs and consider two potential risk scenarios: unintentional and intentional. The unintentional scenario involves users querying LLMs using non-English prompts and inadvertently bypassing the safety mechanisms, while the intentional scenario concerns malicious users combining malicious instructions with multilingual prompts to deliberately attack LLMs. The experimental results reveal that in the unintentional scenario, the rate of unsafe content increases as the availability of languages decreases. Specifically, low-resource languages exhibit three times the likelihood of encountering harmful content compared to high-resource languages, with both ChatGPT and GPT-4. In the intentional scenario, multilingual prompts can exacerbate the negative impact of malicious instructions, with astonishingly high rates of unsafe output: 80.92\% for ChatGPT and 40.71\% for GPT-4. To handle such a challenge in the multilingual context, we propose a novel Self-Defense framework that automatically generates multilingual training data for safety fine-tuning. Experimental results show that ChatGPT fine-tuned with such data can achieve a substantial reduction in unsafe content generation. Data is available at https://github.com/DAMO-NLP-SG/multilingual-safety-for-LLMs. Warning: This paper contains examples with potentially harmful content.
AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models
The aligned Large Language Models (LLMs) are powerful language understanding and decision-making tools that are created through extensive alignment with human feedback. However, these large models remain susceptible to jailbreak attacks, where adversaries manipulate prompts to elicit malicious outputs that should not be given by aligned LLMs. Investigating jailbreak prompts can lead us to delve into the limitations of LLMs and further guide us to secure them. Unfortunately, existing jailbreak techniques suffer from either (1) scalability issues, where attacks heavily rely on manual crafting of prompts, or (2) stealthiness problems, as attacks depend on token-based algorithms to generate prompts that are often semantically meaningless, making them susceptible to detection through basic perplexity testing. In light of these challenges, we intend to answer this question: Can we develop an approach that can automatically generate stealthy jailbreak prompts? In this paper, we introduce AutoDAN, a novel jailbreak attack against aligned LLMs. AutoDAN can automatically generate stealthy jailbreak prompts by the carefully designed hierarchical genetic algorithm. Extensive evaluations demonstrate that AutoDAN not only automates the process while preserving semantic meaningfulness, but also demonstrates superior attack strength in cross-model transferability, and cross-sample universality compared with the baseline. Moreover, we also compare AutoDAN with perplexity-based defense methods and show that AutoDAN can bypass them effectively.
SneakyPrompt: Jailbreaking Text-to-image Generative Models
Text-to-image generative models such as Stable Diffusion and DALLcdotE raise many ethical concerns due to the generation of harmful images such as Not-Safe-for-Work (NSFW) ones. To address these ethical concerns, safety filters are often adopted to prevent the generation of NSFW images. In this work, we propose SneakyPrompt, the first automated attack framework, to jailbreak text-to-image generative models such that they generate NSFW images even if safety filters are adopted. Given a prompt that is blocked by a safety filter, SneakyPrompt repeatedly queries the text-to-image generative model and strategically perturbs tokens in the prompt based on the query results to bypass the safety filter. Specifically, SneakyPrompt utilizes reinforcement learning to guide the perturbation of tokens. Our evaluation shows that SneakyPrompt successfully jailbreaks DALLcdotE 2 with closed-box safety filters to generate NSFW images. Moreover, we also deploy several state-of-the-art, open-source safety filters on a Stable Diffusion model. Our evaluation shows that SneakyPrompt not only successfully generates NSFW images, but also outperforms existing text adversarial attacks when extended to jailbreak text-to-image generative models, in terms of both the number of queries and qualities of the generated NSFW images. SneakyPrompt is open-source and available at this repository: https://github.com/Yuchen413/text2image_safety.
Auto-RT: Automatic Jailbreak Strategy Exploration for Red-Teaming Large Language Models
Automated red-teaming has become a crucial approach for uncovering vulnerabilities in large language models (LLMs). However, most existing methods focus on isolated safety flaws, limiting their ability to adapt to dynamic defenses and uncover complex vulnerabilities efficiently. To address this challenge, we propose Auto-RT, a reinforcement learning framework that automatically explores and optimizes complex attack strategies to effectively uncover security vulnerabilities through malicious queries. Specifically, we introduce two key mechanisms to reduce exploration complexity and improve strategy optimization: 1) Early-terminated Exploration, which accelerate exploration by focusing on high-potential attack strategies; and 2) Progressive Reward Tracking algorithm with intermediate downgrade models, which dynamically refine the search trajectory toward successful vulnerability exploitation. Extensive experiments across diverse LLMs demonstrate that, by significantly improving exploration efficiency and automatically optimizing attack strategies, Auto-RT detects a boarder range of vulnerabilities, achieving a faster detection speed and 16.63\% higher success rates compared to existing methods.
Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System
The autonomous AI agents using large language models can create undeniable values in all span of the society but they face security threats from adversaries that warrants immediate protective solutions because trust and safety issues arise. Considering the many-shot jailbreaking and deceptive alignment as some of the main advanced attacks, that cannot be mitigated by the static guardrails used during the supervised training, points out a crucial research priority for real world robustness. The combination of static guardrails in dynamic multi-agent system fails to defend against those attacks. We intend to enhance security for LLM-based agents through the development of new evaluation frameworks which identify and counter threats for safe operational deployment. Our work uses three examination methods to detect rogue agents through a Reverse Turing Test and analyze deceptive alignment through multi-agent simulations and develops an anti-jailbreaking system by testing it with GEMINI 1.5 pro and llama-3.3-70B, deepseek r1 models using tool-mediated adversarial scenarios. The detection capabilities are strong such as 94\% accuracy for GEMINI 1.5 pro yet the system suffers persistent vulnerabilities when under long attacks as prompt length increases attack success rates (ASR) and diversity metrics become ineffective in prediction while revealing multiple complex system faults. The findings demonstrate the necessity of adopting flexible security systems based on active monitoring that can be performed by the agents themselves together with adaptable interventions by system admin as the current models can create vulnerabilities that can lead to the unreliable and vulnerable system. So, in our work, we try to address such situations and propose a comprehensive framework to counteract the security issues.
