new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training Data Exploration

Noticing the urgent need to provide tools for fast and user-friendly qualitative analysis of large-scale textual corpora of the modern NLP, we propose to turn to the mature and well-tested methods from the domain of Information Retrieval (IR) - a research field with a long history of tackling TB-scale document collections. We discuss how Pyserini - a widely used toolkit for reproducible IR research can be integrated with the Hugging Face ecosystem of open-source AI libraries and artifacts. We leverage the existing functionalities of both platforms while proposing novel features further facilitating their integration. Our goal is to give NLP researchers tools that will allow them to develop retrieval-based instrumentation for their data analytics needs with ease and agility. We include a Jupyter Notebook-based walk through the core interoperability features, available on GitHub at https://github.com/huggingface/gaia. We then demonstrate how the ideas we present can be operationalized to create a powerful tool for qualitative data analysis in NLP. We present GAIA Search - a search engine built following previously laid out principles, giving access to four popular large-scale text collections. GAIA serves a dual purpose of illustrating the potential of methodologies we discuss but also as a standalone qualitative analysis tool that can be leveraged by NLP researchers aiming to understand datasets prior to using them in training. GAIA is hosted live on Hugging Face Spaces - https://huggingface.co/spaces/spacerini/gaia.

GAIA: A Global, Multi-modal, Multi-scale Vision-Language Dataset for Remote Sensing Image Analysis

The continuous operation of Earth-orbiting satellites generates vast and ever-growing archives of Remote Sensing (RS) images. Natural language presents an intuitive interface for accessing, querying, and interpreting the data from such archives. However, existing Vision-Language Models (VLMs) are predominantly trained on web-scraped, noisy image-text data, exhibiting limited exposure to the specialized domain of RS. This deficiency results in poor performance on RS-specific tasks, as commonly used datasets often lack detailed, scientifically accurate textual descriptions and instead emphasize solely on attributes like date and location. To bridge this critical gap, we introduce GAIA, a novel dataset designed for multi-scale, multi-sensor, and multi-modal RS image analysis. GAIA comprises of 205,150 meticulously curated RS image-text pairs, representing a diverse range of RS modalities associated to different spatial resolutions. Unlike existing vision-language datasets in RS, GAIA specifically focuses on capturing a diverse range of RS applications, providing unique information about environmental changes, natural disasters, and various other dynamic phenomena. The dataset provides a spatially and temporally balanced distribution, spanning across the globe, covering the last 25 years with a balanced temporal distribution of observations. GAIA's construction involved a two-stage process: (1) targeted web-scraping of images and accompanying text from reputable RS-related sources, and (2) generation of five high-quality, scientifically grounded synthetic captions for each image using carefully crafted prompts that leverage the advanced vision-language capabilities of GPT-4o. Our extensive experiments, including fine-tuning of CLIP and BLIP2 models, demonstrate that GAIA significantly improves performance on RS image classification, cross-modal retrieval and image captioning tasks.

GAIA: Rethinking Action Quality Assessment for AI-Generated Videos

Assessing action quality is both imperative and challenging due to its significant impact on the quality of AI-generated videos, further complicated by the inherently ambiguous nature of actions within AI-generated video (AIGV). Current action quality assessment (AQA) algorithms predominantly focus on actions from real specific scenarios and are pre-trained with normative action features, thus rendering them inapplicable in AIGVs. To address these problems, we construct GAIA, a Generic AI-generated Action dataset, by conducting a large-scale subjective evaluation from a novel causal reasoning-based perspective, resulting in 971,244 ratings among 9,180 video-action pairs. Based on GAIA, we evaluate a suite of popular text-to-video (T2V) models on their ability to generate visually rational actions, revealing their pros and cons on different categories of actions. We also extend GAIA as a testbed to benchmark the AQA capacity of existing automatic evaluation methods. Results show that traditional AQA methods, action-related metrics in recent T2V benchmarks, and mainstream video quality methods perform poorly with an average SRCC of 0.454, 0.191, and 0.519, respectively, indicating a sizable gap between current models and human action perception patterns in AIGVs. Our findings underscore the significance of action quality as a unique perspective for studying AIGVs and can catalyze progress towards methods with enhanced capacities for AQA in AIGVs.

