1 LINGUIST: Language Model Instruction Tuning to Generate Annotated Utterances for Intent Classification and Slot Tagging We present LINGUIST, a method for generating annotated data for Intent Classification and Slot Tagging (IC+ST), via fine-tuning AlexaTM 5B, a 5-billion-parameter multilingual sequence-to-sequence (seq2seq) model, on a flexible instruction prompt. In a 10-shot novel intent setting for the SNIPS dataset, LINGUIST surpasses state-of-the-art approaches (Back-Translation and Example Extrapolation) by a wide margin, showing absolute improvement for the target intents of +1.9 points on IC Recall and +2.5 points on ST F1 Score. In the zero-shot cross-lingual setting of the mATIS++ dataset, LINGUIST out-performs a strong baseline of Machine Translation with Slot Alignment by +4.14 points absolute on ST F1 Score across 6 languages, while matching performance on IC. Finally, we verify our results on an internal large-scale multilingual dataset for conversational agent IC+ST and show significant improvements over a baseline which uses Back-Translation, Paraphrasing and Slot Catalog Resampling. To our knowledge, we are the first to demonstrate instruction fine-tuning of a large-scale seq2seq model to control the outputs of multilingual intent- and slot-labeled data generation. 5 authors · Sep 20, 2022
- Evaluating Interpolation and Extrapolation Performance of Neural Retrieval Models A retrieval model should not only interpolate the training data but also extrapolate well to the queries that are different from the training data. While neural retrieval models have demonstrated impressive performance on ad-hoc search benchmarks, we still know little about how they perform in terms of interpolation and extrapolation. In this paper, we demonstrate the importance of separately evaluating the two capabilities of neural retrieval models. Firstly, we examine existing ad-hoc search benchmarks from the two perspectives. We investigate the distribution of training and test data and find a considerable overlap in query entities, query intent, and relevance labels. This finding implies that the evaluation on these test sets is biased toward interpolation and cannot accurately reflect the extrapolation capacity. Secondly, we propose a novel evaluation protocol to separately evaluate the interpolation and extrapolation performance on existing benchmark datasets. It resamples the training and test data based on query similarity and utilizes the resampled dataset for training and evaluation. Finally, we leverage the proposed evaluation protocol to comprehensively revisit a number of widely-adopted neural retrieval models. Results show models perform differently when moving from interpolation to extrapolation. For example, representation-based retrieval models perform almost as well as interaction-based retrieval models in terms of interpolation but not extrapolation. Therefore, it is necessary to separately evaluate both interpolation and extrapolation performance and the proposed resampling method serves as a simple yet effective evaluation tool for future IR studies. 7 authors · Apr 25, 2022
- Scaling Behavior for Large Language Models regarding Numeral Systems: An Example using Pythia Though Large Language Models (LLMs) have shown remarkable abilities in mathematics reasoning, they are still struggling with performing numeric operations accurately, such as addition and multiplication. Numbers can be tokenized into tokens in various ways by different LLMs and affect the numeric operations performance. Currently, there are two representatives: 1) Tokenize into 1-digit, and 2) Tokenize into 1sim 3 digit. The difference is roughly equivalent to using different numeral systems (namely base 10 or base 10^{3}). In light of this, we study the scaling behavior of different numeral systems in the context of transformer-based large language models. We empirically show that a base 10 system is consistently more data-efficient than a base 10^{2} or 10^{3} system across training data scale, model sizes under from-scratch training settings, while different number systems have very similar fine-tuning performances. We attribute this to higher token frequencies of a base 10 system. Additionally, we reveal extrapolation behavior patterns on addition and multiplication. We identify that base 100 and base 1000 systems struggle on token-level discernment and token-level operations. We also sheds light on the mechanism learnt by the models. 4 authors · Sep 25, 2024
- Scaling Scaling Laws with Board Games The largest experiments in machine learning now require resources far beyond the budget of all but a few institutions. Fortunately, it has recently been shown that the results of these huge experiments can often be extrapolated from the results of a sequence of far smaller, cheaper experiments. In this work, we show that not only can the extrapolation be done based on the size of the model, but on the size of the problem as well. By conducting a sequence of experiments using AlphaZero and Hex, we show that the performance achievable with a fixed amount of compute degrades predictably as the game gets larger and harder. Along with our main result, we further show that the test-time and train-time compute available to an agent can be traded off while maintaining performance. 1 authors · Apr 7, 2021