ArtPrompt: ASCII Art-based Jailbreak Attacks against Aligned LLMs
Safety is critical to the usage of large language models (LLMs). Multiple techniques such as data filtering and supervised fine-tuning have been developed to strengthen LLM safety. However, currently known techniques presume that corpora used for safety alignment of LLMs are solely interpreted by semantics. This assumption, however, does not hold in real-world applications, which leads to severe vulnerabilities in LLMs. For example, users of forums often use ASCII art, a form of text-based art, to convey image information. In this paper, we propose a novel ASCII art-based jailbreak attack and introduce a comprehensive benchmark Vision-in-Text Challenge (ViTC) to evaluate the capabilities of LLMs in recognizing prompts that cannot be solely interpreted by semantics. We show that five SOTA LLMs (GPT-3.5, GPT-4, Gemini, Claude, and Llama2) struggle to recognize prompts provided in the form of ASCII art. Based on this observation, we develop the jailbreak attack ArtPrompt, which leverages the poor performance of LLMs in recognizing ASCII art to bypass safety measures and elicit undesired behaviors from LLMs. ArtPrompt only requires black-box access to the victim LLMs, making it a practical attack. We evaluate ArtPrompt on five SOTA LLMs, and show that ArtPrompt can effectively and efficiently induce undesired behaviors from all five LLMs.
Defending LLMs against Jailbreaking Attacks via Backtranslation
Although many large language models (LLMs) have been trained to refuse harmful requests, they are still vulnerable to jailbreaking attacks, which rewrite the original prompt to conceal its harmful intent. In this paper, we propose a new method for defending LLMs against jailbreaking attacks by ``backtranslation''. Specifically, given an initial response generated by the target LLM from an input prompt, our backtranslation prompts a language model to infer an input prompt that can lead to the response. The inferred prompt is called the backtranslated prompt which tends to reveal the actual intent of the original prompt, since it is generated based on the LLM's response and is not directly manipulated by the attacker. We then run the target LLM again on the backtranslated prompt, and we refuse the original prompt if the model refuses the backtranslated prompt. We explain that the proposed defense provides several benefits on its effectiveness and efficiency. We empirically demonstrate that our defense significantly outperforms the baselines, in the cases that are hard for the baselines, and our defense also has little impact on the generation quality for benign input prompts.
Speak Easy: Eliciting Harmful Jailbreaks from LLMs with Simple Interactions
Despite extensive safety alignment efforts, large language models (LLMs) remain vulnerable to jailbreak attacks that elicit harmful behavior. While existing studies predominantly focus on attack methods that require technical expertise, two critical questions remain underexplored: (1) Are jailbroken responses truly useful in enabling average users to carry out harmful actions? (2) Do safety vulnerabilities exist in more common, simple human-LLM interactions? In this paper, we demonstrate that LLM responses most effectively facilitate harmful actions when they are both actionable and informative--two attributes easily elicited in multi-step, multilingual interactions. Using this insight, we propose HarmScore, a jailbreak metric that measures how effectively an LLM response enables harmful actions, and Speak Easy, a simple multi-step, multilingual attack framework. Notably, by incorporating Speak Easy into direct request and jailbreak baselines, we see an average absolute increase of 0.319 in Attack Success Rate and 0.426 in HarmScore in both open-source and proprietary LLMs across four safety benchmarks. Our work reveals a critical yet often overlooked vulnerability: Malicious users can easily exploit common interaction patterns for harmful intentions.
Competition Report: Finding Universal Jailbreak Backdoors in Aligned LLMs
Large language models are aligned to be safe, preventing users from generating harmful content like misinformation or instructions for illegal activities. However, previous work has shown that the alignment process is vulnerable to poisoning attacks. Adversaries can manipulate the safety training data to inject backdoors that act like a universal sudo command: adding the backdoor string to any prompt enables harmful responses from models that, otherwise, behave safely. Our competition, co-located at IEEE SaTML 2024, challenged participants to find universal backdoors in several large language models. This report summarizes the key findings and promising ideas for future research.
"Do Anything Now": Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models
The misuse of large language models (LLMs) has garnered significant attention from the general public and LLM vendors. In response, efforts have been made to align LLMs with human values and intent use. However, a particular type of adversarial prompts, known as jailbreak prompt, has emerged and continuously evolved to bypass the safeguards and elicit harmful content from LLMs. In this paper, we conduct the first measurement study on jailbreak prompts in the wild, with 6,387 prompts collected from four platforms over six months. Leveraging natural language processing technologies and graph-based community detection methods, we discover unique characteristics of jailbreak prompts and their major attack strategies, such as prompt injection and privilege escalation. We also observe that jailbreak prompts increasingly shift from public platforms to private ones, posing new challenges for LLM vendors in proactive detection. To assess the potential harm caused by jailbreak prompts, we create a question set comprising 46,800 samples across 13 forbidden scenarios. Our experiments show that current LLMs and safeguards cannot adequately defend jailbreak prompts in all scenarios. Particularly, we identify two highly effective jailbreak prompts which achieve 0.99 attack success rates on ChatGPT (GPT-3.5) and GPT-4, and they have persisted online for over 100 days. Our work sheds light on the severe and evolving threat landscape of jailbreak prompts. We hope our study can facilitate the research community and LLM vendors in promoting safer and regulated LLMs.
Rapid Response: Mitigating LLM Jailbreaks with a Few Examples
As large language models (LLMs) grow more powerful, ensuring their safety against misuse becomes crucial. While researchers have focused on developing robust defenses, no method has yet achieved complete invulnerability to attacks. We propose an alternative approach: instead of seeking perfect adversarial robustness, we develop rapid response techniques to look to block whole classes of jailbreaks after observing only a handful of attacks. To study this setting, we develop RapidResponseBench, a benchmark that measures a defense's robustness against various jailbreak strategies after adapting to a few observed examples. We evaluate five rapid response methods, all of which use jailbreak proliferation, where we automatically generate additional jailbreaks similar to the examples observed. Our strongest method, which fine-tunes an input classifier to block proliferated jailbreaks, reduces attack success rate by a factor greater than 240 on an in-distribution set of jailbreaks and a factor greater than 15 on an out-of-distribution set, having observed just one example of each jailbreaking strategy. Moreover, further studies suggest that the quality of proliferation model and number of proliferated examples play an key role in the effectiveness of this defense. Overall, our results highlight the potential of responding rapidly to novel jailbreaks to limit LLM misuse.
