Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBuilding another Spanish dictionary, this time with GPT-4
We present the "Spanish Built Factual Freectianary 2.0" (Spanish-BFF-2) as the second iteration of an AI-generated Spanish dictionary. Previously, we developed the inaugural version of this unique free dictionary employing GPT-3. In this study, we aim to improve the dictionary by using GPT-4-turbo instead. Furthermore, we explore improvements made to the initial version and compare the performance of both models.
GPT-4o System Card
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools
We introduce ChatGLM, an evolving family of large language models that we have been developing over time. This report primarily focuses on the GLM-4 language series, which includes GLM-4, GLM-4-Air, and GLM-4-9B. They represent our most capable models that are trained with all the insights and lessons gained from the preceding three generations of ChatGLM. To date, the GLM-4 models are pre-trained on ten trillions of tokens mostly in Chinese and English, along with a small set of corpus from 24 languages, and aligned primarily for Chinese and English usage. The high-quality alignment is achieved via a multi-stage post-training process, which involves supervised fine-tuning and learning from human feedback. Evaluations show that GLM-4 1) closely rivals or outperforms GPT-4 in terms of general metrics such as MMLU, GSM8K, MATH, BBH, GPQA, and HumanEval, 2) gets close to GPT-4-Turbo in instruction following as measured by IFEval, 3) matches GPT-4 Turbo (128K) and Claude 3 for long context tasks, and 4) outperforms GPT-4 in Chinese alignments as measured by AlignBench. The GLM-4 All Tools model is further aligned to understand user intent and autonomously decide when and which tool(s) touse -- including web browser, Python interpreter, text-to-image model, and user-defined functions -- to effectively complete complex tasks. In practical applications, it matches and even surpasses GPT-4 All Tools in tasks like accessing online information via web browsing and solving math problems using Python interpreter. Over the course, we have open-sourced a series of models, including ChatGLM-6B (three generations), GLM-4-9B (128K, 1M), GLM-4V-9B, WebGLM, and CodeGeeX, attracting over 10 million downloads on Hugging face in the year 2023 alone. The open models can be accessed through https://github.com/THUDM and https://huggingface.co/THUDM.
Eliciting In-context Retrieval and Reasoning for Long-context Large Language Models
Recent advancements in long-context language models (LCLMs) promise to transform Retrieval-Augmented Generation (RAG) by simplifying pipelines. With their expanded context windows, LCLMs can process entire knowledge bases and perform retrieval and reasoning directly -- a capability we define as In-Context Retrieval and Reasoning (ICR^2). However, existing benchmarks like LOFT often overestimate LCLM performance by providing overly simplified contexts. To address this, we introduce ICR^2, a benchmark that evaluates LCLMs in more realistic scenarios by including confounding passages retrieved with strong retrievers. We then propose three methods to enhance LCLM performance: (1) retrieve-then-generate fine-tuning, (2) retrieval-attention-probing, which uses attention heads to filter and de-noise long contexts during decoding, and (3) joint retrieval head training alongside the generation head. Our evaluation of five well-known LCLMs on LOFT and ICR^2 demonstrates significant gains with our best approach applied to Mistral-7B: +17 and +15 points by Exact Match on LOFT, and +13 and +2 points on ICR^2, compared to vanilla RAG and supervised fine-tuning, respectively. It even outperforms GPT-4-Turbo on most tasks despite being a much smaller model.
AiGen-FoodReview: A Multimodal Dataset of Machine-Generated Restaurant Reviews and Images on Social Media
Online reviews in the form of user-generated content (UGC) significantly impact consumer decision-making. However, the pervasive issue of not only human fake content but also machine-generated content challenges UGC's reliability. Recent advances in Large Language Models (LLMs) may pave the way to fabricate indistinguishable fake generated content at a much lower cost. Leveraging OpenAI's GPT-4-Turbo and DALL-E-2 models, we craft AiGen-FoodReview, a multi-modal dataset of 20,144 restaurant review-image pairs divided into authentic and machine-generated. We explore unimodal and multimodal detection models, achieving 99.80% multimodal accuracy with FLAVA. We use attributes from readability and photographic theories to score reviews and images, respectively, demonstrating their utility as hand-crafted features in scalable and interpretable detection models, with comparable performance. The paper contributes by open-sourcing the dataset and releasing fake review detectors, recommending its use in unimodal and multimodal fake review detection tasks, and evaluating linguistic and visual features in synthetic versus authentic data.
Fostering Natural Conversation in Large Language Models with NICO: a Natural Interactive COnversation dataset
Benefiting from diverse instruction datasets, contemporary Large Language Models (LLMs) perform effectively as AI assistants in collaborating with humans. However, LLMs still struggle to generate natural and colloquial responses in real-world applications such as chatbots and psychological counseling that require more human-like interactions. To address these limitations, we introduce NICO, a Natural Interactive COnversation dataset in Chinese. We first use GPT-4-turbo to generate dialogue drafts and make them cover 20 daily-life topics and 5 types of social interactions. Then, we hire workers to revise these dialogues to ensure that they are free of grammatical errors and unnatural utterances. We define two dialogue-level natural conversation tasks and two sentence-level tasks for identifying and rewriting unnatural sentences. Multiple open-source and closed-source LLMs are tested and analyzed in detail. The experimental results highlight the challenge of the tasks and demonstrate how NICO can help foster the natural dialogue capabilities of LLMs. The dataset will be released.
EffiBench: Benchmarking the Efficiency of Automatically Generated Code
Code generation models have increasingly become integral to aiding software development, offering assistance in tasks such as code completion, debugging, and code translation. Although current research has thoroughly examined the correctness of code produced by code generation models, a vital aspect, i.e., the efficiency of the generated code, has often been neglected. This paper presents EffiBench, a benchmark with 1,000 efficiency-critical coding problems for assessing the efficiency of code generated by code generation models. EffiBench contains a diverse set of LeetCode coding problems. Each problem is paired with an executable human-written canonical solution. With EffiBench, we empirically examine the capability of 21 Large Language Models (13 open-sourced and 8 closed-sourced) in generating efficient code. The results demonstrate that GPT-4-turbo generates the most efficient code, significantly outperforming Palm-2-chat-bison, Claude-instant-1, Gemini-pro, GPT-4, and GPT-3.5. Nevertheless, its code efficiency is still worse than the efficiency of human-written canonical solutions. In particular, the average and worst execution time of GPT-4-turbo generated code is 1.69 and 45.49 times that of the canonical solutions.
Evaluating Large Language Models on the GMAT: Implications for the Future of Business Education
The rapid evolution of artificial intelligence (AI), especially in the domain of Large Language Models (LLMs) and generative AI, has opened new avenues for application across various fields, yet its role in business education remains underexplored. This study introduces the first benchmark to assess the performance of seven major LLMs, OpenAI's models (GPT-3.5 Turbo, GPT-4, and GPT-4 Turbo), Google's models (PaLM 2, Gemini 1.0 Pro), and Anthropic's models (Claude 2 and Claude 2.1), on the GMAT, which is a key exam in the admission process for graduate business programs. Our analysis shows that most LLMs outperform human candidates, with GPT-4 Turbo not only outperforming the other models but also surpassing the average scores of graduate students at top business schools. Through a case study, this research examines GPT-4 Turbo's ability to explain answers, evaluate responses, identify errors, tailor instructions, and generate alternative scenarios. The latest LLM versions, GPT-4 Turbo, Claude 2.1, and Gemini 1.0 Pro, show marked improvements in reasoning tasks compared to their predecessors, underscoring their potential for complex problem-solving. While AI's promise in education, assessment, and tutoring is clear, challenges remain. Our study not only sheds light on LLMs' academic potential but also emphasizes the need for careful development and application of AI in education. As AI technology advances, it is imperative to establish frameworks and protocols for AI interaction, verify the accuracy of AI-generated content, ensure worldwide access for diverse learners, and create an educational environment where AI supports human expertise. This research sets the stage for further exploration into the responsible use of AI to enrich educational experiences and improve exam preparation and assessment methods.
LLMs as Hackers: Autonomous Linux Privilege Escalation Attacks
Penetration testing, an essential component of software security testing, allows organizations to identify and remediate vulnerabilities in their systems, thus bolstering their defense mechanisms against cyberattacks. One recent advancement in the realm of penetration testing is the utilization of Language Models (LLMs). We explore the intersection of LLMs and penetration testing to gain insight into their capabilities and challenges in the context of privilege escalation. We introduce a fully automated privilege-escalation tool designed for evaluating the efficacy of LLMs for (ethical) hacking, executing benchmarks using multiple LLMs, and investigating their respective results. Our results show that GPT-4-turbo is well suited to exploit vulnerabilities (33-83% of vulnerabilities). GPT-3.5-turbo can abuse 16-50% of vulnerabilities, while local models, such as Llama3, can only exploit between 0 and 33% of the vulnerabilities. We analyze the impact of different context sizes, in-context learning, optional high-level guidance mechanisms, and memory management techniques. We discuss challenging areas for LLMs, including maintaining focus during testing, coping with errors, and finally comparing LLMs with human hackers. The current version of the LLM-guided privilege-escalation prototype can be found at https://github.com/ipa-labs/hackingBuddyGPT.
KAHANI: Culturally-Nuanced Visual Storytelling Pipeline for Non-Western Cultures
Large Language Models (LLMs) and Text-To-Image (T2I) models have demonstrated the ability to generate compelling text and visual stories. However, their outputs are predominantly aligned with the sensibilities of the Global North, often resulting in an outsider's gaze on other cultures. As a result, non-Western communities have to put extra effort into generating culturally specific stories. To address this challenge, we developed a visual storytelling pipeline called KAHANI that generates culturally grounded visual stories for non-Western cultures. Our pipeline leverages off-the-shelf models GPT-4 Turbo and Stable Diffusion XL (SDXL). By using Chain of Thought (CoT) and T2I prompting techniques, we capture the cultural context from user's prompt and generate vivid descriptions of the characters and scene compositions. To evaluate the effectiveness of KAHANI, we conducted a comparative user study with ChatGPT-4 (with DALL-E3) in which participants from different regions of India compared the cultural relevance of stories generated by the two tools. Results from the qualitative and quantitative analysis performed on the user study showed that KAHANI was able to capture and incorporate more Culturally Specific Items (CSIs) compared to ChatGPT-4. In terms of both its cultural competence and visual story generation quality, our pipeline outperformed ChatGPT-4 in 27 out of the 36 comparisons.
Enabling Weak LLMs to Judge Response Reliability via Meta Ranking
Despite the strong performance of large language models (LLMs) across a wide range of tasks, they still have reliability issues. Previous studies indicate that strong LLMs like GPT-4-turbo excel in evaluating the reliability of responses from LLMs, but face efficiency and local deployment issues. Thus, to enable weak LLMs to effectively assess the reliability of LLM responses, we propose a novel cross-query-comparison-based method called Meta Ranking (MR). Unlike previous few-shot methods that solely based on in-context learning capabilities in LLMs, MR assesses reliability by pairwisely ranking the target query-response pair with multiple reference query-response pairs. We found that MR is highly effective in error detection for LLM responses, where weak LLMs, such as Phi-2, could surpass strong baselines like GPT-3.5-turbo, requiring only five reference samples and significantly improving efficiency. We further demonstrate that MR can enhance strong LLMs' performance in two practical applications: model cascading and instruction tuning. In model cascading, we combine open- and closed-source LLMs to achieve performance comparable to GPT-4-turbo with lower costs. In instruction tuning, we use MR for iterative training data filtering, significantly reducing data processing time and enabling LLaMA-7B and Phi-2 to surpass Alpaca-13B with fewer training tokens. These results underscore the high potential of MR in both efficiency and effectiveness.
Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges
Offering a promising solution to the scalability challenges associated with human evaluation, the LLM-as-a-judge paradigm is rapidly gaining traction as an approach to evaluating large language models (LLMs). However, there are still many open questions about the strengths and weaknesses of this paradigm, and what potential biases it may hold. In this paper, we present a comprehensive study of the performance of various LLMs acting as judges. We leverage TriviaQA as a benchmark for assessing objective knowledge reasoning of LLMs and evaluate them alongside human annotations which we found to have a high inter-annotator agreement. Our study includes 9 judge models and 9 exam taker models -- both base and instruction-tuned. We assess the judge model's alignment across different model sizes, families, and judge prompts. Among other results, our research rediscovers the importance of using Cohen's kappa as a metric of alignment as opposed to simple percent agreement, showing that judges with high percent agreement can still assign vastly different scores. We find that both Llama-3 70B and GPT-4 Turbo have an excellent alignment with humans, but in terms of ranking exam taker models, they are outperformed by both JudgeLM-7B and the lexical judge Contains, which have up to 34 points lower human alignment. Through error analysis and various other studies, including the effects of instruction length and leniency bias, we hope to provide valuable lessons for using LLMs as judges in the future.
WebRL: Training LLM Web Agents via Self-Evolving Online Curriculum Reinforcement Learning
Large language models (LLMs) have shown remarkable potential as autonomous agents, particularly in web-based tasks. However, existing LLM web agents heavily rely on expensive proprietary LLM APIs, while open LLMs lack the necessary decision-making capabilities. This paper introduces WebRL, a self-evolving online curriculum reinforcement learning framework designed to train high-performance web agents using open LLMs. WebRL addresses three key challenges in building LLM web agents, including the scarcity of training tasks, sparse feedback signals, and policy distribution drift in online learning. Specifically, WebRL incorporates 1) a self-evolving curriculum that generates new tasks from unsuccessful attempts, 2) a robust outcome-supervised reward model (ORM), and 3) adaptive reinforcement learning strategies to ensure consistent improvements. We apply WebRL to transform open Llama-3.1 and GLM-4 models into proficient web agents. On WebArena-Lite, WebRL improves the success rate of Llama-3.1-8B from 4.8% to 42.4%, and from 6.1% to 43% for GLM-4-9B. These open models significantly surpass the performance of GPT-4-Turbo (17.6%) and GPT-4o (13.9%) and outperform previous state-of-the-art web agents trained on open LLMs (AutoWebGLM, 18.2%). Our findings demonstrate WebRL's effectiveness in bridging the gap between open and proprietary LLM-based web agents, paving the way for more accessible and powerful autonomous web interaction systems.
LongVideoBench: A Benchmark for Long-context Interleaved Video-Language Understanding
Large multimodal models (LMMs) are processing increasingly longer and richer inputs. Albeit the progress, few public benchmark is available to measure such development. To mitigate this gap, we introduce LongVideoBench, a question-answering benchmark that features video-language interleaved inputs up to an hour long. Our benchmark includes 3,763 varying-length web-collected videos with their subtitles across diverse themes, designed to comprehensively evaluate LMMs on long-term multimodal understanding. To achieve this, we interpret the primary challenge as to accurately retrieve and reason over detailed multimodal information from long inputs. As such, we formulate a novel video question-answering task termed referring reasoning. Specifically, as part of the question, it contains a referring query that references related video contexts, called referred context. The model is then required to reason over relevant video details from the referred context. Following the paradigm of referring reasoning, we curate 6,678 human-annotated multiple-choice questions in 17 fine-grained categories, establishing one of the most comprehensive benchmarks for long-form video understanding. Evaluations suggest that the LongVideoBench presents significant challenges even for the most advanced proprietary models (e.g. GPT-4o, Gemini-1.5-Pro, GPT-4-Turbo), while their open-source counterparts show an even larger performance gap. In addition, our results indicate that model performance on the benchmark improves only when they are capable of processing more frames, positioning LongVideoBench as a valuable benchmark for evaluating future-generation long-context LMMs.
FoQA: A Faroese Question-Answering Dataset
We present FoQA, a Faroese extractive question-answering (QA) dataset with 2,000 samples, created using a semi-automated approach combining Large Language Models (LLMs) and human validation. The dataset was generated from Faroese Wikipedia articles using GPT-4-turbo for initial QA generation, followed by question rephrasing to increase complexity and native speaker validation to ensure quality. We provide baseline performance metrics for FoQA across multiple models, including LLMs and BERT, demonstrating its effectiveness in evaluating Faroese QA performance. The dataset is released in three versions: a validated set of 2,000 samples, a complete set of all 10,001 generated samples, and a set of 2,395 rejected samples for error analysis.
How do Large Language Models Navigate Conflicts between Honesty and Helpfulness?
In day-to-day communication, people often approximate the truth - for example, rounding the time or omitting details - in order to be maximally helpful to the listener. How do large language models (LLMs) handle such nuanced trade-offs? To address this question, we use psychological models and experiments designed to characterize human behavior to analyze LLMs. We test a range of LLMs and explore how optimization for human preferences or inference-time reasoning affects these trade-offs. We find that reinforcement learning from human feedback improves both honesty and helpfulness, while chain-of-thought prompting skews LLMs towards helpfulness over honesty. Finally, GPT-4 Turbo demonstrates human-like response patterns including sensitivity to the conversational framing and listener's decision context. Our findings reveal the conversational values internalized by LLMs and suggest that even these abstract values can, to a degree, be steered by zero-shot prompting.
KGPA: Robustness Evaluation for Large Language Models via Cross-Domain Knowledge Graphs
Existing frameworks for assessing robustness of large language models (LLMs) overly depend on specific benchmarks, increasing costs and failing to evaluate performance of LLMs in professional domains due to dataset limitations. This paper proposes a framework that systematically evaluates the robustness of LLMs under adversarial attack scenarios by leveraging knowledge graphs (KGs). Our framework generates original prompts from the triplets of knowledge graphs and creates adversarial prompts by poisoning, assessing the robustness of LLMs through the results of these adversarial attacks. We systematically evaluate the effectiveness of this framework and its modules. Experiments show that adversarial robustness of the ChatGPT family ranks as GPT-4-turbo > GPT-4o > GPT-3.5-turbo, and the robustness of large language models is influenced by the professional domains in which they operate.
AI-Augmented Predictions: LLM Assistants Improve Human Forecasting Accuracy
Large language models (LLMs) show impressive capabilities, matching and sometimes exceeding human performance in many domains. This study explores the potential of LLMs to augment judgement in forecasting tasks. We evaluated the impact on forecasting accuracy of two GPT-4-Turbo assistants: one designed to provide high-quality advice ('superforecasting'), and the other designed to be overconfident and base-rate-neglecting. Participants (N = 991) had the option to consult their assigned LLM assistant throughout the study, in contrast to a control group that used a less advanced model (DaVinci-003) without direct forecasting support. Our preregistered analyses reveal that LLM augmentation significantly enhances forecasting accuracy by 23% across both types of assistants, compared to the control group. This improvement occurs despite the superforecasting assistant's higher accuracy in predictions, indicating the augmentation's benefit is not solely due to model prediction accuracy. Exploratory analyses showed a pronounced effect in one forecasting item, without which we find that the superforecasting assistant increased accuracy by 43%, compared with 28% for the biased assistant. We further examine whether LLM augmentation disproportionately benefits less skilled forecasters, degrades the wisdom-of-the-crowd by reducing prediction diversity, or varies in effectiveness with question difficulty. Our findings do not consistently support these hypotheses. Our results suggest that access to an LLM assistant, even a biased one, can be a helpful decision aid in cognitively demanding tasks where the answer is not known at the time of interaction.