- Neural Status Registers Standard Neural Networks can learn mathematical operations, but they do not extrapolate. Extrapolation means that the model can apply to larger numbers, well beyond those observed during training. Recent architectures tackle arithmetic operations and can extrapolate; however, the equally important problem of quantitative reasoning remains unaddressed. In this work, we propose a novel architectural element, the Neural Status Register (NSR), for quantitative reasoning over numbers. Our NSR relaxes the discrete bit logic of physical status registers to continuous numbers and allows end-to-end learning with gradient descent. Experiments show that the NSR achieves solutions that extrapolate to numbers many orders of magnitude larger than those in the training set. We successfully train the NSR on number comparisons, piecewise discontinuous functions, counting in sequences, recurrently finding minimums, finding shortest paths in graphs, and comparing digits in images. 2 authors · Apr 15, 2020
- The Computational Limits of Deep Learning Deep learning's recent history has been one of achievement: from triumphing over humans in the game of Go to world-leading performance in image classification, voice recognition, translation, and other tasks. But this progress has come with a voracious appetite for computing power. This article catalogs the extent of this dependency, showing that progress across a wide variety of applications is strongly reliant on increases in computing power. Extrapolating forward this reliance reveals that progress along current lines is rapidly becoming economically, technically, and environmentally unsustainable. Thus, continued progress in these applications will require dramatically more computationally-efficient methods, which will either have to come from changes to deep learning or from moving to other machine learning methods. 4 authors · Jul 10, 2020
1 Exploring Length Generalization in Large Language Models The ability to extrapolate from short problem instances to longer ones is an important form of out-of-distribution generalization in reasoning tasks, and is crucial when learning from datasets where longer problem instances are rare. These include theorem proving, solving quantitative mathematics problems, and reading/summarizing novels. In this paper, we run careful empirical studies exploring the length generalization capabilities of transformer-based language models. We first establish that naively finetuning transformers on length generalization tasks shows significant generalization deficiencies independent of model scale. We then show that combining pretrained large language models' in-context learning abilities with scratchpad prompting (asking the model to output solution steps before producing an answer) results in a dramatic improvement in length generalization. We run careful failure analyses on each of the learning modalities and identify common sources of mistakes that highlight opportunities in equipping language models with the ability to generalize to longer problems. 10 authors · Jul 11, 2022
- Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks Learning curve extrapolation aims to predict model performance in later epochs of training, based on the performance in earlier epochs. In this work, we argue that, while the inherent uncertainty in the extrapolation of learning curves warrants a Bayesian approach, existing methods are (i) overly restrictive, and/or (ii) computationally expensive. We describe the first application of prior-data fitted neural networks (PFNs) in this context. A PFN is a transformer, pre-trained on data generated from a prior, to perform approximate Bayesian inference in a single forward pass. We propose LC-PFN, a PFN trained to extrapolate 10 million artificial right-censored learning curves generated from a parametric prior proposed in prior art using MCMC. We demonstrate that LC-PFN can approximate the posterior predictive distribution more accurately than MCMC, while being over 10 000 times faster. We also show that the same LC-PFN achieves competitive performance extrapolating a total of 20 000 real learning curves from four learning curve benchmarks (LCBench, NAS-Bench-201, Taskset, and PD1) that stem from training a wide range of model architectures (MLPs, CNNs, RNNs, and Transformers) on 53 different datasets with varying input modalities (tabular, image, text, and protein data). Finally, we investigate its potential in the context of model selection and find that a simple LC-PFN based predictive early stopping criterion obtains 2 - 6x speed-ups on 45 of these datasets, at virtually no overhead. 4 authors · Oct 31, 2023