Improved Few-Shot Jailbreaking Can Circumvent Aligned Language Models and Their Defenses
Recently, Anil et al. (2024) show that many-shot (up to hundreds of) demonstrations can jailbreak state-of-the-art LLMs by exploiting their long-context capability. Nevertheless, is it possible to use few-shot demonstrations to efficiently jailbreak LLMs within limited context sizes? While the vanilla few-shot jailbreaking may be inefficient, we propose improved techniques such as injecting special system tokens like [/INST] and employing demo-level random search from a collected demo pool. These simple techniques result in surprisingly effective jailbreaking against aligned LLMs (even with advanced defenses). For examples, our method achieves >80% (mostly >95%) ASRs on Llama-2-7B and Llama-3-8B without multiple restarts, even if the models are enhanced by strong defenses such as perplexity detection and/or SmoothLLM, which is challenging for suffix-based jailbreaking. In addition, we conduct comprehensive and elaborate (e.g., making sure to use correct system prompts) evaluations against other aligned LLMs and advanced defenses, where our method consistently achieves nearly 100% ASRs. Our code is available at https://github.com/sail-sg/I-FSJ.
GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models
The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
Low-Resource Languages Jailbreak GPT-4
AI safety training and red-teaming of large language models (LLMs) are measures to mitigate the generation of unsafe content. Our work exposes the inherent cross-lingual vulnerability of these safety mechanisms, resulting from the linguistic inequality of safety training data, by successfully circumventing GPT-4's safeguard through translating unsafe English inputs into low-resource languages. On the AdvBenchmark, GPT-4 engages with the unsafe translated inputs and provides actionable items that can get the users towards their harmful goals 79% of the time, which is on par with or even surpassing state-of-the-art jailbreaking attacks. Other high-/mid-resource languages have significantly lower attack success rate, which suggests that the cross-lingual vulnerability mainly applies to low-resource languages. Previously, limited training on low-resource languages primarily affects speakers of those languages, causing technological disparities. However, our work highlights a crucial shift: this deficiency now poses a risk to all LLMs users. Publicly available translation APIs enable anyone to exploit LLMs' safety vulnerabilities. Therefore, our work calls for a more holistic red-teaming efforts to develop robust multilingual safeguards with wide language coverage.
HiddenDetect: Detecting Jailbreak Attacks against Large Vision-Language Models via Monitoring Hidden States
The integration of additional modalities increases the susceptibility of large vision-language models (LVLMs) to safety risks, such as jailbreak attacks, compared to their language-only counterparts. While existing research primarily focuses on post-hoc alignment techniques, the underlying safety mechanisms within LVLMs remain largely unexplored. In this work , we investigate whether LVLMs inherently encode safety-relevant signals within their internal activations during inference. Our findings reveal that LVLMs exhibit distinct activation patterns when processing unsafe prompts, which can be leveraged to detect and mitigate adversarial inputs without requiring extensive fine-tuning. Building on this insight, we introduce HiddenDetect, a novel tuning-free framework that harnesses internal model activations to enhance safety. Experimental results show that {HiddenDetect} surpasses state-of-the-art methods in detecting jailbreak attacks against LVLMs. By utilizing intrinsic safety-aware patterns, our method provides an efficient and scalable solution for strengthening LVLM robustness against multimodal threats. Our code will be released publicly at https://github.com/leigest519/HiddenDetect.
Efficient Safety Retrofitting Against Jailbreaking for LLMs
Direct Preference Optimization (DPO) is an efficient alignment technique that steers LLMs towards preferable outputs by training on preference data, bypassing the need for explicit reward models. Its simplicity enables easy adaptation to various domains and safety requirements. This paper examines DPO's effectiveness in model safety against jailbreaking attacks while minimizing data requirements and training costs. We introduce Egida, a dataset expanded from multiple sources, which includes 27 different safety topics and 18 different attack styles, complemented with synthetic and human labels. This data is used to boost the safety of state-of-the-art LLMs (Llama-3.1-8B/70B-Instruct, Qwen-2.5-7B/72B-Instruct) across topics and attack styles. In addition to safety evaluations, we assess their post-alignment performance degradation in general purpose tasks, and their tendency to over refusal. Following the proposed methodology, trained models reduce their Attack Success Rate by 10%-30%, using small training efforts (2,000 samples) with low computational cost (3\ for 8B models, 20 for 72B models). Safety aligned models generalize to unseen topics and attack styles, with the most successful attack style reaching a success rate around 5%. Size and family are found to strongly influence model malleability towards safety, pointing at the importance of pre-training choices. To validate our findings, a large independent assessment of human preference agreement with Llama-Guard-3-8B is conducted by the authors and the associated dataset Egida-HSafe is released. Overall, this study illustrates how affordable and accessible it is to enhance LLM safety using DPO while outlining its current limitations. All datasets and models are released to enable reproducibility and further research.
JBShield: Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation
Despite the implementation of safety alignment strategies, large language models (LLMs) remain vulnerable to jailbreak attacks, which undermine these safety guardrails and pose significant security threats. Some defenses have been proposed to detect or mitigate jailbreaks, but they are unable to withstand the test of time due to an insufficient understanding of jailbreak mechanisms. In this work, we investigate the mechanisms behind jailbreaks based on the Linear Representation Hypothesis (LRH), which states that neural networks encode high-level concepts as subspaces in their hidden representations. We define the toxic semantics in harmful and jailbreak prompts as toxic concepts and describe the semantics in jailbreak prompts that manipulate LLMs to comply with unsafe requests as jailbreak concepts. Through concept extraction and analysis, we reveal that LLMs can recognize the toxic concepts in both harmful and jailbreak prompts. However, unlike harmful prompts, jailbreak prompts activate the jailbreak concepts and alter the LLM output from rejection to compliance. Building on our analysis, we propose a comprehensive jailbreak defense framework, JBShield, consisting of two key components: jailbreak detection JBShield-D and mitigation JBShield-M. JBShield-D identifies jailbreak prompts by determining whether the input activates both toxic and jailbreak concepts. When a jailbreak prompt is detected, JBShield-M adjusts the hidden representations of the target LLM by enhancing the toxic concept and weakening the jailbreak concept, ensuring LLMs produce safe content. Extensive experiments demonstrate the superior performance of JBShield, achieving an average detection accuracy of 0.95 and reducing the average attack success rate of various jailbreak attacks to 2% from 61% across distinct LLMs.
Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment
With the widespread deployment of Multimodal Large Language Models (MLLMs) for visual-reasoning tasks, improving their safety has become crucial. Recent research indicates that despite training-time safety alignment, these models remain vulnerable to jailbreak attacks: carefully crafted image-prompt pairs that compel the model to generate harmful content. In this work, we first highlight a critical safety gap, demonstrating that alignment achieved solely through safety training may be insufficient against jailbreak attacks. To address this vulnerability, we propose Immune, an inference-time defense framework that leverages a safe reward model during decoding to defend against jailbreak attacks. Additionally, we provide a rigorous mathematical characterization of Immune, offering provable guarantees against jailbreaks. Extensive evaluations on diverse jailbreak benchmarks using recent MLLMs reveal that Immune effectively enhances model safety while preserving the model's original capabilities. For instance, against text-based jailbreak attacks on LLaVA-1.6, Immune reduces the attack success rate by 57.82% and 16.78% compared to the base MLLM and state-of-the-art defense strategy, respectively.
JAILJUDGE: A Comprehensive Jailbreak Judge Benchmark with Multi-Agent Enhanced Explanation Evaluation Framework
Despite advancements in enhancing LLM safety against jailbreak attacks, evaluating LLM defenses remains a challenge, with current methods often lacking explainability and generalization to complex scenarios, leading to incomplete assessments (e.g., direct judgment without reasoning, low F1 score of GPT-4 in complex cases, bias in multilingual scenarios). To address this, we present JAILJUDGE, a comprehensive benchmark featuring diverse risk scenarios, including synthetic, adversarial, in-the-wild, and multilingual prompts, along with high-quality human-annotated datasets. The JAILJUDGE dataset includes over 35k+ instruction-tune data with reasoning explainability and JAILJUDGETEST, a 4.5k+ labeled set for risk scenarios, and a 6k+ multilingual set across ten languages. To enhance evaluation with explicit reasoning, we propose the JailJudge MultiAgent framework, which enables explainable, fine-grained scoring (1 to 10). This framework supports the construction of instruction-tuning ground truth and facilitates the development of JAILJUDGE Guard, an end-to-end judge model that provides reasoning and eliminates API costs. Additionally, we introduce JailBoost, an attacker-agnostic attack enhancer, and GuardShield, a moderation defense, both leveraging JAILJUDGE Guard. Our experiments demonstrate the state-of-the-art performance of JailJudge methods (JailJudge MultiAgent, JAILJUDGE Guard) across diverse models (e.g., GPT-4, Llama-Guard) and zero-shot scenarios. JailBoost and GuardShield significantly improve jailbreak attack and defense tasks under zero-shot settings, with JailBoost enhancing performance by 29.24% and GuardShield reducing defense ASR from 40.46% to 0.15%.
Multimodal Pragmatic Jailbreak on Text-to-image Models
Diffusion models have recently achieved remarkable advancements in terms of image quality and fidelity to textual prompts. Concurrently, the safety of such generative models has become an area of growing concern. This work introduces a novel type of jailbreak, which triggers T2I models to generate the image with visual text, where the image and the text, although considered to be safe in isolation, combine to form unsafe content. To systematically explore this phenomenon, we propose a dataset to evaluate the current diffusion-based text-to-image (T2I) models under such jailbreak. We benchmark nine representative T2I models, including two close-source commercial models. Experimental results reveal a concerning tendency to produce unsafe content: all tested models suffer from such type of jailbreak, with rates of unsafe generation ranging from 8\% to 74\%. In real-world scenarios, various filters such as keyword blocklists, customized prompt filters, and NSFW image filters, are commonly employed to mitigate these risks. We evaluate the effectiveness of such filters against our jailbreak and found that, while current classifiers may be effective for single modality detection, they fail to work against our jailbreak. Our work provides a foundation for further development towards more secure and reliable T2I models.
SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance
As the development of large language models (LLMs) rapidly advances, securing these models effectively without compromising their utility has become a pivotal area of research. However, current defense strategies against jailbreak attacks (i.e., efforts to bypass security protocols) often suffer from limited adaptability, restricted general capability, and high cost. To address these challenges, we introduce SafeAligner, a methodology implemented at the decoding stage to fortify defenses against jailbreak attacks. We begin by developing two specialized models: the Sentinel Model, which is trained to foster safety, and the Intruder Model, designed to generate riskier responses. SafeAligner leverages the disparity in security levels between the responses from these models to differentiate between harmful and beneficial tokens, effectively guiding the safety alignment by altering the output token distribution of the target model. Extensive experiments show that SafeAligner can increase the likelihood of beneficial tokens, while reducing the occurrence of harmful ones, thereby ensuring secure alignment with minimal loss to generality.
Knowledge-to-Jailbreak: One Knowledge Point Worth One Attack
Large language models (LLMs) have been increasingly applied to various domains, which triggers increasing concerns about LLMs' safety on specialized domains, e.g. medicine. However, testing the domain-specific safety of LLMs is challenging due to the lack of domain knowledge-driven attacks in existing benchmarks. To bridge this gap, we propose a new task, knowledge-to-jailbreak, which aims to generate jailbreaks from domain knowledge to evaluate the safety of LLMs when applied to those domains. We collect a large-scale dataset with 12,974 knowledge-jailbreak pairs and fine-tune a large language model as jailbreak-generator, to produce domain knowledge-specific jailbreaks. Experiments on 13 domains and 8 target LLMs demonstrate the effectiveness of jailbreak-generator in generating jailbreaks that are both relevant to the given knowledge and harmful to the target LLMs. We also apply our method to an out-of-domain knowledge base, showing that jailbreak-generator can generate jailbreaks that are comparable in harmfulness to those crafted by human experts. Data and code: https://github.com/THU-KEG/Knowledge-to-Jailbreak/.
Cross-Modality Jailbreak and Mismatched Attacks on Medical Multimodal Large Language Models
Security concerns related to Large Language Models (LLMs) have been extensively explored, yet the safety implications for Multimodal Large Language Models (MLLMs), particularly in medical contexts (MedMLLMs), remain insufficiently studied. This paper delves into the underexplored security vulnerabilities of MedMLLMs, especially when deployed in clinical environments where the accuracy and relevance of question-and-answer interactions are critically tested against complex medical challenges. By combining existing clinical medical data with atypical natural phenomena, we redefine two types of attacks: mismatched malicious attack (2M-attack) and optimized mismatched malicious attack (O2M-attack). Using our own constructed voluminous 3MAD dataset, which covers a wide range of medical image modalities and harmful medical scenarios, we conduct a comprehensive analysis and propose the MCM optimization method, which significantly enhances the attack success rate on MedMLLMs. Evaluations with this dataset and novel attack methods, including white-box attacks on LLaVA-Med and transfer attacks on four other state-of-the-art models, indicate that even MedMLLMs designed with enhanced security features are vulnerable to security breaches. Our work underscores the urgent need for a concerted effort to implement robust security measures and enhance the safety and efficacy of open-source MedMLLMs, particularly given the potential severity of jailbreak attacks and other malicious or clinically significant exploits in medical settings. For further research and replication, anonymous access to our code is available at https://github.com/dirtycomputer/O2M_attack. Warning: Medical large model jailbreaking may generate content that includes unverified diagnoses and treatment recommendations. Always consult professional medical advice.