FinanceBench: A New Benchmark for Financial Question Answering
FinanceBench is a first-of-its-kind test suite for evaluating the performance of LLMs on open book financial question answering (QA). It comprises 10,231 questions about publicly traded companies, with corresponding answers and evidence strings. The questions in FinanceBench are ecologically valid and cover a diverse set of scenarios. They are intended to be clear-cut and straightforward to answer to serve as a minimum performance standard. We test 16 state of the art model configurations (including GPT-4-Turbo, Llama2 and Claude2, with vector stores and long context prompts) on a sample of 150 cases from FinanceBench, and manually review their answers (n=2,400). The cases are available open-source. We show that existing LLMs have clear limitations for financial QA. Notably, GPT-4-Turbo used with a retrieval system incorrectly answered or refused to answer 81% of questions. While augmentation techniques such as using longer context window to feed in relevant evidence improve performance, they are unrealistic for enterprise settings due to increased latency and cannot support larger financial documents. We find that all models examined exhibit weaknesses, such as hallucinations, that limit their suitability for use by enterprises.
LLM-Coordination: Evaluating and Analyzing Multi-agent Coordination Abilities in Large Language Models
The emergent reasoning and Theory of Mind (ToM) abilities demonstrated by Large Language Models (LLMs) make them promising candidates for developing coordination agents. In this study, we introduce a new LLM-Coordination Benchmark aimed at a detailed analysis of LLMs within the context of Pure Coordination Games, where participating agents need to cooperate for the most gain. This benchmark evaluates LLMs through two distinct tasks: (1) Agentic Coordination, where LLMs act as proactive participants for cooperation in 4 pure coordination games; (2) Coordination Question Answering (QA), where LLMs are prompted to answer 198 multiple-choice questions from the 4 games for evaluation of three key reasoning abilities: Environment Comprehension, ToM Reasoning, and Joint Planning. Furthermore, to enable LLMs for multi-agent coordination, we introduce a Cognitive Architecture for Coordination (CAC) framework that can easily integrate different LLMs as plug-and-play modules for pure coordination games. Our findings indicate that LLM agents equipped with GPT-4-turbo achieve comparable performance to state-of-the-art reinforcement learning methods in games that require commonsense actions based on the environment. Besides, zero-shot coordination experiments reveal that, unlike RL methods, LLM agents are robust to new unseen partners. However, results on Coordination QA show a large room for improvement in the Theory of Mind reasoning and joint planning abilities of LLMs. The analysis also sheds light on how the ability of LLMs to understand their environment and their partner's beliefs and intentions plays a part in their ability to plan for coordination. Our code is available at https://github.com/eric-ai-lab/llm_coordination.
Mining experimental data from Materials Science literature with Large Language Models: an evaluation study
This study is dedicated to assessing the capabilities of large language models (LLMs) such as GPT-3.5-Turbo, GPT-4, and GPT-4-Turbo in extracting structured information from scientific documents in materials science. To this end, we primarily focus on two critical tasks of information extraction: (i) a named entity recognition (NER) of studied materials and physical properties and (ii) a relation extraction (RE) between these entities. Due to the evident lack of datasets within Materials Informatics (MI), we evaluated using SuperMat, based on superconductor research, and MeasEval, a generic measurement evaluation corpus. The performance of LLMs in executing these tasks is benchmarked against traditional models based on the BERT architecture and rule-based approaches (baseline). We introduce a novel methodology for the comparative analysis of intricate material expressions, emphasising the standardisation of chemical formulas to tackle the complexities inherent in materials science information assessment. For NER, LLMs fail to outperform the baseline with zero-shot prompting and exhibit only limited improvement with few-shot prompting. However, a GPT-3.5-Turbo fine-tuned with the appropriate strategy for RE outperforms all models, including the baseline. Without any fine-tuning, GPT-4 and GPT-4-Turbo display remarkable reasoning and relationship extraction capabilities after being provided with merely a couple of examples, surpassing the baseline. Overall, the results suggest that although LLMs demonstrate relevant reasoning skills in connecting concepts, specialised models are currently a better choice for tasks requiring extracting complex domain-specific entities like materials. These insights provide initial guidance applicable to other materials science sub-domains in future work.
Latxa: An Open Language Model and Evaluation Suite for Basque
We introduce Latxa, a family of large language models for Basque ranging from 7 to 70 billion parameters. Latxa is based on Llama 2, which we continue pretraining on a new Basque corpus comprising 4.3M documents and 4.2B tokens. Addressing the scarcity of high-quality benchmarks for Basque, we further introduce 4 multiple choice evaluation datasets: EusProficiency, comprising 5,169 questions from official language proficiency exams; EusReading, comprising 352 reading comprehension questions; EusTrivia, comprising 1,715 trivia questions from 5 knowledge areas; and EusExams, comprising 16,774 questions from public examinations. In our extensive evaluation, Latxa outperforms all previous open models we compare to by a large margin. In addition, it is competitive with GPT-4 Turbo in language proficiency and understanding, despite lagging behind in reading comprehension and knowledge-intensive tasks. Both the Latxa family of models, as well as our new pretraining corpora and evaluation datasets, are publicly available under open licenses at https://github.com/hitz-zentroa/latxa. Our suite enables reproducible research on methods to build LLMs for low-resource languages.
Dissecting Human and LLM Preferences
As a relative quality comparison of model responses, human and Large Language Model (LLM) preferences serve as common alignment goals in model fine-tuning and criteria in evaluation. Yet, these preferences merely reflect broad tendencies, resulting in less explainable and controllable models with potential safety risks. In this work, we dissect the preferences of human and 32 different LLMs to understand their quantitative composition, using annotations from real-world user-model conversations for a fine-grained, scenario-wise analysis. We find that humans are less sensitive to errors, favor responses that support their stances, and show clear dislike when models admit their limits. On the contrary, advanced LLMs like GPT-4-Turbo emphasize correctness, clarity, and harmlessness more. Additionally, LLMs of similar sizes tend to exhibit similar preferences, regardless of their training methods, and fine-tuning for alignment does not significantly alter the preferences of pretrained-only LLMs. Finally, we show that preference-based evaluation can be intentionally manipulated. In both training-free and training-based settings, aligning a model with the preferences of judges boosts scores, while injecting the least preferred properties lowers them. This results in notable score shifts: up to 0.59 on MT-Bench (1-10 scale) and 31.94 on AlpacaEval 2.0 (0-100 scale), highlighting the significant impact of this strategic adaptation. Interactive Demo: https://huggingface.co/spaces/GAIR/Preference-Dissection-Visualization Dataset: https://huggingface.co/datasets/GAIR/preference-dissection Code: https://github.com/GAIR-NLP/Preference-Dissection
Grokked Transformers are Implicit Reasoners: A Mechanistic Journey to the Edge of Generalization
We study whether transformers can learn to implicitly reason over parametric knowledge, a skill that even the most capable language models struggle with. Focusing on two representative reasoning types, composition and comparison, we consistently find that transformers can learn implicit reasoning, but only through grokking, i.e., extended training far beyond overfitting. The levels of generalization also vary across reasoning types: when faced with out-of-distribution examples, transformers fail to systematically generalize for composition but succeed for comparison. We delve into the model's internals throughout training, conducting analytical experiments that reveal: 1) the mechanism behind grokking, such as the formation of the generalizing circuit and its relation to the relative efficiency of generalizing and memorizing circuits, and 2) the connection between systematicity and the configuration of the generalizing circuit. Our findings guide data and training setup to better induce implicit reasoning and suggest potential improvements to the transformer architecture, such as encouraging cross-layer knowledge sharing. Furthermore, we demonstrate that for a challenging reasoning task with a large search space, GPT-4-Turbo and Gemini-1.5-Pro based on non-parametric memory fail badly regardless of prompting styles or retrieval augmentation, while a fully grokked transformer can achieve near-perfect accuracy, showcasing the power of parametric memory for complex reasoning.
ChatQA 2: Bridging the Gap to Proprietary LLMs in Long Context and RAG Capabilities
In this work, we introduce ChatQA 2, a Llama3-based model designed to bridge the gap between open-access LLMs and leading proprietary models (e.g., GPT-4-Turbo) in long-context understanding and retrieval-augmented generation (RAG) capabilities. These two capabilities are essential for LLMs to process large volumes of information that cannot fit into a single prompt and are complementary to each other, depending on the downstream tasks and computational budgets. We present a detailed continued training recipe to extend the context window of Llama3-70B-base from 8K to 128K tokens, along with a three-stage instruction tuning process to enhance the model's instruction-following, RAG performance, and long-context understanding capabilities. Our results demonstrate that the Llama3-ChatQA-2-70B model achieves accuracy comparable to GPT-4-Turbo-2024-0409 on many long-context understanding tasks and surpasses it on the RAG benchmark. Interestingly, we find that the state-of-the-art long-context retriever can alleviate the top-k context fragmentation issue in RAG, further improving RAG-based results for long-context understanding tasks. We also provide extensive comparisons between RAG and long-context solutions using state-of-the-art long-context LLMs.
DevBench: A Comprehensive Benchmark for Software Development
Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of programming, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. To this end, we propose DevBench, a comprehensive benchmark that evaluates LLMs across various stages of the software development lifecycle, including software design, environment setup, implementation, acceptance testing, and unit testing. DevBench features a wide range of programming languages and domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within DevBench. Analyses reveal that models struggle with understanding the complex structures in the repository, managing the compilation process, and grasping advanced programming concepts. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications. Our benchmark is available at https://github.com/open-compass/DevBench
DeepThink: Aligning Language Models with Domain-Specific User Intents
Supervised fine-tuning with synthesized instructions has been a common practice for adapting LLMs to domain-specific QA tasks. However, the synthesized instructions deviate from real user questions and expected answers. This study proposes a novel framework called DeepThink to generate high-quality instructions. DeepThink first generates a few seed questions to mimic actual user questions, simulates conversations to uncover the hidden user needs, and refines the answer by conversational contexts and the retrieved documents for more comprehensive answers. Experiments demonstrate that DeepThink achieves an average performance improvement of 7.92% compared to a GPT-4-turbo+RAG-based assistant on the real user test set in the advertising domain across dimensions such as relevance, completeness, clarity, accuracy, and actionability.
UI-JEPA: Towards Active Perception of User Intent through Onscreen User Activity
Generating user intent from a sequence of user interface (UI) actions is a core challenge in comprehensive UI understanding. Recent advancements in multimodal large language models (MLLMs) have led to substantial progress in this area, but their demands for extensive model parameters, computing power, and high latency makes them impractical for scenarios requiring lightweight, on-device solutions with low latency or heightened privacy. Additionally, the lack of high-quality datasets has hindered the development of such lightweight models. To address these challenges, we propose UI-JEPA, a novel framework that employs masking strategies to learn abstract UI embeddings from unlabeled data through self-supervised learning, combined with an LLM decoder fine-tuned for user intent prediction. We also introduce two new UI-grounded multimodal datasets, "Intent in the Wild" (IIW) and "Intent in the Tame" (IIT), designed for few-shot and zero-shot UI understanding tasks. IIW consists of 1.7K videos across 219 intent categories, while IIT contains 914 videos across 10 categories. We establish the first baselines for these datasets, showing that representations learned using a JEPA-style objective, combined with an LLM decoder, can achieve user intent predictions that match the performance of state-of-the-art large MLLMs, but with significantly reduced annotation and deployment resources. Measured by intent similarity scores, UI-JEPA outperforms GPT-4 Turbo and Claude 3.5 Sonnet by 10.0% and 7.2% respectively, averaged across two datasets. Notably, UI-JEPA accomplishes the performance with a 50.5x reduction in computational cost and a 6.6x improvement in latency in the IIW dataset. These results underscore the effectiveness of UI-JEPA, highlighting its potential for lightweight, high-performance UI understanding.
Analyzing the Effectiveness of Large Language Models on Text-to-SQL Synthesis
This study investigates various approaches to using Large Language Models (LLMs) for Text-to-SQL program synthesis, focusing on the outcomes and insights derived. Employing the popular Text-to-SQL dataset, spider, the goal was to input a natural language question along with the database schema and output the correct SQL SELECT query. The initial approach was to fine-tune a local and open-source model to generate the SELECT query. After QLoRa fine-tuning WizardLM's WizardCoder-15B model on the spider dataset, the execution accuracy for generated queries rose to a high of 61%. With the second approach, using the fine-tuned gpt-3.5-turbo-16k (Few-shot) + gpt-4-turbo (Zero-shot error correction), the execution accuracy reached a high of 82.1%. Of all the incorrect queries, most can be categorized into a seven different categories of what went wrong: selecting the wrong columns or wrong order of columns, grouping by the wrong column, predicting the wrong values in conditionals, using different aggregates than the ground truth, extra or too few JOIN clauses, inconsistencies in the Spider dataset, and lastly completely incorrect query structure. Most if not all of the queries fall into these categories and it is insightful to understanding where the faults still lie with LLM program synthesis and where they can be improved.
Can Language Models Evaluate Human Written Text? Case Study on Korean Student Writing for Education
Large language model (LLM)-based evaluation pipelines have demonstrated their capability to robustly evaluate machine-generated text. Extending this methodology to assess human-written text could significantly benefit educational settings by providing direct feedback to enhance writing skills, although this application is not straightforward. In this paper, we investigate whether LLMs can effectively assess human-written text for educational purposes. We collected 100 texts from 32 Korean students across 15 types of writing and employed GPT-4-Turbo to evaluate them using grammaticality, fluency, coherence, consistency, and relevance as criteria. Our analyses indicate that LLM evaluators can reliably assess grammaticality and fluency, as well as more objective types of writing, though they struggle with other criteria and types of writing. We publicly release our dataset and feedback.
CATT: Character-based Arabic Tashkeel Transformer
Tashkeel, or Arabic Text Diacritization (ATD), greatly enhances the comprehension of Arabic text by removing ambiguity and minimizing the risk of misinterpretations caused by its absence. It plays a crucial role in improving Arabic text processing, particularly in applications such as text-to-speech and machine translation. This paper introduces a new approach to training ATD models. First, we finetuned two transformers, encoder-only and encoder-decoder, that were initialized from a pretrained character-based BERT. Then, we applied the Noisy-Student approach to boost the performance of the best model. We evaluated our models alongside 11 commercial and open-source models using two manually labeled benchmark datasets: WikiNews and our CATT dataset. Our findings show that our top model surpasses all evaluated models by relative Diacritic Error Rates (DERs) of 30.83\% and 35.21\% on WikiNews and CATT, respectively, achieving state-of-the-art in ATD. In addition, we show that our model outperforms GPT-4-turbo on CATT dataset by a relative DER of 9.36\%. We open-source our CATT models and benchmark dataset for the research communityhttps://github.com/abjadai/catt.
Reverse Image Retrieval Cues Parametric Memory in Multimodal LLMs
Despite impressive advances in recent multimodal large language models (MLLMs), state-of-the-art models such as from the GPT-4 suite still struggle with knowledge-intensive tasks. To address this, we consider Reverse Image Retrieval (RIR) augmented generation, a simple yet effective strategy to augment MLLMs with web-scale reverse image search results. RIR robustly improves knowledge-intensive visual question answering (VQA) of GPT-4V by 37-43%, GPT-4 Turbo by 25-27%, and GPT-4o by 18-20% in terms of open-ended VQA evaluation metrics. To our surprise, we discover that RIR helps the model to better access its own world knowledge. Concretely, our experiments suggest that RIR augmentation helps by providing further visual and textual cues without necessarily containing the direct answer to a query. In addition, we elucidate cases in which RIR can hurt performance and conduct a human evaluation. Finally, we find that the overall advantage of using RIR makes it difficult for an agent that can choose to use RIR to perform better than an approach where RIR is the default setting.
AutoCoder: Enhancing Code Large Language Model with \textsc{AIEV-Instruct}
We introduce AutoCoder, the first Large Language Model to surpass GPT-4 Turbo (April 2024) and GPT-4o in pass@1 on the Human Eval benchmark test (90.9% vs. 90.2%). In addition, AutoCoder offers a more versatile code interpreter compared to GPT-4 Turbo and GPT-4o. It's code interpreter can install external packages instead of limiting to built-in packages. AutoCoder's training data is a multi-turn dialogue dataset created by a system combining agent interaction and external code execution verification, a method we term \textsc{AIEV-Instruct} (Instruction Tuning with Agent-Interaction and Execution-Verified). Compared to previous large-scale code dataset generation methods, AIEV-Instruct reduces dependence on proprietary large models and provides execution-validated code dataset. The code and the demo video is available in https://github.com/bin123apple/AutoCoder.
Automating Turkish Educational Quiz Generation Using Large Language Models
Crafting quizzes from educational content is a pivotal activity that benefits both teachers and students by reinforcing learning and evaluating understanding. In this study, we introduce a novel approach to generate quizzes from Turkish educational texts, marking a pioneering endeavor in educational technology specifically tailored to the Turkish educational context. We present a specialized dataset, named the Turkish-Quiz-Instruct, comprising an extensive collection of Turkish educational texts accompanied by multiple-choice and short-answer quizzes. This research leverages the capabilities of Large Language Models (LLMs), including GPT-4-Turbo, GPT-3.5-Turbo, Llama-2-7b-chat-hf, and Llama-2-13b-chat-hf, to automatically generate quiz questions and answers from the Turkish educational content. Our work delineates the methodology for employing these LLMs in the context of Turkish educational material, thereby opening new avenues for automated Turkish quiz generation. The study not only demonstrates the efficacy of using such models for generating coherent and relevant quiz content but also sets a precedent for future research in the domain of automated educational content creation for languages other than English. The Turkish-Quiz-Instruct dataset is introduced as a valuable resource for researchers and practitioners aiming to explore the boundaries of educational technology and language-specific applications of LLMs in Turkish. By addressing the challenges of quiz generation in a non-English context specifically Turkish, this study contributes significantly to the field of Turkish educational technology, providing insights into the potential of leveraging LLMs for educational purposes across diverse linguistic landscapes.
Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs
Recent works have showcased the ability of LLMs to embody diverse personas in their responses, exemplified by prompts like 'You are Yoda. Explain the Theory of Relativity.' While this ability allows personalization of LLMs and enables human behavior simulation, its effect on LLMs' capabilities remains unclear. To fill this gap, we present the first extensive study of the unintended side-effects of persona assignment on the ability of LLMs to perform basic reasoning tasks. Our study covers 24 reasoning datasets, 4 LLMs, and 19 diverse personas (e.g. an Asian person) spanning 5 socio-demographic groups. Our experiments unveil that LLMs harbor deep rooted bias against various socio-demographics underneath a veneer of fairness. While they overtly reject stereotypes when explicitly asked ('Are Black people less skilled at mathematics?'), they manifest stereotypical and erroneous presumptions when asked to answer questions while adopting a persona. These can be observed as abstentions in responses, e.g., 'As a Black person, I can't answer this question as it requires math knowledge', and generally result in a substantial performance drop. Our experiments with ChatGPT-3.5 show that this bias is ubiquitous - 80% of our personas demonstrate bias; it is significant - some datasets show performance drops of 70%+; and can be especially harmful for certain groups - some personas suffer statistically significant drops on 80%+ of the datasets. Overall, all 4 LLMs exhibit this bias to varying extents, with GPT-4-Turbo showing the least but still a problematic amount of bias (evident in 42% of the personas). Further analysis shows that these persona-induced errors can be hard-to-discern and hard-to-avoid. Our findings serve as a cautionary tale that the practice of assigning personas to LLMs - a trend on the rise - can surface their deep-rooted biases and have unforeseeable and detrimental side-effects.