1 Extrapolative Controlled Sequence Generation via Iterative Refinement We study the problem of extrapolative controlled generation, i.e., generating sequences with attribute values beyond the range seen in training. This task is of significant importance in automated design, especially drug discovery, where the goal is to design novel proteins that are better (e.g., more stable) than existing sequences. Thus, by definition, the target sequences and their attribute values are out of the training distribution, posing challenges to existing methods that aim to directly generate the target sequence. Instead, in this work, we propose Iterative Controlled Extrapolation (ICE) which iteratively makes local edits to a sequence to enable extrapolation. We train the model on synthetically generated sequence pairs that demonstrate small improvement in the attribute value. Results on one natural language task (sentiment analysis) and two protein engineering tasks (ACE2 stability and AAV fitness) show that ICE considerably outperforms state-of-the-art approaches despite its simplicity. Our code and models are available at: https://github.com/vishakhpk/iter-extrapolation. 4 authors · Mar 8, 2023
- On feasibility of extrapolation of the complex electromagnetic permittivity function using Kramer-Kronig relations We study the degree of reliability of extrapolation of complex electromagnetic permittivity functions based on their analyticity properties. Given two analytic functions, representing extrapolants of the same experimental data, we examine how much they can differ at an extrapolation point outside of the experimentally accessible frequency band. We give a sharp upper bound on the worst case extrapolation error, in terms of a solution of an integral equation of Fredholm type. We conjecture and give numerical evidence that this bound exhibits a power law precision deterioration as one moves further away from the frequency band containing measurement data. 2 authors · Sep 25, 2020
- Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators. 2 authors · Feb 18
- DiffDreamer: Towards Consistent Unsupervised Single-view Scene Extrapolation with Conditional Diffusion Models Scene extrapolation -- the idea of generating novel views by flying into a given image -- is a promising, yet challenging task. For each predicted frame, a joint inpainting and 3D refinement problem has to be solved, which is ill posed and includes a high level of ambiguity. Moreover, training data for long-range scenes is difficult to obtain and usually lacks sufficient views to infer accurate camera poses. We introduce DiffDreamer, an unsupervised framework capable of synthesizing novel views depicting a long camera trajectory while training solely on internet-collected images of nature scenes. Utilizing the stochastic nature of the guided denoising steps, we train the diffusion models to refine projected RGBD images but condition the denoising steps on multiple past and future frames for inference. We demonstrate that image-conditioned diffusion models can effectively perform long-range scene extrapolation while preserving consistency significantly better than prior GAN-based methods. DiffDreamer is a powerful and efficient solution for scene extrapolation, producing impressive results despite limited supervision. Project page: https://primecai.github.io/diffdreamer. 7 authors · Nov 22, 2022
1 Effectively Unbiased FID and Inception Score and where to find them This paper shows that two commonly used evaluation metrics for generative models, the Fr\'echet Inception Distance (FID) and the Inception Score (IS), are biased -- the expected value of the score computed for a finite sample set is not the true value of the score. Worse, the paper shows that the bias term depends on the particular model being evaluated, so model A may get a better score than model B simply because model A's bias term is smaller. This effect cannot be fixed by evaluating at a fixed number of samples. This means all comparisons using FID or IS as currently computed are unreliable. We then show how to extrapolate the score to obtain an effectively bias-free estimate of scores computed with an infinite number of samples, which we term textrm{FID}_infty and textrm{IS}_infty. In turn, this effectively bias-free estimate requires good estimates of scores with a finite number of samples. We show that using Quasi-Monte Carlo integration notably improves estimates of FID and IS for finite sample sets. Our extrapolated scores are simple, drop-in replacements for the finite sample scores. Additionally, we show that using low discrepancy sequence in GAN training offers small improvements in the resulting generator. 2 authors · Nov 16, 2019
- Neural Networks Fail to Learn Periodic Functions and How to Fix It Previous literature offers limited clues on how to learn a periodic function using modern neural networks. We start with a study of the extrapolation properties of neural networks; we prove and demonstrate experimentally that the standard activations functions, such as ReLU, tanh, sigmoid, along with their variants, all fail to learn to extrapolate simple periodic functions. We hypothesize that this is due to their lack of a "periodic" inductive bias. As a fix of this problem, we propose a new activation, namely, x + sin^2(x), which achieves the desired periodic inductive bias to learn a periodic function while maintaining a favorable optimization property of the ReLU-based activations. Experimentally, we apply the proposed method to temperature and financial data prediction. 3 authors · Jun 15, 2020