Don't Say No: Jailbreaking LLM by Suppressing Refusal
Ensuring the safety alignment of Large Language Models (LLMs) is crucial to generating responses consistent with human values. Despite their ability to recognize and avoid harmful queries, LLMs are vulnerable to "jailbreaking" attacks, where carefully crafted prompts elicit them to produce toxic content. One category of jailbreak attacks is reformulating the task as adversarial attacks by eliciting the LLM to generate an affirmative response. However, the typical attack in this category GCG has very limited attack success rate. In this study, to better study the jailbreak attack, we introduce the DSN (Don't Say No) attack, which prompts LLMs to not only generate affirmative responses but also novelly enhance the objective to suppress refusals. In addition, another challenge lies in jailbreak attacks is the evaluation, as it is difficult to directly and accurately assess the harmfulness of the attack. The existing evaluation such as refusal keyword matching has its own limitation as it reveals numerous false positive and false negative instances. To overcome this challenge, we propose an ensemble evaluation pipeline incorporating Natural Language Inference (NLI) contradiction assessment and two external LLM evaluators. Extensive experiments demonstrate the potency of the DSN and the effectiveness of ensemble evaluation compared to baseline methods.
Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes
Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a query and the LLM generates an answer. To reduce harm and misuse, efforts have been made to align these LLMs to human values using advanced training techniques such as Reinforcement Learning from Human Feedback (RLHF). However, recent studies have highlighted the vulnerability of LLMs to adversarial jailbreak attempts aiming at subverting the embedded safety guardrails. To address this challenge, this paper defines and investigates the Refusal Loss of LLMs and then proposes a method called Gradient Cuff to detect jailbreak attempts. Gradient Cuff exploits the unique properties observed in the refusal loss landscape, including functional values and its smoothness, to design an effective two-step detection strategy. Experimental results on two aligned LLMs (LLaMA-2-7B-Chat and Vicuna-7B-V1.5) and six types of jailbreak attacks (GCG, AutoDAN, PAIR, TAP, Base64, and LRL) show that Gradient Cuff can significantly improve the LLM's rejection capability for malicious jailbreak queries, while maintaining the model's performance for benign user queries by adjusting the detection threshold.
GradSafe: Detecting Jailbreak Prompts for LLMs via Safety-Critical Gradient Analysis
Large Language Models (LLMs) face threats from jailbreak prompts. Existing methods for detecting jailbreak prompts are primarily online moderation APIs or finetuned LLMs. These strategies, however, often require extensive and resource-intensive data collection and training processes. In this study, we propose GradSafe, which effectively detects jailbreak prompts by scrutinizing the gradients of safety-critical parameters in LLMs. Our method is grounded in a pivotal observation: the gradients of an LLM's loss for jailbreak prompts paired with compliance response exhibit similar patterns on certain safety-critical parameters. In contrast, safe prompts lead to different gradient patterns. Building on this observation, GradSafe analyzes the gradients from prompts (paired with compliance responses) to accurately detect jailbreak prompts. We show that GradSafe, applied to Llama-2 without further training, outperforms Llama Guard, despite its extensive finetuning with a large dataset, in detecting jailbreak prompts. This superior performance is consistent across both zero-shot and adaptation scenarios, as evidenced by our evaluations on ToxicChat and XSTest. The source code is available at https://github.com/xyq7/GradSafe.
A Comprehensive Study of Jailbreak Attack versus Defense for Large Language Models
Large Language Models (LLMS) have increasingly become central to generating content with potential societal impacts. Notably, these models have demonstrated capabilities for generating content that could be deemed harmful. To mitigate these risks, researchers have adopted safety training techniques to align model outputs with societal values to curb the generation of malicious content. However, the phenomenon of "jailbreaking", where carefully crafted prompts elicit harmful responses from models, persists as a significant challenge. This research conducts a comprehensive analysis of existing studies on jailbreaking LLMs and their defense techniques. We meticulously investigate nine attack techniques and seven defense techniques applied across three distinct language models: Vicuna, LLama, and GPT-3.5 Turbo. We aim to evaluate the effectiveness of these attack and defense techniques. Our findings reveal that existing white-box attacks underperform compared to universal techniques and that including special tokens in the input significantly affects the likelihood of successful attacks. This research highlights the need to concentrate on the security facets of LLMs. Additionally, we contribute to the field by releasing our datasets and testing framework, aiming to foster further research into LLM security. We believe these contributions will facilitate the exploration of security measures within this domain.
Pruning for Protection: Increasing Jailbreak Resistance in Aligned LLMs Without Fine-Tuning
Large Language Models (LLMs) are susceptible to `jailbreaking' prompts, which can induce the generation of harmful content. This paper demonstrates that moderate WANDA pruning (Sun et al., 2023) can increase their resistance to such attacks without the need for fine-tuning, while maintaining performance on standard benchmarks. Our findings suggest that the benefits of pruning correlate with the initial safety levels of the model, indicating a regularizing effect of WANDA pruning. We introduce a dataset of 225 harmful tasks across five categories to systematically evaluate this safety enhancement. We argue that safety improvements can be understood through a regularization perspective. First, we show that pruning helps LLMs focus more effectively on task-relevant tokens within jailbreaking prompts. Then, we analyze the effects of pruning on the perplexity of malicious prompts before and after their integration into jailbreak templates. Finally, we demonstrate statistically significant performance improvements under domain shifts when applying WANDA to linear models.
Tree of Attacks: Jailbreaking Black-Box LLMs Automatically
While Large Language Models (LLMs) display versatile functionality, they continue to generate harmful, biased, and toxic content, as demonstrated by the prevalence of human-designed jailbreaks. In this work, we present Tree of Attacks with Pruning (TAP), an automated method for generating jailbreaks that only requires black-box access to the target LLM. TAP utilizes an LLM to iteratively refine candidate (attack) prompts using tree-of-thoughts reasoning until one of the generated prompts jailbreaks the target. Crucially, before sending prompts to the target, TAP assesses them and prunes the ones unlikely to result in jailbreaks. Using tree-of-thought reasoning allows TAP to navigate a large search space of prompts and pruning reduces the total number of queries sent to the target. In empirical evaluations, we observe that TAP generates prompts that jailbreak state-of-the-art LLMs (including GPT4 and GPT4-Turbo) for more than 80% of the prompts using only a small number of queries. This significantly improves upon the previous state-of-the-art black-box method for generating jailbreaks.
Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization
Large Language Models (LLMs) continue to advance in their capabilities, yet this progress is accompanied by a growing array of safety risks. While significant attention has been dedicated to exploiting weaknesses in LLMs through jailbreaking attacks, there remains a paucity of exploration into defending against these attacks. We point out a pivotal factor contributing to the success of jailbreaks: the inherent conflict between the goals of being helpful and ensuring safety. To counter jailbreaking attacks, we propose to integrate goal prioritization at both training and inference stages. Implementing goal prioritization during inference substantially diminishes the Attack Success Rate (ASR) of jailbreaking attacks, reducing it from 66.4% to 2.0% for ChatGPT and from 68.2% to 19.4% for Vicuna-33B, without compromising general performance. Furthermore, integrating the concept of goal prioritization into the training phase reduces the ASR from 71.0% to 6.6% for LLama2-13B. Remarkably, even in scenarios where no jailbreaking samples are included during training, our approach slashes the ASR by half, decreasing it from 71.0% to 34.0%. Additionally, our findings reveal that while stronger LLMs face greater safety risks, they also possess a greater capacity to be steered towards defending against such attacks. We hope our work could contribute to the comprehension of jailbreaking attacks and defenses, and shed light on the relationship between LLMs' capability and safety. Our code will be available at https://github.com/thu-coai/JailbreakDefense_GoalPriority.
Visual Adversarial Examples Jailbreak Large Language Models
Recently, there has been a surge of interest in introducing vision into Large Language Models (LLMs). The proliferation of large Visual Language Models (VLMs), such as Flamingo, BLIP-2, and GPT-4, signifies an exciting convergence of advancements in both visual and language foundation models. Yet, the risks associated with this integrative approach are largely unexamined. In this paper, we shed light on the security and safety implications of this trend. First, we underscore that the continuous and high-dimensional nature of the additional visual input space intrinsically makes it a fertile ground for adversarial attacks. This unavoidably expands the attack surfaces of LLMs. Second, we highlight that the broad functionality of LLMs also presents visual attackers with a wider array of achievable adversarial objectives, extending the implications of security failures beyond mere misclassification. To elucidate these risks, we study adversarial examples in the visual input space of a VLM. Specifically, against MiniGPT-4, which incorporates safety mechanisms that can refuse harmful instructions, we present visual adversarial examples that can circumvent the safety mechanisms and provoke harmful behaviors of the model. Remarkably, we discover that adversarial examples, even if optimized on a narrow, manually curated derogatory corpus against specific social groups, can universally jailbreak the model's safety mechanisms. A single such adversarial example can generally undermine MiniGPT-4's safety, enabling it to heed a wide range of harmful instructions and produce harmful content far beyond simply imitating the derogatory corpus used in optimization. Unveiling these risks, we accentuate the urgent need for comprehensive risk assessments, robust defense strategies, and the implementation of responsible practices for the secure and safe utilization of VLMs.
Red teaming ChatGPT via Jailbreaking: Bias, Robustness, Reliability and Toxicity
Recent breakthroughs in natural language processing (NLP) have permitted the synthesis and comprehension of coherent text in an open-ended way, therefore translating the theoretical algorithms into practical applications. The large language models (LLMs) have significantly impacted businesses such as report summarization software and copywriters. Observations indicate, however, that LLMs may exhibit social prejudice and toxicity, posing ethical and societal dangers of consequences resulting from irresponsibility. Large-scale benchmarks for accountable LLMs should consequently be developed. Although several empirical investigations reveal the existence of a few ethical difficulties in advanced LLMs, there is little systematic examination and user study of the risks and harmful behaviors of current LLM usage. To further educate future efforts on constructing ethical LLMs responsibly, we perform a qualitative research method called ``red teaming'' on OpenAI's ChatGPTIn this paper, ChatGPT refers to the version released on Dec 15th. to better understand the practical features of ethical dangers in recent LLMs. We analyze ChatGPT comprehensively from four perspectives: 1) Bias 2) Reliability 3) Robustness 4) Toxicity. In accordance with our stated viewpoints, we empirically benchmark ChatGPT on multiple sample datasets. We find that a significant number of ethical risks cannot be addressed by existing benchmarks, and hence illustrate them via additional case studies. In addition, we examine the implications of our findings on AI ethics and harmal behaviors of ChatGPT, as well as future problems and practical design considerations for responsible LLMs. We believe that our findings may give light on future efforts to determine and mitigate the ethical hazards posed by machines in LLM applications.
Safe Unlearning: A Surprisingly Effective and Generalizable Solution to Defend Against Jailbreak Attacks
LLMs are known to be vulnerable to jailbreak attacks, even after safety alignment. An important observation is that, while different types of jailbreak attacks can generate significantly different queries, they mostly result in similar responses that are rooted in the same harmful knowledge (e.g., detailed steps to make a bomb). Therefore, we conjecture that directly unlearn the harmful knowledge in the LLM can be a more effective way to defend against jailbreak attacks than the mainstream supervised fine-tuning (SFT) based approaches. Our extensive experiments confirmed our insight and suggested surprising generalizability of our unlearning-based approach: using only 20 raw harmful questions without any jailbreak prompt during training, our solution reduced the Attack Success Rate (ASR) in Vicuna-7B on out-of-distribution (OOD) harmful questions wrapped with various complex jailbreak prompts from 82.6\% to 7.7\%. This significantly outperforms Llama2-7B-Chat, which is fine-tuned on about 0.1M safety alignment samples but still has an ASR of 21.9\% even under the help of an additional safety system prompt. Further analysis reveals that the generalization ability of our solution stems from the intrinsic relatedness among harmful responses across harmful questions (e.g., response patterns, shared steps and actions, and similarity among their learned representations in the LLM). Our code is available at https://github.com/thu-coai/SafeUnlearning.
WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models
We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with LLMs, our work investigates jailbreaks from chatbot users who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks compared to state-of-the-art jailbreak methods. While many datasets exist for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed even when model weights are open. With WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. To mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (vanilla & adversarial) and 2) benign queries that resemble harmful queries in form but contain no harm. As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training. Through extensive experiments, we identify the training properties that enable an ideal balance of safety behaviors: appropriate safeguarding without over-refusal, effective handling of vanilla and adversarial queries, and minimal, if any, decrease in general capabilities. All components of WildJailbeak contribute to achieving balanced safety behaviors of models.
Merging Improves Self-Critique Against Jailbreak Attacks
The robustness of large language models (LLMs) against adversarial manipulations, such as jailbreak attacks, remains a significant challenge. In this work, we propose an approach that enhances the self-critique capability of the LLM and further fine-tunes it over sanitized synthetic data. This is done with the addition of an external critic model that can be merged with the original, thus bolstering self-critique capabilities and improving the robustness of the LLMs response to adversarial prompts. Our results demonstrate that the combination of merging and self-critique can reduce the attack success rate of adversaries significantly, thus offering a promising defense mechanism against jailbreak attacks. Code, data and models released at https://github.com/vicgalle/merging-self-critique-jailbreaks .
Derail Yourself: Multi-turn LLM Jailbreak Attack through Self-discovered Clues
This study exposes the safety vulnerabilities of Large Language Models (LLMs) in multi-turn interactions, where malicious users can obscure harmful intents across several queries. We introduce ActorAttack, a novel multi-turn attack method inspired by actor-network theory, which models a network of semantically linked actors as attack clues to generate diverse and effective attack paths toward harmful targets. ActorAttack addresses two main challenges in multi-turn attacks: (1) concealing harmful intents by creating an innocuous conversation topic about the actor, and (2) uncovering diverse attack paths towards the same harmful target by leveraging LLMs' knowledge to specify the correlated actors as various attack clues. In this way, ActorAttack outperforms existing single-turn and multi-turn attack methods across advanced aligned LLMs, even for GPT-o1. We will publish a dataset called SafeMTData, which includes multi-turn adversarial prompts and safety alignment data, generated by ActorAttack. We demonstrate that models safety-tuned using our safety dataset are more robust to multi-turn attacks. Code is available at https://github.com/renqibing/ActorAttack.
AutoDefense: Multi-Agent LLM Defense against Jailbreak Attacks
Despite extensive pre-training and fine-tuning in moral alignment to prevent generating harmful information at user request, large language models (LLMs) remain vulnerable to jailbreak attacks. In this paper, we propose AutoDefense, a response-filtering based multi-agent defense framework that filters harmful responses from LLMs. This framework assigns different roles to LLM agents and employs them to complete the defense task collaboratively. The division in tasks enhances the overall instruction-following of LLMs and enables the integration of other defense components as tools. AutoDefense can adapt to various sizes and kinds of open-source LLMs that serve as agents. Through conducting extensive experiments on a large scale of harmful and safe prompts, we validate the effectiveness of the proposed AutoDefense in improving the robustness against jailbreak attacks, while maintaining the performance at normal user request. Our code and data are publicly available at https://github.com/XHMY/AutoDefense.
Agent Smith: A Single Image Can Jailbreak One Million Multimodal LLM Agents Exponentially Fast
A multimodal large language model (MLLM) agent can receive instructions, capture images, retrieve histories from memory, and decide which tools to use. Nonetheless, red-teaming efforts have revealed that adversarial images/prompts can jailbreak an MLLM and cause unaligned behaviors. In this work, we report an even more severe safety issue in multi-agent environments, referred to as infectious jailbreak. It entails the adversary simply jailbreaking a single agent, and without any further intervention from the adversary, (almost) all agents will become infected exponentially fast and exhibit harmful behaviors. To validate the feasibility of infectious jailbreak, we simulate multi-agent environments containing up to one million LLaVA-1.5 agents, and employ randomized pair-wise chat as a proof-of-concept instantiation for multi-agent interaction. Our results show that feeding an (infectious) adversarial image into the memory of any randomly chosen agent is sufficient to achieve infectious jailbreak. Finally, we derive a simple principle for determining whether a defense mechanism can provably restrain the spread of infectious jailbreak, but how to design a practical defense that meets this principle remains an open question to investigate. Our project page is available at https://sail-sg.github.io/Agent-Smith/.
Scalable and Transferable Black-Box Jailbreaks for Language Models via Persona Modulation
Despite efforts to align large language models to produce harmless responses, they are still vulnerable to jailbreak prompts that elicit unrestricted behaviour. In this work, we investigate persona modulation as a black-box jailbreaking method to steer a target model to take on personalities that are willing to comply with harmful instructions. Rather than manually crafting prompts for each persona, we automate the generation of jailbreaks using a language model assistant. We demonstrate a range of harmful completions made possible by persona modulation, including detailed instructions for synthesising methamphetamine, building a bomb, and laundering money. These automated attacks achieve a harmful completion rate of 42.5% in GPT-4, which is 185 times larger than before modulation (0.23%). These prompts also transfer to Claude 2 and Vicuna with harmful completion rates of 61.0% and 35.9%, respectively. Our work reveals yet another vulnerability in commercial large language models and highlights the need for more comprehensive safeguards.
You Know What I'm Saying: Jailbreak Attack via Implicit Reference
While recent advancements in large language model (LLM) alignment have enabled the effective identification of malicious objectives involving scene nesting and keyword rewriting, our study reveals that these methods remain inadequate at detecting malicious objectives expressed through context within nested harmless objectives. This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR). AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context. This method employs multiple related harmless objectives to generate malicious content without triggering refusal responses, thereby effectively bypassing existing detection techniques.Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models, including GPT-4o, Claude-3.5-Sonnet, and Qwen-2-72B. Notably, we observe an inverse scaling phenomenon, where larger models are more vulnerable to this attack method. These findings underscore the urgent need for defense mechanisms capable of understanding and preventing contextual attacks. Furthermore, we introduce a cross-model attack strategy that leverages less secure models to generate malicious contexts, thereby further increasing the ASR when targeting other models.Our code and jailbreak artifacts can be found at https://github.com/Lucas-TY/llm_Implicit_reference.
Emerging Vulnerabilities in Frontier Models: Multi-Turn Jailbreak Attacks
Large language models (LLMs) are improving at an exceptional rate. However, these models are still susceptible to jailbreak attacks, which are becoming increasingly dangerous as models become increasingly powerful. In this work, we introduce a dataset of jailbreaks where each example can be input in both a single or a multi-turn format. We show that while equivalent in content, they are not equivalent in jailbreak success: defending against one structure does not guarantee defense against the other. Similarly, LLM-based filter guardrails also perform differently depending on not just the input content but the input structure. Thus, vulnerabilities of frontier models should be studied in both single and multi-turn settings; this dataset provides a tool to do so.