Gaia Data Release 3: Summary of the content and survey properties

We present the third data release of the European Space Agency's Gaia mission, GDR3. The GDR3 catalogue is the outcome of the processing of raw data collected with the Gaia instruments during the first 34 months of the mission by the Gaia Data Processing and Analysis Consortium. The GDR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in the G, G_{BP}, and G_{RP} pass-bands already present in the Early Third Data Release. GDR3 introduces an impressive wealth of new data products. More than 33 million objects in the ranges G_{rvs} < 14 and 3100 <T_{eff} <14500 , have new determinations of their mean radial velocities based on data collected by Gaia. We provide G_{rvs} magnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. Mean Gaia spectra are made available to the community. The GDR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BPRP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types. GDR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some 800,000 astrometric, spectroscopic and eclipsing binaries. More than 150,000 Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BPRP spectral data are published for about 60\,000 asteroids. Finally, an additional data set is provided, namely the Gaia Andromeda Photometric Survey (abridged)

Resolving Pleiades binary stars with Gaia and speckle interferometric observations

The Pleiades is the most prominent open star cluster visible from Earth and an important benchmark for simple stellar populations, unified by common origin, age, and distance. Binary stars are its essential ingredient, yet their contribution remains uncertain due to heavy observational biases. A resolved multiplicity survey was conducted for a magnitude-limited G < 15mag sample of 423 potential cluster members, including sources with poorly fitted astrometric solutions in Gaia DR3. Speckle interferometric observations at the 2.5 meter telescope of SAI MSU observatory were combined with Gaia data, enabling the identification of 61 resolved binary or multiple systems within the 0.04 - 10 arcsec (5 - 1350 au) separation range. With speckle observations, we discovered 21 components in 20 systems. The existence of a Merope (23 Tau) companion is confirmed after several previous unsuccessful attempts. We show that the Gaia multipeak fraction is a strong predictor of subarcsecond multiplicity, as all sources with ipd_frac_multi_peak > 4% are successfully resolved. We found that 10% of Pleiades stars have a companion with a mass ratio q > 0.5 within projected separation of 27 < s < 1350 au, and confirm a deficit of wide binaries with s > 300 au. An observed dearth of wide pairs with large mass ratio (q > 0.55) may imprint the transition from hard to soft binaries regime at the early stages of cluster evolution. The total binary fraction for q > 0.5 systems is extrapolated to be around 25%.

Red, hot, and very metal poor: extreme properties of a massive accreting black hole in the first 500 Myr

The James Webb Space Telescope (JWST) has recently discovered a new population of objects at high redshift referred to as `Little Red Dots' (LRDs). Their nature currently remains elusive, despite their surprisingly high inferred number densities. This emerging population of red point-like sources is reshaping our view of the early Universe and may shed light on the formation of high-redshift supermassive black holes. Here we present a spectroscopically confirmed LRD CANUCS-LRD-z8.6 at z_{rm spec}=8.6319pm 0.0005 hosting an Active Galactic Nucleus (AGN), using JWST data. This source shows the typical spectral shape of an LRD (blue UV and red optical continuum, unresolved in JWST imaging), along with broad Hbeta line emission, detection of high-ionization emission lines (CIV, NIV]) and very high electron temperature indicative of the presence of AGN. This is also combined with a very low metallicity (Z<0.1 Z_odot). The presence of all these diverse features in one source makes CANUCS-LRD-z8.6 unique. We show that the inferred black hole mass of CANUCS-LRD-z8.6 (M_{rm BH}=1.0^{+0.6}_{-0.4}times 10^{8}rm ~M_odot) strongly challenges current standard theoretical models and simulations of black hole formation, and forces us to adopt `ad hoc' prescriptions. Indeed if massive seeds, or light seeds with super-Eddington accretion, are considered, the observed BH mass of CANUCS-LRD-z8.6 at z=8.6 can be reproduced. Moreover, the black hole is over-massive compared to its host, relative to the local M_{rm BH}-M_* relations, pointing towards an earlier and faster evolution of the black hole compared to its host galaxy.

Detecting eclipsing double white dwarfs with electromagnetic and gravitational waves

Galactic double white dwarfs are predominant sources of gravitational waves in the millihertz frequencies accessible to space-borne gravitational wave detectors. With advances in multi-messenger astronomy, an increasing number of double white dwarf systems will be discovered through both electromagnetic and gravitational wave observations. In this paper, we simulated two populations of double white dwarfs originating from different star formation histories (hereafter referred to as Model 1 and Model 2) using the binary population synthesis method. We predicted the number of double white dwarfs in our Galaxy detectable by TianQin and Laser Interferometer Space Antenna (LISA) individually, as well as through their joint observation. In addition, we performed an analysis to evaluate the accuracy of the parameter estimation using the Fisher information matrix. Furthermore, we predicted the number of detached eclipsing double white dwarfs detectable by Gaia and the Vera C. Rubin Observatory (VRO). Our study found that over the nominal mission durations, TianQin, LISA, and their joint observation can detect at least five thousand and potentially several tens of thousands of double white dwarfs with signal-to-noise ratios greater than 7. Gaia and VRO are expected to detect at least several dozen and up to several hundred eclipsing double white dwarfs with orbital periods less than 30 hours. We also found that several dozen eclipsing double white dwarfs can be detected jointly through electromagnetic and gravitational wave observations.