10 Novel View Extrapolation with Video Diffusion Priors The field of novel view synthesis has made significant strides thanks to the development of radiance field methods. However, most radiance field techniques are far better at novel view interpolation than novel view extrapolation where the synthesis novel views are far beyond the observed training views. We design ViewExtrapolator, a novel view synthesis approach that leverages the generative priors of Stable Video Diffusion (SVD) for realistic novel view extrapolation. By redesigning the SVD denoising process, ViewExtrapolator refines the artifact-prone views rendered by radiance fields, greatly enhancing the clarity and realism of the synthesized novel views. ViewExtrapolator is a generic novel view extrapolator that can work with different types of 3D rendering such as views rendered from point clouds when only a single view or monocular video is available. Additionally, ViewExtrapolator requires no fine-tuning of SVD, making it both data-efficient and computation-efficient. Extensive experiments demonstrate the superiority of ViewExtrapolator in novel view extrapolation. Project page: https://kunhao-liu.github.io/ViewExtrapolator/. 3 authors · Nov 21, 2024 3
2 Positional Description Matters for Transformers Arithmetic Transformers, central to the successes in modern Natural Language Processing, often falter on arithmetic tasks despite their vast capabilities --which paradoxically include remarkable coding abilities. We observe that a crucial challenge is their naive reliance on positional information to solve arithmetic problems with a small number of digits, leading to poor performance on larger numbers. Herein, we delve deeper into the role of positional encoding, and propose several ways to fix the issue, either by modifying the positional encoding directly, or by modifying the representation of the arithmetic task to leverage standard positional encoding differently. We investigate the value of these modifications for three tasks: (i) classical multiplication, (ii) length extrapolation in addition, and (iii) addition in natural language context. For (i) we train a small model on a small dataset (100M parameters and 300k samples) with remarkable aptitude in (direct, no scratchpad) 15 digits multiplication and essentially perfect up to 12 digits, while usual training in this context would give a model failing at 4 digits multiplication. In the experiments on addition, we use a mere 120k samples to demonstrate: for (ii) extrapolation from 10 digits to testing on 12 digits numbers while usual training would have no extrapolation, and for (iii) almost perfect accuracy up to 5 digits while usual training would be correct only up to 3 digits (which is essentially memorization with a training set of 120k samples). 6 authors · Nov 21, 2023
2 AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications. 10 authors · Dec 13, 2023
- Two-timescale Extragradient for Finding Local Minimax Points Minimax problems are notoriously challenging to optimize. However, we demonstrate that the two-timescale extragradient can be a viable solution. By utilizing dynamical systems theory, we show that it converges to points that satisfy the second-order necessary condition of local minimax points, under a mild condition. This work surpasses all previous results as we eliminate a crucial assumption that the Hessian, with respect to the maximization variable, is nondegenerate. 3 authors · May 25, 2023
54 Transformers Can Do Arithmetic with the Right Embeddings The poor performance of transformers on arithmetic tasks seems to stem in large part from their inability to keep track of the exact position of each digit inside of a large span of digits. We mend this problem by adding an embedding to each digit that encodes its position relative to the start of the number. In addition to the boost these embeddings provide on their own, we show that this fix enables architectural modifications such as input injection and recurrent layers to improve performance even further. With positions resolved, we can study the logical extrapolation ability of transformers. Can they solve arithmetic problems that are larger and more complex than those in their training data? We find that training on only 20 digit numbers with a single GPU for one day, we can reach state-of-the-art performance, achieving up to 99% accuracy on 100 digit addition problems. Finally, we show that these gains in numeracy also unlock improvements on other multi-step reasoning tasks including sorting and multiplication. 11 authors · May 27, 2024 2