From Arabic Text to Puzzles: LLM-Driven Development of Arabic Educational Crosswords
We present an Arabic crossword puzzle generator from a given text that utilizes advanced language models such as GPT-4-Turbo, GPT-3.5-Turbo and Llama3-8B-Instruct, specifically developed for educational purposes, this innovative generator leverages a meticulously compiled dataset named Arabic-Clue-Instruct with over 50,000 entries encompassing text, answers, clues, and categories. This dataset is intricately designed to aid in the generation of pertinent clues linked to specific texts and keywords within defined categories. This project addresses the scarcity of advanced educational tools tailored for the Arabic language, promoting enhanced language learning and cognitive development. By providing a culturally and linguistically relevant tool, our objective is to make learning more engaging and effective through gamification and interactivity. Integrating state-of-the-art artificial intelligence with contemporary learning methodologies, this tool can generate crossword puzzles from any given educational text, thereby facilitating an interactive and enjoyable learning experience. This tool not only advances educational paradigms but also sets a new standard in interactive and cognitive learning technologies. The model and dataset are publicly available.
LLM4DS: Evaluating Large Language Models for Data Science Code Generation
The adoption of Large Language Models (LLMs) for code generation in data science offers substantial potential for enhancing tasks such as data manipulation, statistical analysis, and visualization. However, the effectiveness of these models in the data science domain remains underexplored. This paper presents a controlled experiment that empirically assesses the performance of four leading LLM-based AI assistants-Microsoft Copilot (GPT-4 Turbo), ChatGPT (o1-preview), Claude (3.5 Sonnet), and Perplexity Labs (Llama-3.1-70b-instruct)-on a diverse set of data science coding challenges sourced from the Stratacratch platform. Using the Goal-Question-Metric (GQM) approach, we evaluated each model's effectiveness across task types (Analytical, Algorithm, Visualization) and varying difficulty levels. Our findings reveal that all models exceeded a 50% baseline success rate, confirming their capability beyond random chance. Notably, only ChatGPT and Claude achieved success rates significantly above a 60% baseline, though none of the models reached a 70% threshold, indicating limitations in higher standards. ChatGPT demonstrated consistent performance across varying difficulty levels, while Claude's success rate fluctuated with task complexity. Hypothesis testing indicates that task type does not significantly impact success rate overall. For analytical tasks, efficiency analysis shows no significant differences in execution times, though ChatGPT tended to be slower and less predictable despite high success rates. This study provides a structured, empirical evaluation of LLMs in data science, delivering insights that support informed model selection tailored to specific task demands. Our findings establish a framework for future AI assessments, emphasizing the value of rigorous evaluation beyond basic accuracy measures.
Revisiting VerilogEval: Newer LLMs, In-Context Learning, and Specification-to-RTL Tasks
The application of large-language models (LLMs) to digital hardware code generation is an emerging field. Most LLMs are primarily trained on natural language and software code. Hardware code, such as Verilog, represents only a small portion of the training data and few hardware benchmarks exist. To address this gap, the open-source VerilogEval benchmark was released in 2023, providing a consistent evaluation framework for LLMs on code completion tasks. It was tested on state-of-the-art models at the time including GPT-4. However, VerilogEval and other Verilog generation benchmarks lack failure analysis and, in present form, are not conducive to exploring prompting techniques. Also, since VerilogEval's release, both commercial and open-source models have seen continued development. In this work, we evaluate new commercial and open-source models of varying sizes against an improved VerilogEval benchmark suite. We enhance VerilogEval's infrastructure and dataset by automatically classifying failures, introduce new prompts for supporting in-context learning (ICL) examples, and extend the supported tasks to specification-to-RTL translation. We find a measurable improvement in commercial state-of-the-art models, with GPT-4 Turbo achieving a 59% pass rate on spec-to-RTL tasks. We also study the performance of open-source and domain-specific models that have emerged, and demonstrate that models can benefit substantially from ICL. We find that recently-released Llama 3.1 405B achieves a pass rate of 58%, effectively matching that of GPT-4 Turbo, and that the much smaller domain-specific RTL-Coder 6.7B models achieve an impressive 37% pass rate. However, prompt engineering is key to achieving good pass rates, and varies widely with model and task. A benchmark infrastructure that allows for prompt engineering and failure analysis is key to continued model development and deployment.
A Human-Like Reasoning Framework for Multi-Phases Planning Task with Large Language Models
Recent studies have highlighted their proficiency in some simple tasks like writing and coding through various reasoning strategies. However, LLM agents still struggle with tasks that require comprehensive planning, a process that challenges current models and remains a critical research issue. In this study, we concentrate on travel planning, a Multi-Phases planning problem, that involves multiple interconnected stages, such as outlining, information gathering, and planning, often characterized by the need to manage various constraints and uncertainties. Existing reasoning approaches have struggled to effectively address this complex task. Our research aims to address this challenge by developing a human-like planning framework for LLM agents, i.e., guiding the LLM agent to simulate various steps that humans take when solving Multi-Phases problems. Specifically, we implement several strategies to enable LLM agents to generate a coherent outline for each travel query, mirroring human planning patterns. Additionally, we integrate Strategy Block and Knowledge Block into our framework: Strategy Block facilitates information collection, while Knowledge Block provides essential information for detailed planning. Through our extensive experiments, we demonstrate that our framework significantly improves the planning capabilities of LLM agents, enabling them to tackle the travel planning task with improved efficiency and effectiveness. Our experimental results showcase the exceptional performance of the proposed framework; when combined with GPT-4-Turbo, it attains 10times the performance gains in comparison to the baseline framework deployed on GPT-4-Turbo.
Tailoring Vaccine Messaging with Common-Ground Opinions
One way to personalize chatbot interactions is by establishing common ground with the intended reader. A domain where establishing mutual understanding could be particularly impactful is vaccine concerns and misinformation. Vaccine interventions are forms of messaging which aim to answer concerns expressed about vaccination. Tailoring responses in this domain is difficult, since opinions often have seemingly little ideological overlap. We define the task of tailoring vaccine interventions to a Common-Ground Opinion (CGO). Tailoring responses to a CGO involves meaningfully improving the answer by relating it to an opinion or belief the reader holds. In this paper we introduce TAILOR-CGO, a dataset for evaluating how well responses are tailored to provided CGOs. We benchmark several major LLMs on this task; finding GPT-4-Turbo performs significantly better than others. We also build automatic evaluation metrics, including an efficient and accurate BERT model that outperforms finetuned LLMs, investigate how to successfully tailor vaccine messaging to CGOs, and provide actionable recommendations from this investigation. Code and model weights: https://github.com/rickardstureborg/tailor-cgo Dataset: https://huggingface.co/datasets/DukeNLP/tailor-cgo
LLaMoCo: Instruction Tuning of Large Language Models for Optimization Code Generation
Recent research explores optimization using large language models (LLMs) by either iteratively seeking next-step solutions from LLMs or directly prompting LLMs for an optimizer. However, these approaches exhibit inherent limitations, including low operational efficiency, high sensitivity to prompt design, and a lack of domain-specific knowledge. We introduce LLaMoCo, the first instruction-tuning framework designed to adapt LLMs for solving optimization problems in a code-to-code manner. Specifically, we establish a comprehensive instruction set containing well-described problem prompts and effective optimization codes. We then develop a novel two-phase learning strategy that incorporates a contrastive learning-based warm-up procedure before the instruction-tuning phase to enhance the convergence behavior during model fine-tuning. The experiment results demonstrate that a CodeGen (350M) model fine-tuned by our LLaMoCo achieves superior optimization performance compared to GPT-4 Turbo and the other competitors across both synthetic and realistic problem sets. The fine-tuned model and the usage instructions are available at https://anonymous.4open.science/r/LLaMoCo-722A.
Patched MOA: optimizing inference for diverse software development tasks
This paper introduces Patched MOA (Mixture of Agents), an inference optimization technique that significantly enhances the performance of large language models (LLMs) across diverse software development tasks. We evaluate three inference optimization algorithms - Best of N, Mixture of Agents, and Monte Carlo Tree Search and demonstrate that Patched MOA can boost the performance of smaller models to surpass that of larger, more expensive models. Notably, our approach improves the gpt-4o-mini model's performance on the Arena-Hard-Auto benchmark by 15.52%, outperforming gpt-4-turbo at a fraction of the cost. We also apply Patched MOA to various software development workflows, showing consistent improvements in task completion rates. Our method is model-agnostic, transparent to end-users, and can be easily integrated into existing LLM pipelines. This work contributes to the growing field of LLM optimization, offering a cost-effective solution for enhancing model performance without the need for fine-tuning or larger models.
WHODUNIT: Evaluation benchmark for culprit detection in mystery stories
We present a novel data set, WhoDunIt, to assess the deductive reasoning capabilities of large language models (LLM) within narrative contexts. Constructed from open domain mystery novels and short stories, the dataset challenges LLMs to identify the perpetrator after reading and comprehending the story. To evaluate model robustness, we apply a range of character-level name augmentations, including original names, name swaps, and substitutions with well-known real and/or fictional entities from popular discourse. We further use various prompting styles to investigate the influence of prompting on deductive reasoning accuracy. We conduct evaluation study with state-of-the-art models, specifically GPT-4o, GPT-4-turbo, and GPT-4o-mini, evaluated through multiple trials with majority response selection to ensure reliability. The results demonstrate that while LLMs perform reliably on unaltered texts, accuracy diminishes with certain name substitutions, particularly those with wide recognition. This dataset is publicly available here.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
In this report, we present the latest model of the Gemini family, Gemini 1.5 Pro, a highly compute-efficient multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. Gemini 1.5 Pro achieves near-perfect recall on long-context retrieval tasks across modalities, improves the state-of-the-art in long-document QA, long-video QA and long-context ASR, and matches or surpasses Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5 Pro's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 2.1 (200k) and GPT-4 Turbo (128k). Finally, we highlight surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.
Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences
This paper studies post-training large language models (LLMs) using preference feedback from a powerful oracle to help a model iteratively improve over itself. The typical approach for post-training LLMs involves Reinforcement Learning from Human Feedback (RLHF), which traditionally separates reward learning and subsequent policy optimization. However, such a reward maximization approach is limited by the nature of "point-wise" rewards (such as Bradley-Terry model), which fails to express complex intransitive or cyclic preference relations. While advances on RLHF show reward learning and policy optimization can be merged into a single contrastive objective for stability, they yet still remain tethered to the reward maximization framework. Recently, a new wave of research sidesteps the reward maximization presumptions in favor of directly optimizing over "pair-wise" or general preferences. In this paper, we introduce Direct Nash Optimization (DNO), a provable and scalable algorithm that marries the simplicity and stability of contrastive learning with theoretical generality from optimizing general preferences. Because DNO is a batched on-policy algorithm using a regression-based objective, its implementation is straightforward and efficient. Moreover, DNO enjoys monotonic improvement across iterations that help it improve even over a strong teacher (such as GPT-4). In our experiments, a resulting 7B parameter Orca-2.5 model aligned by DNO achieves the state-of-the-art win-rate against GPT-4-Turbo of 33% on AlpacaEval 2.0 (even after controlling for response length), an absolute gain of 26% (7% to 33%) over the initializing model. It outperforms models with far more parameters, including Mistral Large, Self-Rewarding LM (70B parameters), and older versions of GPT-4.
Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch
The availability of high-quality data is one of the most important factors in improving the reasoning capability of LLMs. Existing works have demonstrated the effectiveness of creating more instruction data from seed questions or knowledge bases. Recent research indicates that continually scaling up data synthesis from strong models (e.g., GPT-4) can further elicit reasoning performance. Though promising, the open-sourced community still lacks high-quality data at scale and scalable data synthesis methods with affordable costs. To address this, we introduce ScaleQuest, a scalable and novel data synthesis method that utilizes "small-size" (e.g., 7B) open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints. With the efficient ScaleQuest, we automatically constructed a mathematical reasoning dataset consisting of 1 million problem-solution pairs, which are more effective than existing open-sourced datasets. It can universally increase the performance of mainstream open-source models (i.e., Mistral, Llama3, DeepSeekMath, and Qwen2-Math) by achieving 29.2% to 46.4% gains on MATH. Notably, simply fine-tuning the Qwen2-Math-7B-Base model with our dataset can even surpass Qwen2-Math-7B-Instruct, a strong and well-aligned model on closed-source data, and proprietary models such as GPT-4-Turbo and Claude-3.5 Sonnet.
Bootstrapping Language Models with DPO Implicit Rewards
Human alignment in large language models (LLMs) is an active area of research. A recent groundbreaking work, direct preference optimization (DPO), has greatly simplified the process from past work in reinforcement learning from human feedback (RLHF) by bypassing the reward learning stage in RLHF. DPO, after training, provides an implicit reward model. In this work, we make a novel observation that this implicit reward model can by itself be used in a bootstrapping fashion to further align the LLM. Our approach is to use the rewards from a current LLM model to construct a preference dataset, which is then used in subsequent DPO rounds. We incorporate refinements that debias the length of the responses and improve the quality of the preference dataset to further improve our approach. Our approach, named self-alignment with DPO ImpliCit rEwards (DICE), shows great improvements in alignment and achieves superior performance than Gemini Pro on AlpacaEval 2, reaching 27.55% length-controlled win rate against GPT-4 Turbo, but with only 8B parameters and no external feedback. Our code is available at https://github.com/sail-sg/dice.
CantTalkAboutThis: Aligning Language Models to Stay on Topic in Dialogues
Recent advancements in instruction-tuning datasets have predominantly focused on specific tasks like mathematical or logical reasoning. There has been a notable gap in data designed for aligning language models to maintain topic relevance in conversations - a critical aspect for deploying chatbots to production. We introduce the CantTalkAboutThis dataset to help language models remain focused on the subject at hand during task-oriented interactions. It consists of synthetic dialogues on a wide range of conversation topics from different domains. These dialogues are interspersed with distractor turns that intentionally divert the chatbot from the predefined topic. Fine-tuning language models on this dataset helps make them resilient to deviating from the role assigned and improves their ability to maintain topical coherence compared to general-purpose instruction-tuned LLMs like GPT-4-turbo and Mixtral-Instruct. Additionally, preliminary observations suggest that training models on this dataset also enhance their performance on fine-grained instruction following tasks.
The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism
Current evaluations of large language models (LLMs) often overlook non-determinism, typically focusing on a single output per example. This limits our understanding of LLM performance variability in real-world applications. Our study addresses this issue by exploring key questions about the performance differences between greedy decoding and sampling, identifying benchmarks' consistency regarding non-determinism, and examining unique model behaviors. Through extensive experiments, we observe that greedy decoding generally outperforms sampling methods for most evaluated tasks. We also observe consistent performance across different LLM sizes and alignment methods, noting that alignment can reduce sampling variance. Moreover, our best-of-N sampling approach demonstrates that smaller LLMs can match or surpass larger models such as GPT-4-Turbo, highlighting the untapped potential of smaller LLMs. This research shows the importance of considering non-determinism in LLM evaluations and provides insights for future LLM development and evaluation.
SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models
Instruction-following is a fundamental capability of language models, requiring the model to recognize even the most subtle requirements in the instructions and accurately reflect them in its output. Such an ability is well-suited for and often optimized by preference learning. However, existing methods often directly sample multiple independent responses from the model when creating preference pairs. Such practice can introduce content variations irrelevant to whether the instruction is precisely followed (e.g., different expressions about the same semantic), interfering with the goal of teaching models to recognize the key differences that lead to improved instruction following. In light of this, we introduce SPaR, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs free from distractions. By playing against itself, an LLM employs a tree-search strategy to refine its previous responses with respect to the instruction while minimizing unnecessary variations. Our experiments show that a LLaMA3-8B model, trained over three iterations guided by SPaR, surpasses GPT-4-Turbo on the IFEval benchmark without losing general capabilities. Furthermore, SPaR demonstrates promising scalability and transferability, greatly enhancing models like GLM-4-9B and LLaMA3-70B. We also identify how inference scaling in tree search would impact model performance. Our code and data are publicly available at https://github.com/thu-coai/SPaR.
WPO: Enhancing RLHF with Weighted Preference Optimization
Reinforcement learning from human feedback (RLHF) is a promising solution to align large language models (LLMs) more closely with human values. Off-policy preference optimization, where the preference data is obtained from other models, is widely adopted due to its cost efficiency and scalability. However, off-policy preference optimization often suffers from a distributional gap between the policy used for data collection and the target policy, leading to suboptimal optimization. In this paper, we propose a novel strategy to mitigate this problem by simulating on-policy learning with off-policy preference data. Our Weighted Preference Optimization (WPO) method adapts off-policy data to resemble on-policy data more closely by reweighting preference pairs according to their probability under the current policy. This method not only addresses the distributional gap problem but also enhances the optimization process without incurring additional costs. We validate our method on instruction following benchmarks including Alpaca Eval 2 and MT-bench. WPO not only outperforms Direct Preference Optimization (DPO) by up to 5.6% on Alpaca Eval 2 but also establishes a remarkable length-controlled winning rate against GPT-4-turbo of 48.6% based on Llama-3-8B-Instruct, making it the strongest 8B model on the leaderboard. We will release the code and models at https://github.com/wzhouad/WPO.
DevEval: A Manually-Annotated Code Generation Benchmark Aligned with Real-World Code Repositories
How to evaluate the coding abilities of Large Language Models (LLMs) remains an open question. We find that existing benchmarks are poorly aligned with real-world code repositories and are insufficient to evaluate the coding abilities of LLMs. To address the knowledge gap, we propose a new benchmark named DevEval, which has three advances. (1) DevEval aligns with real-world repositories in multiple dimensions, e.g., code distributions and dependency distributions. (2) DevEval is annotated by 13 developers and contains comprehensive annotations (e.g., requirements, original repositories, reference code, and reference dependencies). (3) DevEval comprises 1,874 testing samples from 117 repositories, covering 10 popular domains (e.g., Internet, Database). Based on DevEval, we propose repository-level code generation and evaluate 8 popular LLMs on DevEval (e.g., gpt-4, gpt-3.5, StarCoder 2, DeepSeek Coder, CodeLLaMa). Our experiments reveal these LLMs' coding abilities in real-world code repositories. For example, in our experiments, the highest Pass@1 of gpt-4-turbo is only 53.04%. We also analyze LLMs' failed cases and summarize their shortcomings. We hope DevEval can facilitate the development of LLMs in real code repositories. DevEval, prompts, and LLMs' predictions have been released.
RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction of ranking data into the training blend, and outperform existing expert ranking models, including the same LLM exclusively fine-tuned on a large amount of ranking data. For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks. Specifically, our Llama3-RankRAG significantly outperforms Llama3-ChatQA-1.5 and GPT-4 models on nine knowledge-intensive benchmarks. In addition, it also performs comparably to GPT-4 on five RAG benchmarks in the biomedical domain without instruction fine-tuning on biomedical data, demonstrating its superb capability for generalization to new domains.