Images are Achilles' Heel of Alignment: Exploiting Visual Vulnerabilities for Jailbreaking Multimodal Large Language Models
In this paper, we study the harmlessness alignment problem of multimodal large language models (MLLMs). We conduct a systematic empirical analysis of the harmlessness performance of representative MLLMs and reveal that the image input poses the alignment vulnerability of MLLMs. Inspired by this, we propose a novel jailbreak method named HADES, which hides and amplifies the harmfulness of the malicious intent within the text input, using meticulously crafted images. Experimental results show that HADES can effectively jailbreak existing MLLMs, which achieves an average Attack Success Rate (ASR) of 90.26% for LLaVA-1.5 and 71.60% for Gemini Pro Vision. Our code and data will be publicly released.
Break the Breakout: Reinventing LM Defense Against Jailbreak Attacks with Self-Refinement
Caution: This paper includes offensive words that could potentially cause unpleasantness. Language models (LMs) are vulnerable to exploitation for adversarial misuse. Training LMs for safety alignment is extensive and makes it hard to respond to fast-developing attacks immediately, such as jailbreaks. We propose self-refine with formatting that achieves outstanding safety even in non-safety-aligned LMs and evaluate our method alongside several defense baselines, demonstrating that it is the safest training-free method against jailbreak attacks. Additionally, we proposed a formatting method that improves the efficiency of the self-refine process while reducing attack success rates in fewer iterations. We've also observed that non-safety-aligned LMs outperform safety-aligned LMs in safety tasks by giving more helpful and safe responses. In conclusion, our findings can achieve less safety risk with fewer computational costs, allowing non-safety LM to be easily utilized in real-world service.
Leveraging the Context through Multi-Round Interactions for Jailbreaking Attacks
Large Language Models (LLMs) are susceptible to Jailbreaking attacks, which aim to extract harmful information by subtly modifying the attack query. As defense mechanisms evolve, directly obtaining harmful information becomes increasingly challenging for Jailbreaking attacks. In this work, inspired by human practices of indirect context to elicit harmful information, we focus on a new attack form called Contextual Interaction Attack. The idea relies on the autoregressive nature of the generation process in LLMs. We contend that the prior context--the information preceding the attack query--plays a pivotal role in enabling potent Jailbreaking attacks. Specifically, we propose an approach that leverages preliminary question-answer pairs to interact with the LLM. By doing so, we guide the responses of the model toward revealing the 'desired' harmful information. We conduct experiments on four different LLMs and demonstrate the efficacy of this attack, which is black-box and can also transfer across LLMs. We believe this can lead to further developments and understanding of the context vector in LLMs.
Studious Bob Fight Back Against Jailbreaking via Prompt Adversarial Tuning
Although Large Language Models (LLMs) have achieved tremendous success in various applications, they are also susceptible to certain prompts that can induce them to bypass built-in safety measures and provide dangerous or illegal content, a phenomenon known as jailbreak. To protect LLMs from producing harmful information, various defense strategies are proposed, with most focusing on content filtering or adversarial training of models. In this paper, we propose an approach named Prompt Adversarial Tuning (PAT) to train a defense control mechanism, which is then embedded as a prefix to user prompts to implement our defense strategy. We design a training process similar to adversarial training to achieve our optimized goal, alternating between updating attack and defense controls. To our knowledge, we are the first to implement defense from the perspective of prompt tuning. Once employed, our method will hardly impact the operational efficiency of LLMs. Experiments show that our method is effective in both black-box and white-box settings, reducing the success rate of advanced attacks to nearly 0 while maintaining the benign answer rate of 80% to simple benign questions. Our work might potentially chart a new perspective for future explorations in LLM security.
How Johnny Can Persuade LLMs to Jailbreak Them: Rethinking Persuasion to Challenge AI Safety by Humanizing LLMs
Most traditional AI safety research has approached AI models as machines and centered on algorithm-focused attacks developed by security experts. As large language models (LLMs) become increasingly common and competent, non-expert users can also impose risks during daily interactions. This paper introduces a new perspective to jailbreak LLMs as human-like communicators, to explore this overlooked intersection between everyday language interaction and AI safety. Specifically, we study how to persuade LLMs to jailbreak them. First, we propose a persuasion taxonomy derived from decades of social science research. Then, we apply the taxonomy to automatically generate interpretable persuasive adversarial prompts (PAP) to jailbreak LLMs. Results show that persuasion significantly increases the jailbreak performance across all risk categories: PAP consistently achieves an attack success rate of over 92% on Llama 2-7b Chat, GPT-3.5, and GPT-4 in 10 trials, surpassing recent algorithm-focused attacks. On the defense side, we explore various mechanisms against PAP and, found a significant gap in existing defenses, and advocate for more fundamental mitigation for highly interactive LLMs
Open the Pandora's Box of LLMs: Jailbreaking LLMs through Representation Engineering
Getting large language models (LLMs) to refuse to answer hostile toxicity questions is a core issue under the theme of LLMs security. Previous approaches have used prompts engineering to jailbreak LLMs and answer some toxicity questions. These approaches can easily fail after the model manufacturer makes additional fine-tuning to the model. To promote the further understanding of model jailbreaking by researchers, we are inspired by Representation Engineering to propose a jailbreaking method that does not require elaborate construction prompts, is not affected by model fine-tuning, and can be widely applied to any open-source LLMs in a pluggable manner. We have evaluated this method on multiple mainstream LLMs on carefully supplemented toxicity datasets, and the experimental results demonstrate the significant effectiveness of our approach. After being surprised by some interesting jailbreaking cases, we did extensive in-depth research to explore the techniques behind this method.
SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks
Despite efforts to align large language models (LLMs) with human values, widely-used LLMs such as GPT, Llama, Claude, and PaLM are susceptible to jailbreaking attacks, wherein an adversary fools a targeted LLM into generating objectionable content. To address this vulnerability, we propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on LLMs. Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs. SmoothLLM reduces the attack success rate on numerous popular LLMs to below one percentage point, avoids unnecessary conservatism, and admits provable guarantees on attack mitigation. Moreover, our defense uses exponentially fewer queries than existing attacks and is compatible with any LLM. Our code is publicly available at the following link: https://github.com/arobey1/smooth-llm.