- Multi-fidelity climate model parameterization for better generalization and extrapolation Machine-learning-based parameterizations (i.e. representation of sub-grid processes) of global climate models or turbulent simulations have recently been proposed as a powerful alternative to physical, but empirical, representations, offering a lower computational cost and higher accuracy. Yet, those approaches still suffer from a lack of generalization and extrapolation beyond the training data, which is however critical to projecting climate change or unobserved regimes of turbulence. Here we show that a multi-fidelity approach, which integrates datasets of different accuracy and abundance, can provide the best of both worlds: the capacity to extrapolate leveraging the physically-based parameterization and a higher accuracy using the machine-learning-based parameterizations. In an application to climate modeling, the multi-fidelity framework yields more accurate climate projections without requiring major increase in computational resources. Our multi-fidelity randomized prior networks (MF-RPNs) combine physical parameterization data as low-fidelity and storm-resolving historical run's data as high-fidelity. To extrapolate beyond the training data, the MF-RPNs are tested on high-fidelity warming scenarios, +4K, data. We show the MF-RPN's capacity to return much more skillful predictions compared to either low- or high-fidelity (historical data) simulations trained only on one regime while providing trustworthy uncertainty quantification across a wide range of scenarios. Our approach paves the way for the use of machine-learning based methods that can optimally leverage historical observations or high-fidelity simulations and extrapolate to unseen regimes such as climate change. 4 authors · Sep 18, 2023
5 Loss-to-Loss Prediction: Scaling Laws for All Datasets While scaling laws provide a reliable methodology for predicting train loss across compute scales for a single data distribution, less is known about how these predictions should change as we change the distribution. In this paper, we derive a strategy for predicting one loss from another and apply it to predict across different pre-training datasets and from pre-training data to downstream task data. Our predictions extrapolate well even at 20x the largest FLOP budget used to fit the curves. More precisely, we find that there are simple shifted power law relationships between (1) the train losses of two models trained on two separate datasets when the models are paired by training compute (train-to-train), (2) the train loss and the test loss on any downstream distribution for a single model (train-to-test), and (3) the test losses of two models trained on two separate train datasets (test-to-test). The results hold up for pre-training datasets that differ substantially (some are entirely code and others have no code at all) and across a variety of downstream tasks. Finally, we find that in some settings these shifted power law relationships can yield more accurate predictions than extrapolating single-dataset scaling laws. 5 authors · Nov 19, 2024 2
- Nonintrusive approximation of parametrized limits of matrix power algorithms -- application to matrix inverses and log-determinants We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones. 4 authors · Oct 6, 2017
- Real-time Inference and Extrapolation via a Diffusion-inspired Temporal Transformer Operator (DiTTO) Extrapolation remains a grand challenge in deep neural networks across all application domains. We propose an operator learning method to solve time-dependent partial differential equations (PDEs) continuously and with extrapolation in time without any temporal discretization. The proposed method, named Diffusion-inspired Temporal Transformer Operator (DiTTO), is inspired by latent diffusion models and their conditioning mechanism, which we use to incorporate the temporal evolution of the PDE, in combination with elements from the transformer architecture to improve its capabilities. Upon training, DiTTO can make inferences in real-time. We demonstrate its extrapolation capability on a climate problem by estimating the temperature around the globe for several years, and also in modeling hypersonic flows around a double-cone. We propose different training strategies involving temporal-bundling and sub-sampling and demonstrate performance improvements for several benchmarks, performing extrapolation for long time intervals as well as zero-shot super-resolution in time. 6 authors · Jul 18, 2023
- Measuring Arithmetic Extrapolation Performance The Neural Arithmetic Logic Unit (NALU) is a neural network layer that can learn exact arithmetic operations between the elements of a hidden state. The goal of NALU is to learn perfect extrapolation, which requires learning the exact underlying logic of an unknown arithmetic problem. Evaluating the performance of the NALU is non-trivial as one arithmetic problem might have many solutions. As a consequence, single-instance MSE has been used to evaluate and compare performance between models. However, it can be hard to interpret what magnitude of MSE represents a correct solution and models sensitivity to initialization. We propose using a success-criterion to measure if and when a model converges. Using a success-criterion we can summarize success-rate over many initialization seeds and calculate confidence intervals. We contribute a generalized version of the previous arithmetic benchmark to measure models sensitivity under different conditions. This is, to our knowledge, the first extensive evaluation with respect to convergence of the NALU and its sub-units. Using a success-criterion to summarize 4800 experiments we find that consistently learning arithmetic extrapolation is challenging, in particular for multiplication. 2 authors · Oct 4, 2019