How do you know that? Teaching Generative Language Models to Reference Answers to Biomedical Questions
Large language models (LLMs) have recently become the leading source of answers for users' questions online. Despite their ability to offer eloquent answers, their accuracy and reliability can pose a significant challenge. This is especially true for sensitive domains such as biomedicine, where there is a higher need for factually correct answers. This paper introduces a biomedical retrieval-augmented generation (RAG) system designed to enhance the reliability of generated responses. The system is based on a fine-tuned LLM for the referenced question-answering, where retrieved relevant abstracts from PubMed are passed to LLM's context as input through a prompt. Its output is an answer based on PubMed abstracts, where each statement is referenced accordingly, allowing the users to verify the answer. Our retrieval system achieves an absolute improvement of 23% compared to the PubMed search engine. Based on the manual evaluation on a small sample, our fine-tuned LLM component achieves comparable results to GPT-4 Turbo in referencing relevant abstracts. We make the dataset used to fine-tune the models and the fine-tuned models based on Mistral-7B-instruct-v0.1 and v0.2 publicly available.
IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations
Current foundation models exhibit impressive capabilities when prompted either with text only or with both image and text inputs. But do their capabilities change depending on the input modality? In this work, we propose IsoBench, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple isomorphic representations of inputs, such as visual, textual, and mathematical presentations. IsoBench provides fine-grained feedback to diagnose performance gaps caused by the form of the representation. Across various foundation models, we observe that on the same problem, models have a consistent preference towards textual representations. Most prominently, when evaluated on all IsoBench problems, Claude-3 Opus performs 28.7 points worse when provided with images instead of text; similarly, GPT-4 Turbo is 18.7 points worse and Gemini Pro is 14.9 points worse. Finally, we present two prompting techniques, IsoCombination and IsoScratchPad, which improve model performance by considering combinations of, and translations between, different input representations.
Preference Optimization for Reasoning with Pseudo Feedback
Preference optimization techniques, such as Direct Preference Optimization (DPO), are frequently employed to enhance the reasoning capabilities of large language models (LLMs) in domains like mathematical reasoning and coding, typically following supervised fine-tuning. These methods rely on high-quality labels for reasoning tasks to generate preference pairs; however, the availability of reasoning datasets with human-verified labels is limited. In this study, we introduce a novel approach to generate pseudo feedback for reasoning tasks by framing the labeling of solutions to reason problems as an evaluation against associated test cases. We explore two forms of pseudo feedback based on test cases: one generated by frontier LLMs and the other by extending self-consistency to multi-test-case. We conduct experiments on both mathematical reasoning and coding tasks using pseudo feedback for preference optimization, and observe improvements across both tasks. Specifically, using Mathstral-7B as our base model, we improve MATH results from 58.3 to 68.6, surpassing both NuminaMath-72B and GPT-4-Turbo-1106-preview. In GSM8K and College Math, our scores increase from 85.6 to 90.3 and from 34.3 to 42.3, respectively. Building on Deepseek-coder-7B-v1.5, we achieve a score of 24.6 on LiveCodeBench (from 21.1), surpassing Claude-3-Haiku.
Non-instructional Fine-tuning: Enabling Instruction-Following Capabilities in Pre-trained Language Models without Instruction-Following Data
Instruction fine-tuning is crucial for today's large language models (LLMs) to learn to follow instructions and align with human preferences. Conventionally, supervised data, including the instruction and the correct response, is required for instruction fine-tuning. To obtain such data, some researchers prompted well-trained models like GPT-4 to generate instructions and correct responses. In this paper, we propose a novel approach that uses the first half of a random text from OpenWebText as the instruction and GPT-3.5-turbo or GPT-4-turbo to complete the text as the response. Despite the data being "non-instructional", we found that pre-trained LLMs fine-tuned on this data can gain instruction-following capabilities. This observation is verified by fine-tuning several well-known pre-trained LLMs (e.g., LLaMA-2-7B, LLaMA-3-8B, LLaMA-3-70B, Mistral-7B-v0.1). The "non-instructional data" also improved some models that underwent supervised fine-tuning and human preference alignment. Our LLaMA-3-70B-Instruct fine-tuned through "non-instructional data" is comparable with LLaMA-3.1-70B-Instruct on the Arena Hard leaderboard. We analyzed the "non-instructional data" and ensured it is devoid of content related to instruction fine-tuning. Our findings will inspire further investigation into how to develop instruction-following capabilities without explicit instruction-related data.
CLR-Bench: Evaluating Large Language Models in College-level Reasoning
Large language models (LLMs) have demonstrated their remarkable performance across various language understanding tasks. While emerging benchmarks have been proposed to evaluate LLMs in various domains such as mathematics and computer science, they merely measure the accuracy in terms of the final prediction on multi-choice questions. However, it remains insufficient to verify the essential understanding of LLMs given a chosen choice. To fill this gap, we present CLR-Bench to comprehensively evaluate the LLMs in complex college-level reasoning. Specifically, (i) we prioritize 16 challenging college disciplines in computer science and artificial intelligence. The dataset contains 5 types of questions, while each question is associated with detailed explanations from experts. (ii) To quantify a fair evaluation of LLMs' reasoning ability, we formalize the criteria with two novel metrics. QrightarrowA is utilized to measure the performance of direct answer prediction, and QrightarrowAR effectively considers the joint ability to answer the question and provide rationale simultaneously. Extensive experiments are conducted with 40 LLMs over 1,018 discipline-specific questions. The results demonstrate the key insights that LLMs, even the best closed-source LLM, i.e., GPT-4 turbo, tend to `guess' the college-level answers. It shows a dramatic decrease in accuracy from 63.31% QrightarrowA to 39.00% QrightarrowAR, indicating an unsatisfactory reasoning ability.
DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life
As we increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of the users. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma includes two possible actions and with each action, the affected parties and human values invoked. Based on these dilemmas, we consolidated a set of human values across everyday topics e.g., interpersonal relationships, workplace, and environmental issues. We evaluated LLMs on these dilemmas to determine what action they will take and the values represented by these actions. Then, we analyzed these values through the lens of five popular theories inspired by sociology, psychology and philosophy. These theories are: World Value Survey, Moral Foundation Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik Wheel of Emotion. We find that LLMs are most aligned with the self-expression over survival values in terms of World Value Survey, care over loyalty in Moral Foundation Theory. Interestingly, we find large preferences differences in models for some core values such as truthfulness e.g., Mixtral-8x7B model tends to neglect it by 9.7% while GPT-4-turbo model tends to select it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their released principles reflect their actual value prioritization when facing nuanced moral reasoning in daily-life settings. We find that end users cannot effectively steer such prioritization using system prompts.
Teaching Language Models to Self-Improve by Learning from Language Feedback
Aligning Large Language Models (LLMs) with human intentions and values is crucial yet challenging. Current methods primarily rely on human preferences, which are costly and insufficient in capturing nuanced feedback expressed in natural language. In this paper, we present Self-Refinement Tuning (SRT), a method that leverages model feedback for alignment, thereby reducing reliance on human annotations. SRT uses a base language model (e.g., Tulu2) to generate initial responses, which are critiqued and refined by a more advanced model (e.g., GPT-4-Turbo). This process enables the base model to self-evaluate and improve its outputs, facilitating continuous learning. SRT further optimizes the model by learning from its self-generated feedback and refinements, creating a feedback loop that promotes model improvement. Our empirical evaluations demonstrate that SRT significantly outperforms strong baselines across diverse tasks and model sizes. When applied to a 70B parameter model, SRT increases the win rate from 9.6\% to 25.8\% on the AlpacaEval 2.0 benchmark, surpassing well-established systems such as GPT-4-0314, Claude 2, and Gemini. Our analysis highlights the crucial role of language feedback in the success of SRT, suggesting potential for further exploration in this direction.
AutoManual: Constructing Instruction Manuals by LLM Agents via Interactive Environmental Learning
Large Language Models (LLM) based agents have shown promise in autonomously completing tasks across various domains, e.g., robotics, games, and web navigation. However, these agents typically require elaborate design and expert prompts to solve tasks in specific domains, which limits their adaptability. We introduce AutoManual, a framework enabling LLM agents to autonomously build their understanding through interaction and adapt to new environments. AutoManual categorizes environmental knowledge into diverse rules and optimizes them in an online fashion by two agents: 1) The Planner codes actionable plans based on current rules for interacting with the environment. 2) The Builder updates the rules through a well-structured rule system that facilitates online rule management and essential detail retention. To mitigate hallucinations in managing rules, we introduce a *case-conditioned prompting* strategy for the Builder. Finally, the Formulator agent compiles these rules into a comprehensive manual. The self-generated manual can not only improve the adaptability but also guide the planning of smaller LLMs while being human-readable. Given only one simple demonstration, AutoManual significantly improves task success rates, achieving 97.4\% with GPT-4-turbo and 86.2\% with GPT-3.5-turbo on ALFWorld benchmark tasks. The code is available at https://github.com/minghchen/automanual.
Cleared for Takeoff? Compositional & Conditional Reasoning may be the Achilles Heel to (Flight-Booking) Language Agents
The rapid progress of large language models (LLMs) has seen them excel and frequently surpass human performance on standard benchmarks. This has enabled many downstream applications, such as LLM agents, to rely on their sophisticated reasoning to navigate complex task requirements. However, LLMs are known to unexpectedly falter in simple tasks and under seemingly straightforward circumstances - underscoring the need for better and more diverse evaluation setups to measure their true capabilities. To this end, we choose to study compositional and conditional reasoning, two cornerstones of human cognition, and introduce GroundCocoa - a lexically diverse benchmark connecting these reasoning skills to the real-world problem of flight booking. Our task involves aligning detailed user preferences with available flight options presented in a multiple-choice format. Results indicate a significant disparity in performance among current state-of-the-art LLMs with even the best performing model, GPT-4 Turbo, not exceeding 67% accuracy despite advanced prompting techniques.
Can LLM Generate Culturally Relevant Commonsense QA Data? Case Study in Indonesian and Sundanese
Large Language Models (LLMs) are increasingly being used to generate synthetic data for training and evaluating models. However, it is unclear whether they can generate a good quality of question answering (QA) dataset that incorporates knowledge and cultural nuance embedded in a language, especially for low-resource languages. In this study, we investigate the effectiveness of using LLMs in generating culturally relevant commonsense QA datasets for Indonesian and Sundanese languages. To do so, we create datasets for these languages using various methods involving both LLMs and human annotators, resulting in ~4.5K questions per language (~9K in total), making our dataset the largest of its kind. Our experiments show that automatic data adaptation from an existing English dataset is less effective for Sundanese. Interestingly, using the direct generation method on the target language, GPT-4 Turbo can generate questions with adequate general knowledge in both languages, albeit not as culturally 'deep' as humans. We also observe a higher occurrence of fluency errors in the Sundanese dataset, highlighting the discrepancy between medium- and lower-resource languages.
MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation
A central aspect of machine learning research is experimentation, the process of designing and running experiments, analyzing the results, and iterating towards some positive outcome (e.g., improving accuracy). Could agents driven by powerful language models perform machine learning experimentation effectively? To answer this question, we introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM. For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs. We then construct an agent that can perform ML experimentation based on ReAct framework. We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate. It can build compelling ML models over many tasks in MLAgentBench with 37.5% average success rate. Our agents also display highly interpretable plans and actions. However, the success rates vary considerably; they span from 100% on well-established older datasets to as low as 0% on recent Kaggle challenges created potentially after the underlying LM was trained. Finally, we identify several key challenges for LM-based agents such as long-term planning and reducing hallucination. Our code is released at https://github.com/snap-stanford/MLAgentBench.
WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild
We introduce WildBench, an automated evaluation framework designed to benchmark large language models (LLMs) using challenging, real-world user queries. WildBench consists of 1,024 tasks carefully selected from over one million human-chatbot conversation logs. For automated evaluation with WildBench, we have developed two metrics, WB-Reward and WB-Score, which are computable using advanced LLMs such as GPT-4-turbo. WildBench evaluation uses task-specific checklists to evaluate model outputs systematically and provides structured explanations that justify the scores and comparisons, resulting in more reliable and interpretable automatic judgments. WB-Reward employs fine-grained pairwise comparisons between model responses, generating five potential outcomes: much better, slightly better, slightly worse, much worse, or a tie. Unlike previous evaluations that employed a single baseline model, we selected three baseline models at varying performance levels to ensure a comprehensive pairwise evaluation. Additionally, we propose a simple method to mitigate length bias, by converting outcomes of ``slightly better/worse'' to ``tie'' if the winner response exceeds the loser one by more than K characters. WB-Score evaluates the quality of model outputs individually, making it a fast and cost-efficient evaluation metric. WildBench results demonstrate a strong correlation with the human-voted Elo ratings from Chatbot Arena on hard tasks. Specifically, WB-Reward achieves a Pearson correlation of 0.98 with top-ranking models. Additionally, WB-Score reaches 0.95, surpassing both ArenaHard's 0.91 and AlpacaEval2.0's 0.89 for length-controlled win rates, as well as the 0.87 for regular win rates.
Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study
Large language models (LLMs) have shown continuously improving multilingual capabilities, and even small-scale open-source models have demonstrated rapid performance enhancement. In this paper, we systematically explore the abilities of open LLMs with less than ten billion parameters to handle multilingual machine translation (MT) tasks. We conduct comprehensive evaluations on six popular LLMs and find that models like Gemma2-9B exhibit impressive multilingual translation capabilities. We then introduce the Parallel-First Monolingual-Second (PFMS) data mixing strategy in the continual pretraining stage to further enhance the MT performance and present GemmaX2-28, a 9B model achieving top-tier multilingual translation performance across 28 languages. Specifically, GemmaX2-28 consistently outperforms the state-of-the-art (SOTA) models such as TowerInstruct and XALMA and achieves competitive performance with Google Translate and GPT-4-turbo.
LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation
Machine translation is indispensable in healthcare for enabling the global dissemination of medical knowledge across languages. However, complex medical terminology poses unique challenges to achieving adequate translation quality and accuracy. This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized specifically for medical texts. While large language models (LLMs) have demonstrated powerful capabilities, this research shows that small, specialized models trained on high-quality in-domain (mostly synthetic) data can outperform even vastly larger LLMs. Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts. Our LLMs-in-the-loop methodology employs synthetic data generation, rigorous evaluation, and agent orchestration to enhance performance. We developed small medical translation models using the MarianMT base model. We introduce a new medical translation test dataset to standardize evaluation in this domain. Assessed using BLEU, METEOR, ROUGE, and BERT scores on this test set, our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo. Results demonstrate that our LLMs-in-the-loop approach, combined with fine-tuning high-quality, domain-specific data, enables specialized models to outperform general-purpose and some larger systems. This research, part of a broader series on expert small models, paves the way for future healthcare-related AI developments, including deidentification and bio-medical entity extraction models. Our study underscores the potential of tailored neural translation models and the LLMs-in-the-loop methodology to advance the field through improved data generation, evaluation, agent, and modeling techniques.
Self-Play Preference Optimization for Language Model Alignment
Traditional reinforcement learning from human feedback (RLHF) approaches relying on parametric models like the Bradley-Terry model fall short in capturing the intransitivity and irrationality in human preferences. Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences, enabling more flexible and accurate language model alignment. In this paper, we propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game aimed at identifying the Nash equilibrium policy. Our approach, dubbed Self-Play Preference Optimization (SPPO), approximates the Nash equilibrium through iterative policy updates and enjoys theoretical convergence guarantee. Our method can effectively increase the log-likelihood of the chosen response and decrease that of the rejected response, which cannot be trivially achieved by symmetric pairwise loss such as Direct Preference Optimization (DPO) and Identity Preference Optimization (IPO). In our experiments, using only 60k prompts (without responses) from the UltraFeedback dataset and without any prompt augmentation, by leveraging a pre-trained preference model PairRM with only 0.4B parameters, SPPO can obtain a model from fine-tuning Mistral-7B-Instruct-v0.2 that achieves the state-of-the-art length-controlled win-rate of 28.53% against GPT-4-Turbo on AlpacaEval 2.0. It also outperforms the (iterative) DPO and IPO on MT-Bench and the Open LLM Leaderboard. Notably, the strong performance of SPPO is achieved without additional external supervision (e.g., responses, preferences, etc.) from GPT-4 or other stronger language models.
In-Context Principle Learning from Mistakes
In-context learning (ICL, also known as few-shot prompting) has been the standard method of adapting LLMs to downstream tasks, by learning from a few input-output examples. Nonetheless, all ICL-based approaches only learn from correct input-output pairs. In this paper, we revisit this paradigm, by learning more from the few given input-output examples. We introduce Learning Principles (LEAP): First, we intentionally induce the model to make mistakes on these few examples; then we reflect on these mistakes, and learn explicit task-specific "principles" from them, which help solve similar problems and avoid common mistakes; finally, we prompt the model to answer unseen test questions using the original few-shot examples and these learned general principles. We evaluate LEAP on a wide range of benchmarks, including multi-hop question answering (Hotpot QA), textual QA (DROP), Big-Bench Hard reasoning, and math problems (GSM8K and MATH); in all these benchmarks, LEAP improves the strongest available LLMs such as GPT-3.5-turbo, GPT-4, GPT-4 turbo and Claude-2.1. For example, LEAP improves over the standard few-shot prompting using GPT-4 by 7.5% in DROP, and by 3.3% in HotpotQA. Importantly, LEAP does not require any more input or examples than the standard few-shot prompting settings.
Weak-to-Strong Search: Align Large Language Models via Searching over Small Language Models
Large language models are usually fine-tuned to align with human preferences. However, fine-tuning a large language model can be challenging. In this work, we introduce weak-to-strong search, framing the alignment of a large language model as a test-time greedy search to maximize the log-likelihood difference between small tuned and untuned models while sampling from the frozen large model. This method serves both as (i) a compute-efficient model up-scaling strategy that avoids directly tuning the large model and as (ii) an instance of weak-to-strong generalization that enhances a strong model with weak test-time guidance. Empirically, we demonstrate the flexibility of weak-to-strong search across different tasks. In controlled-sentiment generation and summarization, we use tuned and untuned gpt2s to effectively improve the alignment of large models without additional training. Crucially, in a more difficult instruction-following benchmark, AlpacaEval 2.0, we show that reusing off-the-shelf small model pairs (e.g., zephyr-7b-beta and its untuned version) can significantly improve the length-controlled win rates of both white-box and black-box large models against gpt-4-turbo (e.g., 34.4 rightarrow 37.9 for Llama-3-70B-Instruct and 16.0 rightarrow 20.1 for gpt-3.5-turbo-instruct), despite the small models' low win rates approx 10.0.
Notes on Applicability of GPT-4 to Document Understanding
We perform a missing, reproducible evaluation of all publicly available GPT-4 family models concerning the Document Understanding field, where it is frequently required to comprehend text spacial arrangement and visual clues in addition to textual semantics. Benchmark results indicate that though it is hard to achieve satisfactory results with text-only models, GPT-4 Vision Turbo performs well when one provides both text recognized by an external OCR engine and document images on the input. Evaluation is followed by analyses that suggest possible contamination of textual GPT-4 models and indicate the significant performance drop for lengthy documents.
AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs
In this paper, we propose AutoDAN-Turbo, a black-box jailbreak method that can automatically discover as many jailbreak strategies as possible from scratch, without any human intervention or predefined scopes (e.g., specified candidate strategies), and use them for red-teaming. As a result, AutoDAN-Turbo can significantly outperform baseline methods, achieving a 74.3% higher average attack success rate on public benchmarks. Notably, AutoDAN-Turbo achieves an 88.5 attack success rate on GPT-4-1106-turbo. In addition, AutoDAN-Turbo is a unified framework that can incorporate existing human-designed jailbreak strategies in a plug-and-play manner. By integrating human-designed strategies, AutoDAN-Turbo can even achieve a higher attack success rate of 93.4 on GPT-4-1106-turbo.
Large Language Models Assume People are More Rational than We Really are
In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.
One Language, Many Gaps: Evaluating Dialect Fairness and Robustness of Large Language Models in Reasoning Tasks
Language is not monolithic. While many benchmarks are used as proxies to systematically estimate Large Language Models' (LLM) performance in real-life tasks, they tend to ignore the nuances of within-language variation and thus fail to model the experience of speakers of minority dialects. Focusing on African American Vernacular English (AAVE), we present the first study on LLMs' fairness and robustness to a dialect in canonical reasoning tasks (algorithm, math, logic, and comprehensive reasoning). We hire AAVE speakers, including experts with computer science backgrounds, to rewrite seven popular benchmarks, such as HumanEval and GSM8K. The result of this effort is ReDial, a dialectal benchmark comprising 1.2K+ parallel query pairs in Standardized English and AAVE. We use ReDial to evaluate state-of-the-art LLMs, including GPT-4o/4/3.5-turbo, LLaMA-3.1/3, Mistral, and Phi-3. We find that, compared to Standardized English, almost all of these widely used models show significant brittleness and unfairness to queries in AAVE. Furthermore, AAVE queries can degrade performance more substantially than misspelled texts in Standardized English, even when LLMs are more familiar with the AAVE queries. Finally, asking models to rephrase questions in Standardized English does not close the performance gap but generally introduces higher costs. Overall, our findings indicate that LLMs provide unfair service to dialect users in complex reasoning tasks. Code can be found at https://github.com/fangru-lin/redial_dialect_robustness_fairness.git.
Is ChatGPT a Biomedical Expert? -- Exploring the Zero-Shot Performance of Current GPT Models in Biomedical Tasks
We assessed the performance of commercial Large Language Models (LLMs) GPT-3.5-Turbo and GPT-4 on tasks from the 2023 BioASQ challenge. In Task 11b Phase B, which is focused on answer generation, both models demonstrated competitive abilities with leading systems. Remarkably, they achieved this with simple zero-shot learning, grounded with relevant snippets. Even without relevant snippets, their performance was decent, though not on par with the best systems. Interestingly, the older and cheaper GPT-3.5-Turbo system was able to compete with GPT-4 in the grounded Q&A setting on factoid and list answers. In Task 11b Phase A, focusing on retrieval, query expansion through zero-shot learning improved performance, but the models fell short compared to other systems. The code needed to rerun these experiments is available through GitHub.
DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of GPT-Generated Text
Large language models (LLMs) have notably enhanced the fluency and diversity of machine-generated text. However, this progress also presents a significant challenge in detecting the origin of a given text, and current research on detection methods lags behind the rapid evolution of LLMs. Conventional training-based methods have limitations in flexibility, particularly when adapting to new domains, and they often lack explanatory power. To address this gap, we propose a novel training-free detection strategy called Divergent N-Gram Analysis (DNA-GPT). Given a text, we first truncate it in the middle and then use only the preceding portion as input to the LLMs to regenerate the new remaining parts. By analyzing the differences between the original and new remaining parts through N-gram analysis in black-box or probability divergence in white-box, we can clearly illustrate significant discrepancies between machine-generated and human-written text. We conducted extensive experiments on the most advanced LLMs from OpenAI, including text-davinci-003, GPT-3.5-turbo, and GPT-4, as well as open-source models such as GPT-NeoX-20B and LLaMa-13B. Results show that our zero-shot approach exhibits state-of-the-art performance in distinguishing between human and GPT-generated text on four English and one German dataset, outperforming OpenAI's own classifier, which is trained on millions of text. Additionally, our methods provide reasonable explanations and evidence to support our claim, which is a unique feature of explainable detection. Our method is also robust under the revised text attack and can additionally solve model sourcing. Codes are available at https://github.com/Xianjun-Yang/DNA-GPT.
Language Model Agents Suffer from Compositional Generalization in Web Automation
Language model agents (LMA) recently emerged as a promising paradigm on muti-step decision making tasks, often outperforming humans and other reinforcement learning agents. Despite the promise, their performance on real-world applications that often involve combinations of tasks is still underexplored. In this work, we introduce a new benchmark, called CompWoB -- 50 new compositional web automation tasks reflecting more realistic assumptions. We show that while existing prompted LMAs (gpt-3.5-turbo or gpt-4) achieve 94.0% average success rate on base tasks, their performance degrades to 24.9% success rate on compositional tasks. On the other hand, transferred LMAs (finetuned only on base tasks) show less generalization gap, dropping from 85.4% to 54.8%. By balancing data distribution across tasks, we train a new model, HTML-T5++, that surpasses human-level performance (95.2%) on MiniWoB, and achieves the best zero-shot performance on CompWoB (61.5%). While these highlight the promise of small-scale finetuned and transferred models for compositional generalization, their performance further degrades under different instruction compositions changing combinational order. In contrast to the recent remarkable success of LMA, our benchmark and detailed analysis emphasize the necessity of building LMAs that are robust and generalizable to task compositionality for real-world deployment.
Does Prompt Formatting Have Any Impact on LLM Performance?
In the realm of Large Language Models (LLMs), prompt optimization is crucial for model performance. Although previous research has explored aspects like rephrasing prompt contexts, using various prompting techniques (like in-context learning and chain-of-thought), and ordering few-shot examples, our understanding of LLM sensitivity to prompt templates remains limited. Therefore, this paper examines the impact of different prompt templates on LLM performance. We formatted the same contexts into various human-readable templates, including plain text, Markdown, JSON, and YAML, and evaluated their impact across tasks like natural language reasoning, code generation, and translation using OpenAI's GPT models. Experiments show that GPT-3.5-turbo's performance varies by up to 40\% in a code translation task depending on the prompt template, while larger models like GPT-4 are more robust to these variations. Our analysis highlights the need to reconsider the use of fixed prompt templates, as different formats can significantly affect model performance.
Evaluating Large Language Models on Graphs: Performance Insights and Comparative Analysis
Large Language Models (LLMs) have garnered considerable interest within both academic and industrial. Yet, the application of LLMs to graph data remains under-explored. In this study, we evaluate the capabilities of four LLMs in addressing several analytical problems with graph data. We employ four distinct evaluation metrics: Comprehension, Correctness, Fidelity, and Rectification. Our results show that: 1) LLMs effectively comprehend graph data in natural language and reason with graph topology. 2) GPT models can generate logical and coherent results, outperforming alternatives in correctness. 3) All examined LLMs face challenges in structural reasoning, with techniques like zero-shot chain-of-thought and few-shot prompting showing diminished efficacy. 4) GPT models often produce erroneous answers in multi-answer tasks, raising concerns in fidelity. 5) GPT models exhibit elevated confidence in their outputs, potentially hindering their rectification capacities. Notably, GPT-4 has demonstrated the capacity to rectify responses from GPT-3.5-turbo and its own previous iterations. The code is available at: https://github.com/Ayame1006/LLMtoGraph.
DevEval: Evaluating Code Generation in Practical Software Projects
How to evaluate Large Language Models (LLMs) in code generation is an open question. Many benchmarks have been proposed but are inconsistent with practical software projects, e.g., unreal program distributions, insufficient dependencies, and small-scale project contexts. Thus, the capabilities of LLMs in practical projects are still unclear. In this paper, we propose a new benchmark named DevEval, aligned with Developers' experiences in practical projects. DevEval is collected through a rigorous pipeline, containing 2,690 samples from 119 practical projects and covering 10 domains. Compared to previous benchmarks, DevEval aligns to practical projects in multiple dimensions, e.g., real program distributions, sufficient dependencies, and enough-scale project contexts. We assess five popular LLMs on DevEval (e.g., gpt-4, gpt-3.5-turbo, CodeLLaMa, and StarCoder) and reveal their actual abilities in code generation. For instance, the highest Pass@1 of gpt-3.5-turbo only is 42 in our experiments. We also discuss the challenges and future directions of code generation in practical projects. We open-source DevEval and hope it can facilitate the development of code generation in practical projects.
The Chronicles of RAG: The Retriever, the Chunk and the Generator
Retrieval Augmented Generation (RAG) has become one of the most popular paradigms for enabling LLMs to access external data, and also as a mechanism for grounding to mitigate against hallucinations. When implementing RAG you can face several challenges like effective integration of retrieval models, efficient representation learning, data diversity, computational efficiency optimization, evaluation, and quality of text generation. Given all these challenges, every day a new technique to improve RAG appears, making it unfeasible to experiment with all combinations for your problem. In this context, this paper presents good practices to implement, optimize, and evaluate RAG for the Brazilian Portuguese language, focusing on the establishment of a simple pipeline for inference and experiments. We explored a diverse set of methods to answer questions about the first Harry Potter book. To generate the answers we used the OpenAI's gpt-4, gpt-4-1106-preview, gpt-3.5-turbo-1106, and Google's Gemini Pro. Focusing on the quality of the retriever, our approach achieved an improvement of MRR@10 by 35.4% compared to the baseline. When optimizing the input size in the application, we observed that it is possible to further enhance it by 2.4%. Finally, we present the complete architecture of the RAG with our recommendations. As result, we moved from a baseline of 57.88% to a maximum relative score of 98.61%.
SelECT-SQL: Self-correcting ensemble Chain-of-Thought for Text-to-SQL
In recent years,Text-to-SQL, the problem of automatically converting questions posed in natural language to formal SQL queries, has emerged as an important problem at the intersection of natural language processing and data management research. Large language models (LLMs) have delivered impressive performance when used in an off-the-shelf performance, but still fall significantly short of expected expert-level performance. Errors are especially probable when a nuanced understanding is needed of database schemas, questions, and SQL clauses to do proper Text-to-SQL conversion. We introduce SelECT-SQL, a novel in-context learning solution that uses an algorithmic combination of chain-of-thought (CoT) prompting, self-correction, and ensemble methods to yield a new state-of-the-art result on challenging Text-to-SQL benchmarks. Specifically, when configured using GPT-3.5-Turbo as the base LLM, SelECT-SQL achieves 84.2% execution accuracy on the Spider leaderboard's development set, exceeding both the best results of other baseline GPT-3.5-Turbo-based solutions (81.1%), and the peak performance (83.5%) of the GPT-4 result reported on the leaderboard.
EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models
Jailbreak attacks are crucial for identifying and mitigating the security vulnerabilities of Large Language Models (LLMs). They are designed to bypass safeguards and elicit prohibited outputs. However, due to significant differences among various jailbreak methods, there is no standard implementation framework available for the community, which limits comprehensive security evaluations. This paper introduces EasyJailbreak, a unified framework simplifying the construction and evaluation of jailbreak attacks against LLMs. It builds jailbreak attacks using four components: Selector, Mutator, Constraint, and Evaluator. This modular framework enables researchers to easily construct attacks from combinations of novel and existing components. So far, EasyJailbreak supports 11 distinct jailbreak methods and facilitates the security validation of a broad spectrum of LLMs. Our validation across 10 distinct LLMs reveals a significant vulnerability, with an average breach probability of 60% under various jailbreaking attacks. Notably, even advanced models like GPT-3.5-Turbo and GPT-4 exhibit average Attack Success Rates (ASR) of 57% and 33%, respectively. We have released a wealth of resources for researchers, including a web platform, PyPI published package, screencast video, and experimental outputs.
AceGPT, Localizing Large Language Models in Arabic
This paper is devoted to the development of a localized Large Language Model (LLM) specifically for Arabic, a language imbued with unique cultural characteristics inadequately addressed by current mainstream models. Significant concerns emerge when addressing cultural sensitivity and local values. To address this, the paper proposes a comprehensive solution that includes further pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic, alongside Reinforcement Learning with AI Feedback (RLAIF) employing a reward model attuned to local culture and values. The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities. Comprehensive evaluations reveal that the resulting model, dubbed 'AceGPT', sets the state-of-the-art standard for open Arabic LLMs across various benchmarks, including the instruction-following benchmark (i.e., Arabic Vicuna-80 and Arabic AlpacaEval), knowledge benchmark (i.e., Arabic MMLU and EXAMs), and the newly introduced Arabic Cultural and Value Alignment benchmark. Notably, AceGPT outperforms Turbo in the popular Vicuna-80 benchmark when evaluated with GPT-4, despite the benchmark's limited scale. Codes, data, and models are in https://github.com/FreedomIntelligence/AceGPT.
Large Language Model Cascades with Mixture of Thoughts Representations for Cost-efficient Reasoning
Large language models (LLMs) such as GPT-4 have exhibited remarkable performance in a variety of tasks, but this strong performance often comes with the high expense of using paid API services. In this paper, we are motivated to study building an LLM cascade to save the cost of using LLMs, particularly for performing reasoning (e.g., mathematical, causal) tasks. Our cascade pipeline follows the intuition that simpler questions can be addressed by a weaker but more affordable LLM, whereas only the challenging questions necessitate the stronger and more expensive LLM. To realize this decision-making, we consider the "answer consistency" of the weaker LLM as a signal of the question difficulty and propose several methods for the answer sampling and consistency checking, including one leveraging a mixture of two thought representations (i.e., Chain-of-Thought and Program-of-Thought). Through experiments on six reasoning benchmark datasets, with GPT-3.5-turbo and GPT-4 being the weaker and stronger LLMs, respectively, we demonstrate that our proposed LLM cascades can achieve performance comparable to using solely the stronger LLM but require only 40% of its cost.
FRACTURED-SORRY-Bench: Framework for Revealing Attacks in Conversational Turns Undermining Refusal Efficacy and Defenses over SORRY-Bench
This paper introduces FRACTURED-SORRY-Bench, a framework for evaluating the safety of Large Language Models (LLMs) against multi-turn conversational attacks. Building upon the SORRY-Bench dataset, we propose a simple yet effective method for generating adversarial prompts by breaking down harmful queries into seemingly innocuous sub-questions. Our approach achieves a maximum increase of +46.22\% in Attack Success Rates (ASRs) across GPT-4, GPT-4o, GPT-4o-mini, and GPT-3.5-Turbo models compared to baseline methods. We demonstrate that this technique poses a challenge to current LLM safety measures and highlights the need for more robust defenses against subtle, multi-turn attacks.
Effective and Evasive Fuzz Testing-Driven Jailbreaking Attacks against LLMs
Large Language Models (LLMs) have excelled in various tasks but are still vulnerable to jailbreaking attacks, where attackers create jailbreak prompts to mislead the model to produce harmful or offensive content. Current jailbreak methods either rely heavily on manually crafted templates, which pose challenges in scalability and adaptability, or struggle to generate semantically coherent prompts, making them easy to detect. Additionally, most existing approaches involve lengthy prompts, leading to higher query costs.In this paper, to remedy these challenges, we introduce a novel jailbreaking attack framework, which is an automated, black-box jailbreaking attack framework that adapts the black-box fuzz testing approach with a series of customized designs. Instead of relying on manually crafted templates, our method starts with an empty seed pool, removing the need to search for any related jailbreaking templates. We also develop three novel question-dependent mutation strategies using an LLM helper to generate prompts that maintain semantic coherence while significantly reducing their length. Additionally, we implement a two-level judge module to accurately detect genuine successful jailbreaks. We evaluated our method on 7 representative LLMs and compared it with 5 state-of-the-art jailbreaking attack strategies. For proprietary LLM APIs, such as GPT-3.5 turbo, GPT-4, and Gemini-Pro, our method achieves attack success rates of over 90%,80% and 74%, respectively, exceeding existing baselines by more than 60%. Additionally, our method can maintain high semantic coherence while significantly reducing the length of jailbreak prompts. When targeting GPT-4, our method can achieve over 78% attack success rate even with 100 tokens. Moreover, our method demonstrates transferability and is robust to state-of-the-art defenses. We will open-source our codes upon publication.
From Chatbots to PhishBots? -- Preventing Phishing scams created using ChatGPT, Google Bard and Claude
The advanced capabilities of Large Language Models (LLMs) have made them invaluable across various applications, from conversational agents and content creation to data analysis, research, and innovation. However, their effectiveness and accessibility also render them susceptible to abuse for generating malicious content, including phishing attacks. This study explores the potential of using four popular commercially available LLMs - ChatGPT (GPT 3.5 Turbo), GPT 4, Claude and Bard to generate functional phishing attacks using a series of malicious prompts. We discover that these LLMs can generate both phishing emails and websites that can convincingly imitate well-known brands, and also deploy a range of evasive tactics for the latter to elude detection mechanisms employed by anti-phishing systems. Notably, these attacks can be generated using unmodified, or "vanilla," versions of these LLMs, without requiring any prior adversarial exploits such as jailbreaking. As a countermeasure, we build a BERT based automated detection tool that can be used for the early detection of malicious prompts to prevent LLMs from generating phishing content attaining an accuracy of 97\% for phishing website prompts, and 94\% for phishing email prompts.
Unraveling the Capabilities of Language Models in News Summarization
Given the recent introduction of multiple language models and the ongoing demand for improved Natural Language Processing tasks, particularly summarization, this work provides a comprehensive benchmarking of 20 recent language models, focusing on smaller ones for the news summarization task. In this work, we systematically test the capabilities and effectiveness of these models in summarizing news article texts which are written in different styles and presented in three distinct datasets. Specifically, we focus in this study on zero-shot and few-shot learning settings and we apply a robust evaluation methodology that combines different evaluation concepts including automatic metrics, human evaluation, and LLM-as-a-judge. Interestingly, including demonstration examples in the few-shot learning setting did not enhance models' performance and, in some cases, even led to worse quality of the generated summaries. This issue arises mainly due to the poor quality of the gold summaries that have been used as reference summaries, which negatively impacts the models' performance. Furthermore, our study's results highlight the exceptional performance of GPT-3.5-Turbo and GPT-4, which generally dominate due to their advanced capabilities. However, among the public models evaluated, certain models such as Qwen1.5-7B, SOLAR-10.7B-Instruct-v1.0, Meta-Llama-3-8B and Zephyr-7B-Beta demonstrated promising results. These models showed significant potential, positioning them as competitive alternatives to large models for the task of news summarization.