- Statistical Learning under Heterogenous Distribution Shift This paper studies the prediction of a target z from a pair of random variables (x,y), where the ground-truth predictor is additive E[z mid x,y] = f_star(x) +g_{star}(y). We study the performance of empirical risk minimization (ERM) over functions f+g, f in F and g in G, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class F is "simpler" than G (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogenous covariate shifts in which the shift in x is much greater than that in y. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains. 4 authors · Feb 27, 2023
- Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs Identifying how much a model {p}_{theta}(Y|X) knows about the stochastic real-world process p(Y|X) it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actions. But this is difficult for generative models because probabilistic predictions do not distinguish between per-response noise (aleatoric uncertainty) and lack of knowledge about the process (epistemic uncertainty), and existing epistemic uncertainty quantification techniques tend to be overconfident when the model underfits. We propose a general strategy for teaching a model to both approximate p(Y|X) and also estimate the remaining gaps between {p}_{theta}(Y|X) and p(Y|X): train it to predict pairs of independent responses drawn from the true conditional distribution, allow it to "cheat" by observing one response while predicting the other, then measure how much it cheats. Remarkably, we prove that being good at cheating (i.e. cheating whenever it improves your prediction) is equivalent to being second-order calibrated, a principled extension of ordinary calibration that allows us to construct provably-correct frequentist confidence intervals for p(Y|X) and detect incorrect responses with high probability. We demonstrate empirically that our approach accurately estimates how much models don't know across ambiguous image classification, (synthetic) language modeling, and partially-observable navigation tasks, outperforming existing techniques. 4 authors · Feb 13, 2024
- Concentrating solutions of the fractional (p,q)-Choquard equation with exponential growth This article deals with the following fractional (p,q)-Choquard equation with exponential growth of the form: $varepsilon^{ps}(-Delta)_{p}^{s}u+varepsilon^{qs}(-Delta)_q^su+ Z(x)(|u|^{p-2}u+|u|^{q-2}u)=varepsilon^{mu-N}[|x|^{-mu}*F(u)]f(u) in R^N, where s\in (0,1), \varepsilon>0 is a parameter, 2\leq p=N{s}<q, and 0<\mu<N. The nonlinear function f has an exponential growth at infinity and the continuous potential function Z satisfies suitable natural conditions. With the help of the Ljusternik-Schnirelmann category theory and variational methods, the multiplicity and concentration of positive solutions are obtained for \varepsilon>0$ small enough. In a certain sense, we generalize some previously known results. 3 authors · May 31
- Variants of the Empirical Interpolation Method: symmetric formulation, choice of norms and rectangular extension The Empirical Interpolation Method (EIM) is a greedy procedure that constructs approximate representations of two-variable functions in separated form. In its classical presentation, the two variables play a non-symmetric role. In this work, we give an equivalent definition of the EIM approximation, in which the two variables play symmetric roles. Then, we give a proof for the existence of this approximation, and extend it up to the convergence of the EIM, and for any norm chosen to compute the error in the greedy step. Finally, we introduce a way to compute a separated representation in the case where the number of selected values is different for each variable. In the case of a physical field measured by sensors, this is useful to discard a broken sensor while keeping the information provided by the associated selected field. 3 authors · Aug 21, 2015
- Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference Likelihood-free inference methods typically make use of a distance between simulated and real data. A common example is the maximum mean discrepancy (MMD), which has previously been used for approximate Bayesian computation, minimum distance estimation, generalised Bayesian inference, and within the nonparametric learning framework. The MMD is commonly estimated at a root-m rate, where m is the number of simulated samples. This can lead to significant computational challenges since a large m is required to obtain an accurate estimate, which is crucial for parameter estimation. In this paper, we propose a novel estimator for the MMD with significantly improved sample complexity. The estimator is particularly well suited for computationally expensive smooth simulators with low- to mid-dimensional inputs. This claim is supported through both theoretical results and an extensive simulation study on benchmark simulators. 5 authors · Jan 27, 2023
- Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models Machine learning has demonstrated remarkable performance over finite datasets, yet whether the scores over the fixed benchmarks can sufficiently indicate the model's performance in the real world is still in discussion. In reality, an ideal robust model will probably behave similarly to the oracle (e.g., the human users), thus a good evaluation protocol is probably to evaluate the models' behaviors in comparison to the oracle. In this paper, we introduce a new robustness measurement that directly measures the image classification model's performance compared with a surrogate oracle (i.e., a foundation model). Besides, we design a simple method that can accomplish the evaluation beyond the scope of the benchmarks. Our method extends the image datasets with new samples that are sufficiently perturbed to be distinct from the ones in the original sets, but are still bounded within the same image-label structure the original test image represents, constrained by a foundation model pretrained with a large amount of samples. As a result, our new method will offer us a new way to evaluate the models' robustness performance, free of limitations of fixed benchmarks or constrained perturbations, although scoped by the power of the oracle. In addition to the evaluation results, we also leverage our generated data to understand the behaviors of the model and our new evaluation strategies. 6 authors · Aug 21, 2023
- Response: Emergent analogical reasoning in large language models In their recent Nature Human Behaviour paper, "Emergent analogical reasoning in large language models," (Webb, Holyoak, and Lu, 2023) the authors argue that "large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems." In this response, we provide counterexamples of the letter string analogies. In our tests, GPT-3 fails to solve even the easiest variants of the problems presented in the original paper. Zero-shot reasoning is an extraordinary claim that requires extraordinary evidence. We do not see that evidence in our experiments. To strengthen claims of humanlike reasoning such as zero-shot reasoning, it is important that the field develop approaches that rule out data memorization. 2 authors · Aug 30, 2023
- Weighted least-squares approximation with determinantal point processes and generalized volume sampling We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies. 2 authors · Dec 21, 2023
- Online Platt Scaling with Calibeating We present an online post-hoc calibration method, called Online Platt Scaling (OPS), which combines the Platt scaling technique with online logistic regression. We demonstrate that OPS smoothly adapts between i.i.d. and non-i.i.d. settings with distribution drift. Further, in scenarios where the best Platt scaling model is itself miscalibrated, we enhance OPS by incorporating a recently developed technique called calibeating to make it more robust. Theoretically, our resulting OPS+calibeating method is guaranteed to be calibrated for adversarial outcome sequences. Empirically, it is effective on a range of synthetic and real-world datasets, with and without distribution drifts, achieving superior performance without hyperparameter tuning. Finally, we extend all OPS ideas to the beta scaling method. 2 authors · Apr 28, 2023
2 FACT: Learning Governing Abstractions Behind Integer Sequences Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease. 4 authors · Sep 20, 2022
- Learning Math Reasoning from Self-Sampled Correct and Partially-Correct Solutions Pretrained language models have shown superior performance on many natural language processing tasks, yet they still struggle at multi-step formal reasoning tasks like grade school math problems. One key challenge of finetuning them to solve such math reasoning problems is that many existing datasets only contain one reference solution for each problem, despite the fact that there are often alternative solutions resembling different reasoning paths to the final answer. This way, the finetuned models are biased towards the limited reference solutions, which limits their generalization to unseen examples. To mitigate this issue, we propose to let the model perform sampling during training and learn from both self-sampled fully-correct solutions, which yield the correct answer upon execution, and partially-correct solutions, whose intermediate state matches an intermediate state of a known correct solution. We show that our use of self-sampled correct and partially-correct solutions can benefit learning and help guide the sampling process, leading to more efficient exploration of the solution space. Additionally, we explore various training objectives to support learning from multiple solutions per example and find they greatly affect the performance. Experiments on two math reasoning datasets show the effectiveness of our method compared to learning from a single reference solution with MLE, where we improve PASS@100 from 35.5% to 44.5% for GSM8K, and 27.6% to 36.2% PASS@80 for MathQA. Such improvements are also consistent across different model sizes. Our code is available at https://github.com/microsoft/TraceCodegen. 7 authors · May 27, 2022