SBI-RAG: Enhancing Math Word Problem Solving for Students through Schema-Based Instruction and Retrieval-Augmented Generation
Many students struggle with math word problems (MWPs), often finding it difficult to identify key information and select the appropriate mathematical operations.Schema-based instruction (SBI) is an evidence-based strategy that helps students categorize problems based on their structure, improving problem-solving accuracy. Building on this, we propose a Schema-Based Instruction Retrieval-Augmented Generation (SBI-RAG) framework that incorporates a large language model (LLM).Our approach emphasizes step-by-step reasoning by leveraging schemas to guide solution generation. We evaluate its performance on the GSM8K dataset, comparing it with GPT-4 and GPT-3.5 Turbo, and introduce a "reasoning score" metric to assess solution quality. Our findings suggest that SBI-RAG enhances reasoning clarity and problem-solving accuracy, potentially providing educational benefits for students
Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification
Recently, autonomous agents built on large language models (LLMs) have experienced significant development and are being deployed in real-world applications. These agents can extend the base LLM's capabilities in multiple ways. For example, a well-built agent using GPT-3.5-Turbo as its core can outperform the more advanced GPT-4 model by leveraging external components. More importantly, the usage of tools enables these systems to perform actions in the real world, moving from merely generating text to actively interacting with their environment. Given the agents' practical applications and their ability to execute consequential actions, it is crucial to assess potential vulnerabilities. Such autonomous systems can cause more severe damage than a standalone language model if compromised. While some existing research has explored harmful actions by LLM agents, our study approaches the vulnerability from a different perspective. We introduce a new type of attack that causes malfunctions by misleading the agent into executing repetitive or irrelevant actions. We conduct comprehensive evaluations using various attack methods, surfaces, and properties to pinpoint areas of susceptibility. Our experiments reveal that these attacks can induce failure rates exceeding 80\% in multiple scenarios. Through attacks on implemented and deployable agents in multi-agent scenarios, we accentuate the realistic risks associated with these vulnerabilities. To mitigate such attacks, we propose self-examination detection methods. However, our findings indicate these attacks are difficult to detect effectively using LLMs alone, highlighting the substantial risks associated with this vulnerability.
Self-Judge: Selective Instruction Following with Alignment Self-Evaluation
Pre-trained large language models (LLMs) can be tailored to adhere to human instructions through instruction tuning. However, due to shifts in the distribution of test-time data, they may not always execute instructions accurately, potentially generating factual errors or misaligned content when acting as chat assistants. To enhance the reliability of LLMs in following instructions, we propose the study of selective instruction following, whereby the system declines to execute instructions if the anticipated response quality is low. We train judge models that can predict numerical quality scores for model responses. To address data scarcity, we introduce Self-J, a novel self-training framework for developing judge models without needing human-annotated quality scores. Our method leverages the model's inherent self-evaluation capability to extract information about response quality from labeled instruction-tuning data. It incorporates a gold reference answer to facilitate self-evaluation and recalibrates by assessing the semantic similarity between the response sample and the gold reference. During the training phase, we implement self-distillation as a regularization technique to enhance the capability of reference-free estimation. To validate alignment evaluation on general instruction-following tasks, we collect large-scale high-quality instructions from Hugging Face for model training and evaluation. Extensive experiments on five open-source models show that our method correlates much more with GPT-4 than strong baselines, e.g., supervised models distilled from GPT-4 and GPT-3.5-turbo. Our analysis shows our model's strong generalization across domains. Additionally, our judge models serve as good reward models, e.g., boosting WizardLM-13B-V1.2 from 89.17 to 92.48 and from 12.03 to 15.90 in version v1 and v2 of AlpacaEval respectively using best-of-32 sampling with our judge models.
Predicting Code Coverage without Execution
Code coverage is a widely used metric for quantifying the extent to which program elements, such as statements or branches, are executed during testing. Calculating code coverage is resource-intensive, requiring code building and execution with additional overhead for the instrumentation. Furthermore, computing coverage of any snippet of code requires the whole program context. Using Machine Learning to amortize this expensive process could lower the cost of code coverage by requiring only the source code context, and the task of code coverage prediction can be a novel benchmark for judging the ability of models to understand code. We propose a novel benchmark task called Code Coverage Prediction for Large Language Models (LLMs). We formalize this task to evaluate the capability of LLMs in understanding code execution by determining which lines of a method are executed by a given test case and inputs. We curate and release a dataset we call COVERAGEEVAL by executing tests and code from the HumanEval dataset and collecting code coverage information. We report the performance of four state-of-the-art LLMs used for code-related tasks, including OpenAI's GPT-4 and GPT-3.5-Turbo, Google's BARD, and Anthropic's Claude, on the Code Coverage Prediction task. Finally, we argue that code coverage as a metric and pre-training data source are valuable for overall LLM performance on software engineering tasks.
BayLing: Bridging Cross-lingual Alignment and Instruction Following through Interactive Translation for Large Language Models
Large language models (LLMs) have demonstrated remarkable prowess in language understanding and generation. Advancing from foundation LLMs to instructionfollowing LLMs, instruction tuning plays a vital role in aligning LLMs to human preferences. However, the existing LLMs are usually focused on English, leading to inferior performance in non-English languages. In order to improve the performance for non-English languages, it is necessary to collect language-specific training data for foundation LLMs and construct language-specific instructions for instruction tuning, both of which are heavy loads. To minimize human workload, we propose to transfer the capabilities of language generation and instruction following from English to other languages through an interactive translation task. We have developed BayLing, an instruction-following LLM by utilizing LLaMA as the foundation LLM and automatically constructing interactive translation instructions for instructing tuning. Extensive assessments demonstrate that BayLing achieves comparable performance to GPT-3.5-turbo, despite utilizing a considerably smaller parameter size of only 13 billion. Experimental results on translation tasks show that BayLing achieves 95% of single-turn translation capability compared to GPT-4 with automatic evaluation and 96% of interactive translation capability compared to GPT-3.5-turbo with human evaluation. To estimate the performance on general tasks, we created a multi-turn instruction test set called BayLing-80. The experimental results on BayLing-80 indicate that BayLing achieves 89% of performance compared to GPT-3.5-turbo. BayLing also demonstrates outstanding performance on knowledge assessment of Chinese GaoKao and English SAT, second only to GPT-3.5-turbo among a multitude of instruction-following LLMs. Demo, homepage, code and models of BayLing are available.
End-to-end multilingual fact-checking at scale
In this article, we describe how you can perform end-to-end fact-checking in over 100 languages using Factiverse AI models. We also show through an experimental benchmark that fine-tuned models tailored for fact-checking tasks outperform Large Language Models such as GPT-4, GPT-3.5-Turbo, and Mistral-7b.
SWAG: Storytelling With Action Guidance
Automated long-form story generation typically employs long-context large language models (LLMs) for one-shot creation, which can produce cohesive but not necessarily engaging content. We introduce Storytelling With Action Guidance (SWAG), a novel approach to storytelling with LLMs. Our approach reduces story writing to a search problem through a two-model feedback loop: one LLM generates story content, and another auxiliary LLM is used to choose the next best "action" to steer the story's future direction. Our results show that SWAG can substantially outperform previous end-to-end story generation techniques when evaluated by GPT-4 and through human evaluation, and our SWAG pipeline using only open-source models surpasses GPT-3.5-Turbo.
Forward-Backward Reasoning in Large Language Models for Mathematical Verification
Chain-of-Thought (CoT) prompting in large language models (LLMs) has shown promising performance on mathematical reasoning tasks. Recently, Self-Consistency samples a diverse set of reasoning chains with different answers and chooses the answer by majority voting. Though effective, its performance cannot be further improved by sampling more reasoning chains. To address this problem, we propose to integrate backward reasoning into answer verification. We first mask a number in the question by {bf x}. The LLM is then asked to predict the masked number with a candidate answer A embedded in the template: ``If we know the answer to the above question is {A}, what is the value of unknown variable {bf x}?'' The LLM is expected to predict the masked number successfully if the provided candidate answer is correct. To further improve performance, we propose FOBAR (FOrward-BAckward Reasoning) to combine forward and backward reasoning for verifying candidate answers. Experiments are performed on six standard mathematical data sets and three LLMs (text-davinci-003, GPT-3.5-Turbo, GPT-4). Results show that FOBAR achieves state-of-the-art performance. In particular, FOBAR outperforms Self-Consistency which uses forward reasoning alone, demonstrating that combining forward and forward reasoning is better. It also outperforms existing verification methods, verifying the effectiveness of using the simple template in backward reasoning and the proposed combination.
Emotional Manipulation Through Prompt Engineering Amplifies Disinformation Generation in AI Large Language Models
This study investigates the generation of synthetic disinformation by OpenAI's Large Language Models (LLMs) through prompt engineering and explores their responsiveness to emotional prompting. Leveraging various LLM iterations using davinci-002, davinci-003, gpt-3.5-turbo and gpt-4, we designed experiments to assess their success in producing disinformation. Our findings, based on a corpus of 19,800 synthetic disinformation social media posts, reveal that all LLMs by OpenAI can successfully produce disinformation, and that they effectively respond to emotional prompting, indicating their nuanced understanding of emotional cues in text generation. When prompted politely, all examined LLMs consistently generate disinformation at a high frequency. Conversely, when prompted impolitely, the frequency of disinformation production diminishes, as the models often refuse to generate disinformation and instead caution users that the tool is not intended for such purposes. This research contributes to the ongoing discourse surrounding responsible development and application of AI technologies, particularly in mitigating the spread of disinformation and promoting transparency in AI-generated content.
BatchPrompt: Accomplish more with less
As the ever-increasing token limits of large language models (LLMs) have enabled long context as input, prompting with single data samples might no longer an efficient way. A straightforward strategy improving efficiency is to batch data within the token limit (e.g., 8k for gpt-3.5-turbo; 32k for GPT-4), which we call BatchPrompt. We have two initial observations for prompting with batched data. First, we find that prompting with batched data in longer contexts will inevitably lead to worse performance, compared to single-data prompting. Second, the performance of the language model is significantly correlated with the positions and order of the batched data, due to the corresponding change in decoder context. To retain efficiency and overcome performance loss, we propose Batch Permutation and Ensembling (BPE), and a novel Self-reflection-guided EArly Stopping (SEAS) technique. Our comprehensive experimental evaluation demonstrates that BPE can boost the performance of BatchPrompt with a striking margin on a range of popular NLP tasks, including question answering (Boolq), textual entailment (RTE), and duplicate questions identification (QQP). These performances are even competitive with/higher than single-data prompting(SinglePrompt), while BatchPrompt requires much fewer LLM calls and input tokens (For SinglePrompt v.s. BatchPrompt with batch size 32, using just 9%-16% the number of LLM calls, Boolq accuracy 90.6% to 90.9% with 27.4% tokens, QQP accuracy 87.2% to 88.4% with 18.6% tokens, RTE accuracy 91.5% to 91.1% with 30.8% tokens). To the best of our knowledge, this is the first work to technically improve prompting efficiency of large language models. We hope our simple yet effective approach will shed light on the future research of large language models. The code will be released.
Aligning to Thousands of Preferences via System Message Generalization
Although humans inherently have diverse values, current large language model (LLM) alignment methods often assume that aligning LLMs with the general public's preferences is optimal. A major challenge in adopting a more individualized approach to LLM alignment is its lack of scalability, as it involves repeatedly acquiring preference data and training new reward models and LLMs for each individual's preferences. To address these challenges, we propose a new paradigm where users specify what they value most within the system message, steering the LLM's generation behavior to better align with the user's intentions. However, a naive application of such an approach is non-trivial since LLMs are typically trained on a uniform system message (e.g., "You are a helpful assistant") which limits their ability to generalize to diverse, unseen system messages. To improve this generalization, we create the Multifaceted Collection, a preference dataset with 192k combinations of values beyond generic helpfulness and harmlessness, spanning 65k user instructions. Using this dataset, we train a 7B LLM called Janus and test it on 921 prompts from 5 benchmarks (AlpacaEval 2.0, FLASK, Koala, MT-Bench, and Self-Instruct) by adding various unseen system messages that reflect user preferences. Janus achieves tie+win rate of 75.2%, 72.4%, and 66.4% against Mistral 7B Instruct v0.2, GPT-3.5 Turbo, and GPT-4, respectively. Unexpectedly, on three benchmarks focused on response helpfulness (AlpacaEval 2.0, MT-Bench, Arena Hard Auto v0.1), Janus also outperforms LLaMA 3 8B Instruct by a +4.0%, +0.1%, +3.0% margin, underscoring that training with a vast array of system messages could also enhance alignment to the general public's preference as well. Our code, dataset, benchmark, and models are available at https://github.com/kaistAI/Janus.
Evaluating Cognitive Maps and Planning in Large Language Models with CogEval
Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.
InternChat: Solving Vision-Centric Tasks by Interacting with Chatbots Beyond Language
We present an interactive visual framework named InternChat, or iChat for short. The framework integrates chatbots that have planning and reasoning capabilities, such as ChatGPT, with non-verbal instructions like pointing movements that enable users to directly manipulate images or videos on the screen. Pointing (including gestures, cursors, etc.) movements can provide more flexibility and precision in performing vision-centric tasks that require fine-grained control, editing, and generation of visual content. The name InternChat stands for interaction, nonverbal, and chatbots. Different from existing interactive systems that rely on pure language, by incorporating pointing instructions, the proposed iChat significantly improves the efficiency of communication between users and chatbots, as well as the accuracy of chatbots in vision-centric tasks, especially in complicated visual scenarios where the number of objects is greater than 2. Additionally, in iChat, an auxiliary control mechanism is used to improve the control capability of LLM, and a large vision-language model termed Husky is fine-tuned for high-quality multi-modal dialogue (impressing ChatGPT-3.5-turbo with 93.89% GPT-4 Quality). We hope this work can spark new ideas and directions for future interactive visual systems. Welcome to watch the code at https://github.com/OpenGVLab/InternChat.
SecQA: A Concise Question-Answering Dataset for Evaluating Large Language Models in Computer Security
In this paper, we introduce SecQA, a novel dataset tailored for evaluating the performance of Large Language Models (LLMs) in the domain of computer security. Utilizing multiple-choice questions generated by GPT-4 based on the "Computer Systems Security: Planning for Success" textbook, SecQA aims to assess LLMs' understanding and application of security principles. We detail the structure and intent of SecQA, which includes two versions of increasing complexity, to provide a concise evaluation across various difficulty levels. Additionally, we present an extensive evaluation of prominent LLMs, including GPT-3.5-Turbo, GPT-4, Llama-2, Vicuna, Mistral, and Zephyr models, using both 0-shot and 5-shot learning settings. Our results, encapsulated in the SecQA v1 and v2 datasets, highlight the varying capabilities and limitations of these models in the computer security context. This study not only offers insights into the current state of LLMs in understanding security-related content but also establishes SecQA as a benchmark for future advancements in this critical research area.
Biomedical knowledge graph-optimized prompt generation for large language models
Large Language Models (LLMs) are being adopted at an unprecedented rate, yet still face challenges in knowledge-intensive domains like biomedicine. Solutions such as pre-training and domain-specific fine-tuning add substantial computational overhead, requiring further domain expertise. Here, we introduce a token-optimized and robust Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) framework by leveraging a massive biomedical KG (SPOKE) with LLMs such as Llama-2-13b, GPT-3.5-Turbo and GPT-4, to generate meaningful biomedical text rooted in established knowledge. Compared to the existing RAG technique for Knowledge Graphs, the proposed method utilizes minimal graph schema for context extraction and uses embedding methods for context pruning. This optimization in context extraction results in more than 50% reduction in token consumption without compromising the accuracy, making a cost-effective and robust RAG implementation on proprietary LLMs. KG-RAG consistently enhanced the performance of LLMs across diverse biomedical prompts by generating responses rooted in established knowledge, accompanied by accurate provenance and statistical evidence (if available) to substantiate the claims. Further benchmarking on human curated datasets, such as biomedical true/false and multiple-choice questions (MCQ), showed a remarkable 71% boost in the performance of the Llama-2 model on the challenging MCQ dataset, demonstrating the framework's capacity to empower open-source models with fewer parameters for domain specific questions. Furthermore, KG-RAG enhanced the performance of proprietary GPT models, such as GPT-3.5 and GPT-4. In summary, the proposed framework combines explicit and implicit knowledge of KG and LLM in a token optimized fashion, thus enhancing the adaptability of general-purpose LLMs to tackle domain-specific questions in a cost-effective fashion.
An automatically discovered chain-of-thought prompt generalizes to novel models and datasets
Emergent chain-of-thought (CoT) reasoning capabilities promise to improve performance and explainability of large language models (LLMs). However, uncertainties remain about how reasoning strategies formulated for previous model generations generalize to new model generations and different datasets. In this small-scale study, we compare different reasoning strategies induced by zero-shot prompting across six recently released LLMs (davinci-002, davinci-003, GPT-3.5-turbo, GPT-4, Flan-T5-xxl and Cohere command-xlarge) on a mixture of six question-answering datasets, including datasets from scientific and medical domains. Our findings demonstrate that while some variations in effectiveness occur, gains from CoT reasoning strategies remain robust across different models and datasets. GPT-4 has the most benefit from current state-of-the-art reasoning strategies and exhibits the best performance by applying a prompt previously discovered through automated discovery.
Chumor 2.0: Towards Benchmarking Chinese Humor Understanding
Existing humor datasets and evaluations predominantly focus on English, leaving limited resources for culturally nuanced humor in non-English languages like Chinese. To address this gap, we construct Chumor, the first Chinese humor explanation dataset that exceeds the size of existing humor datasets. Chumor is sourced from Ruo Zhi Ba, a Chinese Reddit-like platform known for sharing intellectually challenging and culturally specific jokes. We test ten LLMs through direct and chain-of-thought prompting, revealing that Chumor poses significant challenges to existing LLMs, with their accuracy slightly above random and far below human. In addition, our analysis highlights that human-annotated humor explanations are significantly better than those generated by GPT-4o and ERNIE-4-turbo. We release Chumor at https://huggingface.co/datasets/dnaihao/Chumor, our project page is at https://dnaihao.github.io/Chumor-dataset/, our leaderboard is at https://huggingface.co/spaces/dnaihao/Chumor, and our codebase is at https://github.com/dnaihao/Chumor-dataset.
100% Hallucination Elimination Using Acurai
The issue of hallucinations in large language models (LLMs) remains a critical barrier to the adoption of AI in enterprise and other high-stakes applications. Despite advancements in retrieval-augmented generation (RAG) systems, current state-of-the-art methods fail to achieve more than 80% accuracy in generating faithful and factually correct outputs, even when provided with relevant and accurate context. In this work, we introduce Acurai, a novel systematic approach that achieves 100% hallucination-free responses in LLMs by reformatting queries and context data prior to input. Leveraging a deep understanding of LLM internal representations, the importance of noun-phrase dominance, and the role of discrete functional units (DFUs), Acurai ensures alignment between input context and generated output. We validate this method using the RAGTruth corpus, demonstrating its ability to eliminate 100% hallucinations for both GPT-4 and GPT-3.5 Turbo. Acurai sets a new standard for achieving consistent, accurate, and faithful AI responses, marking a significant step forward in the development of trustworthy AI systems.
Chain-of-Thought Hub: A Continuous Effort to Measure Large Language Models' Reasoning Performance
As large language models (LLMs) are continuously being developed, their evaluation becomes increasingly important yet challenging. This work proposes Chain-of-Thought Hub, an open-source evaluation suite on the multi-step reasoning capabilities of large language models. We are interested in this setting for two reasons: (1) from the behavior of GPT and PaLM model family, we observe that complex reasoning is likely to be a key differentiator between weaker and stronger LLMs; (2) we envisage large language models to become the next-generation computational platform and foster an ecosystem of LLM-based new applications, this naturally requires the foundation models to perform complex tasks that often involve the composition of linguistic and logical operations. Our approach is to compile a suite of challenging reasoning benchmarks to track the progress of LLMs. Our current results show that: (1) model scale clearly correlates with reasoning capabilities; (2) As of May 2023, Claude-v1.3 and PaLM-2 are the only two models that are comparable with GPT-4, while open-sourced models still lag behind; (3) LLaMA-65B performs closely to code-davinci-002, indicating that with successful further development such as reinforcement learning from human feedback (RLHF), it has great potential to be close to GPT-3.5-Turbo. Our results also suggest that for the open-source efforts to catch up, the community may focus more on building better base models and exploring RLHF.
Evaluating Large Language Models in Theory of Mind Tasks
Eleven Large Language Models (LLMs) were assessed using a custom-made battery of false-belief tasks, considered a gold standard in testing Theory of Mind (ToM) in humans. The battery included 640 prompts spread across 40 diverse tasks, each one including a false-belief scenario, three closely matched true-belief control scenarios, and the reversed versions of all four. To solve a single task, a model needed to correctly answer 16 prompts across all eight scenarios. Smaller and older models solved no tasks; GPT-3-davinci-003 (from November 2022) and ChatGPT-3.5-turbo (from March 2023) solved 20% of the tasks; ChatGPT-4 (from June 2023) solved 75% of the tasks, matching the performance of six-year-old children observed in past studies. We explore the potential interpretation of these findings, including the intriguing possibility that ToM, previously considered exclusive to humans, may have spontaneously emerged as a byproduct of LLMs' improving language skills.
Logits of API-Protected LLMs Leak Proprietary Information
The commercialization of large language models (LLMs) has led to the common practice of high-level API-only access to proprietary models. In this work, we show that even with a conservative assumption about the model architecture, it is possible to learn a surprisingly large amount of non-public information about an API-protected LLM from a relatively small number of API queries (e.g., costing under $1,000 for OpenAI's gpt-3.5-turbo). Our findings are centered on one key observation: most modern LLMs suffer from a softmax bottleneck, which restricts the model outputs to a linear subspace of the full output space. We show that this lends itself to a model image or a model signature which unlocks several capabilities with affordable cost: efficiently discovering the LLM's hidden size, obtaining full-vocabulary outputs, detecting and disambiguating different model updates, identifying the source LLM given a single full LLM output, and even estimating the output layer parameters. Our empirical investigations show the effectiveness of our methods, which allow us to estimate the embedding size of OpenAI's gpt-3.5-turbo to be about 4,096. Lastly, we discuss ways that LLM providers can guard against these attacks, as well as how these capabilities can be viewed as a feature (rather than a bug) by allowing for greater transparency and accountability.
Confidence in the Reasoning of Large Language Models
There is a growing literature on reasoning by large language models (LLMs), but the discussion on the uncertainty in their responses is still lacking. Our aim is to assess the extent of confidence that LLMs have in their answers and how it correlates with accuracy. Confidence is measured (i) qualitatively in terms of persistence in keeping their answer when prompted to reconsider, and (ii) quantitatively in terms of self-reported confidence score. We investigate the performance of three LLMs -- GPT4o, GPT4-turbo and Mistral -- on two benchmark sets of questions on causal judgement and formal fallacies and a set of probability and statistical puzzles and paradoxes. Although the LLMs show significantly better performance than random guessing, there is a wide variability in their tendency to change their initial answers. There is a positive correlation between qualitative confidence and accuracy, but the overall accuracy for the second answer is often worse than for the first answer. There is a strong tendency to overstate the self-reported confidence score. Confidence is only partially explained by the underlying token-level probability. The material effects of prompting on qualitative confidence and the strong tendency for overconfidence indicate that current LLMs do not have any internally coherent sense of confidence.
DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K. In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks.
Tree of Attacks: Jailbreaking Black-Box LLMs Automatically
While Large Language Models (LLMs) display versatile functionality, they continue to generate harmful, biased, and toxic content, as demonstrated by the prevalence of human-designed jailbreaks. In this work, we present Tree of Attacks with Pruning (TAP), an automated method for generating jailbreaks that only requires black-box access to the target LLM. TAP utilizes an LLM to iteratively refine candidate (attack) prompts using tree-of-thoughts reasoning until one of the generated prompts jailbreaks the target. Crucially, before sending prompts to the target, TAP assesses them and prunes the ones unlikely to result in jailbreaks. Using tree-of-thought reasoning allows TAP to navigate a large search space of prompts and pruning reduces the total number of queries sent to the target. In empirical evaluations, we observe that TAP generates prompts that jailbreak state-of-the-art LLMs (including GPT4 and GPT4-Turbo) for more than 80% of the prompts using only a small number of queries. This significantly improves upon the previous state-of-the-art black-box method for generating jailbreaks.
Anchored Preference Optimization and Contrastive Revisions: Addressing Underspecification in Alignment
Large Language Models (LLMs) are often aligned using contrastive alignment objectives and preference pair datasets. The interaction between model, paired data, and objective makes alignment a complicated procedure, sometimes producing subpar results. We study this and find that (i) preference data gives a better learning signal when the underlying responses are contrastive, and (ii) alignment objectives lead to better performance when they specify more control over the model during training. Based on these insights, we introduce Contrastive Learning from AI Revisions (CLAIR), a data-creation method which leads to more contrastive preference pairs, and Anchored Preference Optimization (APO), a controllable and more stable alignment objective. We align Llama-3-8B-Instruct using various comparable datasets and alignment objectives and measure MixEval-Hard scores, which correlate highly with human judgments. The CLAIR preferences lead to the strongest performance out of all datasets, and APO consistently outperforms less controllable objectives. Our best model, trained on 32K CLAIR preferences with APO, improves Llama-3-8B-Instruct by 7.65%, closing the gap with GPT4-turbo by 45%. Our code is available at https://github.com/ContextualAI/CLAIR_and_APO.
Natural GaLore: Accelerating GaLore for memory-efficient LLM Training and Fine-tuning
Training LLMs presents significant memory challenges due to growing size of data, weights, and optimizer states. Techniques such as data and model parallelism, gradient checkpointing, and offloading strategies address this issue but are often infeasible due to hardware constraints. To mitigate memory usage, alternative methods like Parameter-Efficient-Fine-Tuning (PEFT) and GaLore approximate weights or optimizer states. PEFT methods, such as LoRA, have gained popularity for fine-tuning LLMs, though they require a full-rank warm start. In contrast, GaLore allows full-parameter learning while being more memory-efficient. This work introduces Natural GaLore, a simple drop in replacement for AdamW, which efficiently applies the inverse Empirical Fisher Information Matrix to low-rank gradients using Woodbury's Identity. We demonstrate that incorporating second-order information speeds up optimization significantly, especially when the iteration budget is limited. Empirical pretraining on 60M, 130M, 350M, and 1.1B parameter Llama models on C4 data demonstrate significantly lower perplexity over GaLore without additional memory overhead. By fine-tuning RoBERTa on the GLUE benchmark using Natural GaLore, we demonstrate significant reduction in gap 86.05% vs 86.28% for full-finetuning. Furthermore, fine-tuning the TinyLlama 1.1B model for function calling using the TinyAgent framework shows that Natural GaLore achieving 83.09% accuracy on the TinyAgent dataset, significantly outperforms 16-bit LoRA at 80.06% and even surpasses GPT4-Turbo by 4%, all while using 30% less memory. All code to reproduce the results are available at: https://github.com/selfsupervised-ai/Natural-GaLore.git
Evaluating AI Vocational Skills Through Professional Testing
Using a novel professional certification survey, the study focuses on assessing the vocational skills of two highly cited AI models, GPT-3 and Turbo-GPT3.5. The approach emphasizes the importance of practical readiness over academic performance by examining the models' performances on a benchmark dataset consisting of 1149 professional certifications. This study also includes a comparison with human test scores, providing perspective on the potential of AI models to match or even surpass human performance in professional certifications. GPT-3, even without any fine-tuning or exam preparation, managed to achieve a passing score (over 70% correct) on 39% of the professional certifications. It showcased proficiency in computer-related fields, including cloud and virtualization, business analytics, cybersecurity, network setup and repair, and data analytics. Turbo-GPT3.5, on the other hand, scored a perfect 100% on the highly regarded Offensive Security Certified Professional (OSCP) exam. This model also demonstrated competency in diverse professional fields, such as nursing, licensed counseling, pharmacy, and aviation. Turbo-GPT3.5 exhibited strong performance on customer service tasks, indicating potential use cases in enhancing chatbots for call centers and routine advice services. Both models also scored well on sensory and experience-based tests outside a machine's traditional roles, including wine sommelier, beer tasting, emotional quotient, and body language reading. The study found that OpenAI's model improvement from Babbage to Turbo led to a 60% better performance on the grading scale within a few years. This progress indicates that addressing the current model's limitations could yield an AI capable of passing even the most rigorous professional certifications.
FineTuneBench: How well do commercial fine-tuning APIs infuse knowledge into LLMs?
There is great interest in fine-tuning frontier large language models (LLMs) to inject new information and update existing knowledge. While commercial LLM fine-tuning APIs from providers such as OpenAI and Google promise flexible adaptation for various applications, the efficacy of fine-tuning remains unclear. In this study, we introduce FineTuneBench, an evaluation framework and dataset for understanding how well commercial fine-tuning APIs can successfully learn new and updated knowledge. We analyze five frontier LLMs with commercially available fine-tuning APIs, including GPT-4o and Gemini 1.5 Pro, on their effectiveness in two settings: (1) ingesting novel information, such as recent news events and new people profiles, and (2) updating existing knowledge, such as updated medical guidelines and code frameworks. Our results reveal substantial shortcomings in all the models' abilities to effectively learn new information through fine-tuning, with an average generalization accuracy of 37% across all models. When updating existing knowledge, such as incorporating medical guideline updates, commercial fine-tuning APIs show even more limited capability (average generalization accuracy of 19%). Overall, fine-tuning GPT-4o mini is the most effective for infusing new knowledge and updating knowledge, followed by GPT-3.5 Turbo and GPT-4o. The fine-tuning APIs for Gemini 1.5 Flesh and Gemini 1.5 Pro are unable to learn new knowledge or update existing knowledge. These findings underscore a major shortcoming in using current commercial fine-tuning services to achieve reliable knowledge infusion in common scenarios. We open source the FineTuneBench dataset at https://github.com/kevinwu23/StanfordFineTuneBench.
Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
The large-scale deployment of Solidity smart contracts on the Ethereum mainnet has increasingly attracted financially-motivated attackers in recent years. A few now-infamous attacks in Ethereum's history includes DAO attack in 2016 (50 million dollars lost), Parity Wallet hack in 2017 (146 million dollars locked), Beautychain's token BEC in 2018 (900 million dollars market value fell to 0), and NFT gaming blockchain breach in 2022 ($600 million in Ether stolen). This paper presents a comprehensive investigation of the use of large language models (LLMs) and their capabilities in detecting OWASP Top Ten vulnerabilities in Solidity. We introduce a novel, class-balanced, structured, and labeled dataset named VulSmart, which we use to benchmark and compare the performance of open-source LLMs such as CodeLlama, Llama2, CodeT5 and Falcon, alongside closed-source models like GPT-3.5 Turbo and GPT-4o Mini. Our proposed SmartVD framework is rigorously tested against these models through extensive automated and manual evaluations, utilizing BLEU and ROUGE metrics to assess the effectiveness of vulnerability detection in smart contracts. We also explore three distinct prompting strategies-zero-shot, few-shot, and chain-of-thought-to evaluate the multi-class classification and generative capabilities of the SmartVD framework. Our findings reveal that SmartVD outperforms its open-source counterparts and even exceeds the performance of closed-source base models like GPT-3.5 and GPT-4 Mini. After fine-tuning, the closed-source models, GPT-3.5 Turbo and GPT-4o Mini, achieved remarkable performance with 99% accuracy in detecting vulnerabilities, 94% in identifying their types, and 98% in determining severity. Notably, SmartVD performs best with the `chain-of-thought' prompting technique, whereas the fine-tuned closed-source models excel with the `zero-shot' prompting approach.
GPT-4 Technical Report
We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.
LogiCoT: Logical Chain-of-Thought Instruction-Tuning Data Collection with GPT-4
Generative Pre-trained Transformer 4 (GPT-4) demonstrates impressive chain-of-thought reasoning ability. Recent work on self-instruction tuning, such as Alpaca, has focused on enhancing the general proficiency of models. These instructions enable the model to achieve performance comparable to GPT-3.5 on general tasks like open-domain text generation and paraphrasing. However, they fall short of helping the model handle complex reasoning tasks. To bridge the gap, this paper presents LogiCoT, a new instruction-tuning dataset for Logical Chain-of-Thought reasoning with GPT-4. We elaborate on the process of harvesting instructions for prompting GPT-4 to generate chain-of-thought rationales. LogiCoT serves as an instruction set for teaching models of logical reasoning and elicits general reasoning skills.
MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning
The recently released GPT-4 Code Interpreter has demonstrated remarkable proficiency in solving challenging math problems, primarily attributed to its ability to seamlessly reason with natural language, generate code, execute code, and continue reasoning based on the execution output. In this paper, we present a method to fine-tune open-source language models, enabling them to use code for modeling and deriving math equations and, consequently, enhancing their mathematical reasoning abilities. We propose a method of generating novel and high-quality datasets with math problems and their code-based solutions, referred to as MathCodeInstruct. Each solution interleaves natural language, code, and execution results. We also introduce a customized supervised fine-tuning and inference approach. This approach yields the MathCoder models, a family of models capable of generating code-based solutions for solving challenging math problems. Impressively, the MathCoder models achieve state-of-the-art scores among open-source LLMs on the MATH (45.2%) and GSM8K (83.9%) datasets, substantially outperforming other open-source alternatives. Notably, the MathCoder model not only surpasses ChatGPT-3.5 and PaLM-2 on GSM8K and MATH but also outperforms GPT-4 on the competition-level MATH dataset. The dataset and models will be released at https://github.com/mathllm/MathCoder.
How is ChatGPT's behavior changing over time?
GPT-3.5 and GPT-4 are the two most widely used large language model (LLM) services. However, when and how these models are updated over time is opaque. Here, we evaluate the March 2023 and June 2023 versions of GPT-3.5 and GPT-4 on four diverse tasks: 1) solving math problems, 2) answering sensitive/dangerous questions, 3) generating code and 4) visual reasoning. We find that the performance and behavior of both GPT-3.5 and GPT-4 can vary greatly over time. For example, GPT-4 (March 2023) was very good at identifying prime numbers (accuracy 97.6%) but GPT-4 (June 2023) was very poor on these same questions (accuracy 2.4%). Interestingly GPT-3.5 (June 2023) was much better than GPT-3.5 (March 2023) in this task. GPT-4 was less willing to answer sensitive questions in June than in March, and both GPT-4 and GPT-3.5 had more formatting mistakes in code generation in June than in March. Overall, our findings shows that the behavior of the same LLM service can change substantially in a relatively short amount of time, highlighting the need for continuous monitoring of LLM quality.
MEGAVERSE: Benchmarking Large Language Models Across Languages, Modalities, Models and Tasks
Recently, there has been a rapid advancement in research on Large Language Models (LLMs), resulting in significant progress in several Natural Language Processing (NLP) tasks. Consequently, there has been a surge in LLM evaluation research to comprehend the models' capabilities and limitations. However, much of this research has been confined to the English language, leaving LLM building and evaluation for non-English languages relatively unexplored. There has been an introduction of several new LLMs, necessitating their evaluation on non-English languages. This study aims to expand our MEGA benchmarking suite by including six new datasets to form the MEGAVERSE benchmark. The benchmark comprises 22 datasets covering 81 languages, including low-resource African languages. We evaluate several state-of-the-art LLMs like GPT-3.5-Turbo, GPT4, PaLM2, and Llama2 on the MEGAVERSE datasets. Additionally, we include two multimodal datasets in the benchmark and assess the performance of the LLaVa-v1.5 model. Our experiments suggest that GPT4 and PaLM2 outperform the Llama models on various tasks, notably on low-resource languages, with GPT4 outperforming PaLM2 on more datasets than vice versa. However, issues such as data contamination must be addressed to obtain an accurate assessment of LLM performance on non-English languages.
Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification
This case study investigates the task of job classification in a real-world setting, where the goal is to determine whether an English-language job posting is appropriate for a graduate or entry-level position. We explore multiple approaches to text classification, including supervised approaches such as traditional models like Support Vector Machines (SVMs) and state-of-the-art deep learning methods such as DeBERTa. We compare them with Large Language Models (LLMs) used in both few-shot and zero-shot classification settings. To accomplish this task, we employ prompt engineering, a technique that involves designing prompts to guide the LLMs towards the desired output. Specifically, we evaluate the performance of two commercially available state-of-the-art GPT-3.5-based language models, text-davinci-003 and gpt-3.5-turbo. We also conduct a detailed analysis of the impact of different aspects of prompt engineering on the model's performance. Our results show that, with a well-designed prompt, a zero-shot gpt-3.5-turbo classifier outperforms all other models, achieving a 6% increase in Precision@95% Recall compared to the best supervised approach. Furthermore, we observe that the wording of the prompt is a critical factor in eliciting the appropriate "reasoning" in the model, and that seemingly minor aspects of the prompt significantly affect the model's performance.
Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine
Generalist foundation models such as GPT-4 have displayed surprising capabilities in a wide variety of domains and tasks. Yet, there is a prevalent assumption that they cannot match specialist capabilities of fine-tuned models. For example, most explorations to date on medical competency benchmarks have leveraged domain-specific training, as exemplified by efforts on BioGPT and Med-PaLM. We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training. Rather than using simple prompting to highlight the model's out-of-the-box capabilities, we perform a systematic exploration of prompt engineering. We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks. The prompting methods we explore are general purpose, and make no specific use of domain expertise, removing the need for expert-curated content. Our experimental design carefully controls for overfitting during the prompt engineering process. We introduce Medprompt, based on a composition of several prompting strategies. With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite. The method outperforms leading specialist models such as Med-PaLM 2 by a significant margin with an order of magnitude fewer calls to the model. Steering GPT-4 with Medprompt achieves a 27% reduction in error rate on the MedQA dataset over the best methods to date achieved with specialist models and surpasses a score of 90% for the first time. Beyond medical problems, we show the power of Medprompt to generalize to other domains and provide evidence for the broad applicability of the approach via studies of the strategy on exams in electrical engineering, machine learning, philosophy, accounting, law, nursing, and clinical psychology.
Pre-Trained Large Language Models for Industrial Control
For industrial control, developing high-performance controllers with few samples and low technical debt is appealing. Foundation models, possessing rich prior knowledge obtained from pre-training with Internet-scale corpus, have the potential to be a good controller with proper prompts. In this paper, we take HVAC (Heating, Ventilation, and Air Conditioning) building control as an example to examine the ability of GPT-4 (one of the first-tier foundation models) as the controller. To control HVAC, we wrap the task as a language game by providing text including a short description for the task, several selected demonstrations, and the current observation to GPT-4 on each step and execute the actions responded by GPT-4. We conduct series of experiments to answer the following questions: 1)~How well can GPT-4 control HVAC? 2)~How well can GPT-4 generalize to different scenarios for HVAC control? 3) How different parts of the text context affect the performance? In general, we found GPT-4 achieves the performance comparable to RL methods with few samples and low technical debt, indicating the potential of directly applying foundation models to industrial control tasks.
Can GPT-4 Perform Neural Architecture Search?
We investigate the potential of GPT-4~gpt4 to perform Neural Architecture Search (NAS) -- the task of designing effective neural architectures. Our proposed approach, GPT-4 Enhanced Neural archItectUre Search (GENIUS), leverages the generative capabilities of GPT-4 as a black-box optimiser to quickly navigate the architecture search space, pinpoint promising candidates, and iteratively refine these candidates to improve performance. We assess GENIUS across several benchmarks, comparing it with existing state-of-the-art NAS techniques to illustrate its effectiveness. Rather than targeting state-of-the-art performance, our objective is to highlight GPT-4's potential to assist research on a challenging technical problem through a simple prompting scheme that requires relatively limited domain expertiseCode available at \href{https://github.com/mingkai-zheng/GENIUS{https://github.com/mingkai-zheng/GENIUS}.}. More broadly, we believe our preliminary results point to future research that harnesses general purpose language models for diverse optimisation tasks. We also highlight important limitations to our study, and note implications for AI safety.
Towards smaller, faster decoder-only transformers: Architectural variants and their implications
Research on Large Language Models (LLMs) has recently seen exponential growth, largely focused on transformer-based architectures, as introduced by [1] and further advanced by the decoder-only variations in [2]. Contemporary studies typically aim to improve model capabilities by increasing both the architecture's complexity and the volume of training data. However, research exploring how to reduce model sizes while maintaining performance is limited. This study introduces three modifications to the decoder-only transformer architecture: ParallelGPT (p-gpt), LinearlyCompressedGPT (lc-gpt), and ConvCompressedGPT (cc-gpt). These variants achieve comparable performance to conventional architectures in code generation tasks while benefiting from reduced model sizes and faster training times. We open-source the model weights and codebase to support future research and development in this domain.
Examining User-Friendly and Open-Sourced Large GPT Models: A Survey on Language, Multimodal, and Scientific GPT Models
Generative pre-trained transformer (GPT) models have revolutionized the field of natural language processing (NLP) with remarkable performance in various tasks and also extend their power to multimodal domains. Despite their success, large GPT models like GPT-4 face inherent limitations such as considerable size, high computational requirements, complex deployment processes, and closed development loops. These constraints restrict their widespread adoption and raise concerns regarding their responsible development and usage. The need for user-friendly, relatively small, and open-sourced alternative GPT models arises from the desire to overcome these limitations while retaining high performance. In this survey paper, we provide an examination of alternative open-sourced models of large GPTs, focusing on user-friendly and relatively small models that facilitate easier deployment and accessibility. Through this extensive survey, we aim to equip researchers, practitioners, and enthusiasts with a thorough understanding of user-friendly and relatively small open-sourced models of large GPTs, their current state, challenges, and future research directions, inspiring the development of more efficient, accessible, and versatile GPT models that cater to the broader scientific community and advance the field of general artificial intelligence. The source contents are continuously updating in https://github.com/GPT-Alternatives/gpt_alternatives.
SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot
We show for the first time that large-scale generative pretrained transformer (GPT) family models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal loss of accuracy. This is achieved via a new pruning method called SparseGPT, specifically designed to work efficiently and accurately on massive GPT-family models. We can execute SparseGPT on the largest available open-source models, OPT-175B and BLOOM-176B, in under 4.5 hours, and can reach 60% unstructured sparsity with negligible increase in perplexity: remarkably, more than 100 billion weights from these models can be ignored at inference time. SparseGPT generalizes to semi-structured (2:4 and 4:8) patterns, and is compatible with weight quantization approaches. The code is available at: https://github.com/IST-DASLab/sparsegpt.
SAGE-RT: Synthetic Alignment data Generation for Safety Evaluation and Red Teaming
We introduce Synthetic Alignment data Generation for Safety Evaluation and Red Teaming (SAGE-RT or SAGE) a novel pipeline for generating synthetic alignment and red-teaming data. Existing methods fall short in creating nuanced and diverse datasets, providing necessary control over the data generation and validation processes, or require large amount of manually generated seed data. SAGE addresses these limitations by using a detailed taxonomy to produce safety-alignment and red-teaming data across a wide range of topics. We generated 51,000 diverse and in-depth prompt-response pairs, encompassing over 1,500 topics of harmfulness and covering variations of the most frequent types of jailbreaking prompts faced by large language models (LLMs). We show that the red-teaming data generated through SAGE jailbreaks state-of-the-art LLMs in more than 27 out of 32 sub-categories, and in more than 58 out of 279 leaf-categories (sub-sub categories). The attack success rate for GPT-4o, GPT-3.5-turbo is 100% over the sub-categories of harmfulness. Our approach avoids the pitfalls of synthetic safety-training data generation such as mode collapse and lack of nuance in the generation pipeline by ensuring a detailed coverage of harmful topics using iterative expansion of the topics and conditioning the outputs on the generated raw-text. This method can be used to generate red-teaming and alignment data for LLM Safety completely synthetically to make LLMs safer or for red-teaming the models over a diverse range of topics.
The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A"
We expose a surprising failure of generalization in auto-regressive large language models (LLMs). If a model is trained on a sentence of the form "A is B", it will not automatically generalize to the reverse direction "B is A". This is the Reversal Curse. For instance, if a model is trained on "Olaf Scholz was the ninth Chancellor of Germany", it will not automatically be able to answer the question, "Who was the ninth Chancellor of Germany?". Moreover, the likelihood of the correct answer ("Olaf Scholz") will not be higher than for a random name. Thus, models exhibit a basic failure of logical deduction and do not generalize a prevalent pattern in their training set (i.e. if "A is B'' occurs, "B is A" is more likely to occur). We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1 on fictitious statements such as "Uriah Hawthorne is the composer of 'Abyssal Melodies'" and showing that they fail to correctly answer "Who composed 'Abyssal Melodies?'". The Reversal Curse is robust across model sizes and model families and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-3.5 and GPT-4) on questions about real-world celebrities, such as "Who is Tom Cruise's mother? [A: Mary Lee Pfeiffer]" and the reverse "Who is Mary Lee Pfeiffer's son?". GPT-4 correctly answers questions like the former 79% of the time, compared to 33% for the latter. This shows a failure of logical deduction that we hypothesize is caused by the Reversal Curse. Code is available at https://github.com/lukasberglund/reversal_curse.
Selection of Prompt Engineering Techniques for Code Generation through Predicting Code Complexity
Large Language Models (LLMs) have demonstrated impressive performance in software engineering tasks. However, improving their accuracy in generating correct and reliable code remains challenging. Numerous prompt engineering techniques (PETs) have been developed to address this, but no single approach is universally optimal. Selecting the right PET for each query is difficult for two primary reasons: (1) interactive prompting techniques may not consistently deliver the expected benefits, especially for simpler queries, and (2) current automated prompt engineering methods lack adaptability and fail to fully utilize multi-stage responses. To overcome these challenges, we propose PET-Select, a PET-agnostic selection model that uses code complexity as a proxy to classify queries and select the most appropriate PET. By incorporating contrastive learning, PET-Select effectively distinguishes between simple and complex problems, allowing it to choose PETs that are best suited for each query's complexity level. Our evaluations on the MBPP and HumanEval benchmarks using GPT-3.5 Turbo and GPT-4o show up to a 1.9% improvement in pass@1 accuracy, along with a 74.8% reduction in token usage. Additionally, we provide both quantitative and qualitative results to demonstrate how PET-Select effectively selects the most appropriate techniques for each code generation query, further showcasing its efficiency in optimizing PET selection.
DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models
Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications to healthcare and finance - where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives - including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially due to the reason that GPT-4 follows the (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at https://decodingtrust.github.io/.
Solving Challenging Math Word Problems Using GPT-4 Code Interpreter with Code-based Self-Verification
Recent progress in large language models (LLMs) like GPT-4 and PaLM-2 has brought significant advancements in addressing math reasoning problems. In particular, OpenAI's latest version of GPT-4, known as GPT-4 Code Interpreter, shows remarkable performance on challenging math datasets. In this paper, we explore the effect of code on enhancing LLMs' reasoning capability by introducing different constraints on the Code Usage Frequency of GPT-4 Code Interpreter. We found that its success can be largely attributed to its powerful skills in generating and executing code, evaluating the output of code execution, and rectifying its solution when receiving unreasonable outputs. Based on this insight, we propose a novel and effective prompting method, explicit code-based self-verification~(CSV), to further boost the mathematical reasoning potential of GPT-4 Code Interpreter. This method employs a zero-shot prompt on GPT-4 Code Interpreter to encourage it to use code to self-verify its answers. In instances where the verification state registers as ``False'', the model shall automatically amend its solution, analogous to our approach of rectifying errors during a mathematics examination. Furthermore, we recognize that the states of the verification result indicate the confidence of a solution, which can improve the effectiveness of majority voting. With GPT-4 Code Interpreter and CSV, we achieve an impressive zero-shot accuracy on MATH dataset (53.9\% to 84.3\%).
GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers
Generative Pre-trained Transformer models, known as GPT or OPT, set themselves apart through breakthrough performance across complex language modelling tasks, but also by their extremely high computational and storage costs. Specifically, due to their massive size, even inference for large, highly-accurate GPT models may require multiple performant GPUs, which limits the usability of such models. While there is emerging work on relieving this pressure via model compression, the applicability and performance of existing compression techniques is limited by the scale and complexity of GPT models. In this paper, we address this challenge, and propose GPTQ, a new one-shot weight quantization method based on approximate second-order information, that is both highly-accurate and highly-efficient. Specifically, GPTQ can quantize GPT models with 175 billion parameters in approximately four GPU hours, reducing the bitwidth down to 3 or 4 bits per weight, with negligible accuracy degradation relative to the uncompressed baseline. Our method more than doubles the compression gains relative to previously-proposed one-shot quantization methods, preserving accuracy, allowing us for the first time to execute an 175 billion-parameter model inside a single GPU for generative inference. Moreover, we also show that our method can still provide reasonable accuracy in the extreme quantization regime, in which weights are quantized to 2-bit or even ternary quantization levels. We show experimentally that these improvements can be leveraged for end-to-end inference speedups over FP16, of around 3.25x when using high-end GPUs (NVIDIA A100) and 4.5x when using more cost-effective ones (NVIDIA A6000). The implementation is available at https://github.com/IST-DASLab/gptq.
Evaluating GPT-3.5 and GPT-4 Models on Brazilian University Admission Exams
The present study aims to explore the capabilities of Language Models (LMs) in tackling high-stakes multiple-choice tests, represented here by the Exame Nacional do Ensino M\'edio (ENEM), a multidisciplinary entrance examination widely adopted by Brazilian universities. This exam poses challenging tasks for LMs, since its questions may span into multiple fields of knowledge, requiring understanding of information from diverse domains. For instance, a question may require comprehension of both statistics and biology to be solved. This work analyzed responses generated by GPT-3.5 and GPT-4 models for questions presented in the 2009-2017 exams, as well as for questions of the 2022 exam, which were made public after the training of the models was completed. Furthermore, different prompt strategies were tested, including the use of Chain-of-Thought (CoT) prompts to generate explanations for answers. On the 2022 edition, the best-performing model, GPT-4 with CoT, achieved an accuracy of 87%, largely surpassing GPT-3.5 by 11 points. The code and data used on experiments are available at https://github.com/piresramon/gpt-4-enem.
Generative AI for Programming Education: Benchmarking ChatGPT, GPT-4, and Human Tutors
Generative AI and large language models hold great promise in enhancing computing education by powering next-generation educational technologies for introductory programming. Recent works have studied these models for different scenarios relevant to programming education; however, these works are limited for several reasons, as they typically consider already outdated models or only specific scenario(s). Consequently, there is a lack of a systematic study that benchmarks state-of-the-art models for a comprehensive set of programming education scenarios. In our work, we systematically evaluate two models, ChatGPT (based on GPT-3.5) and GPT-4, and compare their performance with human tutors for a variety of scenarios. We evaluate using five introductory Python programming problems and real-world buggy programs from an online platform, and assess performance using expert-based annotations. Our results show that GPT-4 drastically outperforms ChatGPT (based on GPT-3.5) and comes close to human tutors' performance for several scenarios. These results also highlight settings where GPT-4 still struggles, providing exciting future directions on developing techniques to improve the performance of these models.
Blockwise Compression of Transformer-based Models without Retraining
Transformer-based models, exemplified by GPT-3, ChatGPT, and GPT-4, have recently garnered considerable attention in both academia and industry due to their promising performance in general language tasks. Nevertheless, these models typically involve computationally encoding processes, and in some cases, decoding processes as well, both of which are fundamentally large-scale matrix multiplication. These operations bring the inevitable challenges of massive computation resources and huge memory footprint, usually requiring at least 10^23 FLOPs and hundreds of gigabytes, respectively. A common method to address this issue is to reduce the computational and memory requirements by applying layerwise quantization to the transformer, replacing the usual fp32 data type with a low-bit equivalent. Unfortunately, this method often leads to decreased model accuracy and necessitates time-consuming retraining. Such retraining not only requires fine-tuning skills but also substantial computational resources, posing challenges for users. To specifically tackle these issues, we propose BCT, a framework of blockwise compression for transformers without retraining, aiming to facilitate model deployment. Unlike layerwise compression methods, BCT achieves finer compression of the entire transformer by operating blockwise. This method mitigates data distribution deviation caused by quantization, eliminating the requirement for retraining. BCT effectively compresses all components of the model, including but not limited to the embedding, matrix multiplication, GELU, Softmax, layer normalization, and intermediate results. In a case study, an efficient model is compressed by BCT achieving up to 7.988x compression. Subsequently, we also evaluate it on several General Language Understanding Evaluation (GLUE) datasets.
CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance
Existing methods fail to effectively steer Large Language Models (LLMs) between textual reasoning and code generation, leaving symbolic computing capabilities underutilized. We introduce CodeSteer, an effective method for guiding LLM code/text generation. We construct a comprehensive benchmark SymBench comprising 37 symbolic tasks with adjustable complexity and also synthesize datasets of 12k multi-round guidance/generation trajectories and 5.5k guidance comparison pairs. We fine-tune the Llama-3-8B model with a newly designed multi-round supervised fine-tuning (SFT) and direct preference optimization (DPO). The resulting model, CodeSteerLLM, augmented with the proposed symbolic and self-answer checkers, effectively guides the code/text generation of larger models. Augmenting GPT-4o with CodeSteer raises its average performance score from 53.3 to 86.4, even outperforming the existing best LLM OpenAI o1 (82.7), o1-preview (74.8), and DeepSeek R1 (76.8) across all 37 tasks (28 seen, 9 unseen). Trained for GPT-4o, CodeSteer demonstrates superior generalizability, providing an average 41.8 performance boost on Claude, Mistral, and GPT-3.5. CodeSteer-guided LLMs fully harness symbolic computing to maintain strong performance on highly complex tasks. Models, Datasets, and Codes are available at https://github.com/yongchao98/CodeSteer-v1.0.
Instruction Tuning with GPT-4
Prior work has shown that finetuning large language models (LLMs) using machine-generated instruction-following data enables such models to achieve remarkable zero-shot capabilities on new tasks, and no human-written instructions are needed. In this paper, we present the first attempt to use GPT-4 to generate instruction-following data for LLM finetuning. Our early experiments on instruction-tuned LLaMA models show that the 52K English and Chinese instruction-following data generated by GPT-4 leads to superior zero-shot performance on new tasks to the instruction-following data generated by previous state-of-the-art models. We also collect feedback and comparison data from GPT-4 to enable a comprehensive evaluation and reward model training. We make our data generated using GPT-4 as well as our codebase publicly available.
Instructing Large Language Models to Identify and Ignore Irrelevant Conditions
Math word problem (MWP) solving requires generating a reasoning path based on a given problem description that often contains irrelevant conditions. Existing chain-of-thought (CoT) prompting methods elicited multi-step reasoning abilities of large language models (LLMs) to solve MWPs. However, they were seriously confused by the irrelevant conditions, resulting in low accuracy. In this paper, we propose a novel approach named I^3C that instructs LLMs to identify and ignore irrelevant conditions. It identifies a set of irrelevant condition candidates that have a weak semantic relevance with the question. Then it prompts LLMs to verify the irrelevant conditions. Lastly it instructs the LLMs with the verification on relevant and irrelevant conditions to avoid confusion and improve reasoning paths. Moreover, we propose to select (problem, reasoning paths) pairs as demonstrations to enhance I^3C with few-shot reasoning. We develop I^3C-Select that selects the most confusing problems based on the semantic relevance measurement. We conduct extensive experiments on eight MWP datasets. I^3C can be combined with any CoT prompting methods to improve the performance of solving MWPs. Notably, with GPT-3.5-Turbo and I^3C-Select, we achieve an accuracy of 96.0 and 94.1 on GSM-IC2-1K and GSM-ICM-1K, respectively, significantly outperforming the state-of-the-art few-shot prompting method Complex-CoT by +11.7 and +11.1. Our implementation is made publicly available at https://wzy6642.github.io/I3C.github.io/.
RethinkMCTS: Refining Erroneous Thoughts in Monte Carlo Tree Search for Code Generation
LLM agents enhanced by tree search algorithms have yielded notable performances in code generation. However, current search algorithms in this domain suffer from low search quality due to several reasons: 1) Ineffective design of the search space for the high-reasoning demands of code generation tasks, 2) Inadequate integration of code feedback with the search algorithm, and 3) Poor handling of negative feedback during the search, leading to reduced search efficiency and quality. To address these challenges, we propose to search for the reasoning process of the code and use the detailed feedback of code execution to refine erroneous thoughts during the search. In this paper, we introduce RethinkMCTS, which employs the Monte Carlo Tree Search (MCTS) algorithm to conduct thought-level searches before generating code, thereby exploring a wider range of strategies. More importantly, we construct verbal feedback from fine-grained code execution feedback to refine erroneous thoughts during the search. This ensures that the search progresses along the correct reasoning paths, thus improving the overall search quality of the tree by leveraging execution feedback. Through extensive experiments, we demonstrate that RethinkMCTS outperforms previous search-based and feedback-based code generation baselines. On the HumanEval dataset, it improves the pass@1 of GPT-3.5-turbo from 70.12 to 89.02 and GPT-4o-mini from 87.20 to 94.51. It effectively conducts more thorough exploration through thought-level searches and enhances the search quality of the entire tree by incorporating rethink operation.