- Counterfactual Plans under Distributional Ambiguity Counterfactual explanations are attracting significant attention due to the flourishing applications of machine learning models in consequential domains. A counterfactual plan consists of multiple possibilities to modify a given instance so that the model's prediction will be altered. As the predictive model can be updated subject to the future arrival of new data, a counterfactual plan may become ineffective or infeasible with respect to the future values of the model parameters. In this work, we study the counterfactual plans under model uncertainty, in which the distribution of the model parameters is partially prescribed using only the first- and second-moment information. First, we propose an uncertainty quantification tool to compute the lower and upper bounds of the probability of validity for any given counterfactual plan. We then provide corrective methods to adjust the counterfactual plan to improve the validity measure. The numerical experiments validate our bounds and demonstrate that our correction increases the robustness of the counterfactual plans in different real-world datasets. 3 authors · Jan 28, 2022
- The Numerical Stability of Hyperbolic Representation Learning Given the exponential growth of the volume of the ball w.r.t. its radius, the hyperbolic space is capable of embedding trees with arbitrarily small distortion and hence has received wide attention for representing hierarchical datasets. However, this exponential growth property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we carefully analyze the limitation of two popular models for the hyperbolic space, namely, the Poincar\'e ball and the Lorentz model. We first show that, under the 64 bit arithmetic system, the Poincar\'e ball has a relatively larger capacity than the Lorentz model for correctly representing points. Then, we theoretically validate the superiority of the Lorentz model over the Poincar\'e ball from the perspective of optimization. Given the numerical limitations of both models, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these limitations. We further extend this Euclidean parametrization to hyperbolic hyperplanes and exhibits its ability in improving the performance of hyperbolic SVM. 4 authors · Oct 31, 2022
- Adaptive Instrument Design for Indirect Experiments Indirect experiments provide a valuable framework for estimating treatment effects in situations where conducting randomized control trials (RCTs) is impractical or unethical. Unlike RCTs, indirect experiments estimate treatment effects by leveraging (conditional) instrumental variables, enabling estimation through encouragement and recommendation rather than strict treatment assignment. However, the sample efficiency of such estimators depends not only on the inherent variability in outcomes but also on the varying compliance levels of users with the instrumental variables and the choice of estimator being used, especially when dealing with numerous instrumental variables. While adaptive experiment design has a rich literature for direct experiments, in this paper we take the initial steps towards enhancing sample efficiency for indirect experiments by adaptively designing a data collection policy over instrumental variables. Our main contribution is a practical computational procedure that utilizes influence functions to search for an optimal data collection policy, minimizing the mean-squared error of the desired (non-linear) estimator. Through experiments conducted in various domains inspired by real-world applications, we showcase how our method can significantly improve the sample efficiency of indirect experiments. 4 authors · Dec 4, 2023
- (Mis)Fitting: A Survey of Scaling Laws Modern foundation models rely heavily on using scaling laws to guide crucial training decisions. Researchers often extrapolate the optimal architecture and hyper parameters settings from smaller training runs by describing the relationship between, loss, or task performance, and scale. All components of this process vary, from the specific equation being fit, to the training setup, to the optimization method. Each of these factors may affect the fitted law, and therefore, the conclusions of a given study. We discuss discrepancies in the conclusions that several prior works reach, on questions such as the optimal token to parameter ratio. We augment this discussion with our own analysis of the critical impact that changes in specific details may effect in a scaling study, and the resulting altered conclusions. Additionally, we survey over 50 papers that study scaling trends: while 45 of these papers quantify these trends using a power law, most under-report crucial details needed to reproduce their findings. To mitigate this, we we propose a checklist for authors to consider while contributing to scaling law research. 3 authors · Feb 26
- Surface Patches with Rounded Corners We analyze surface patches with a corner that is rounded in the sense that the partial derivatives at that point are antiparallel. Sufficient conditions for G^1 smoothness are given, which, up to a certain degenerate case, are also necessary. Further, we investigate curvature integrability and present examples 2 authors · Mar 23, 2022
- Backprop as Functor: A compositional perspective on supervised learning A supervised learning algorithm searches over a set of functions A to B parametrised by a space P to find the best approximation to some ideal function fcolon A to B. It does this by taking examples (a,f(a)) in Atimes B, and updating the parameter according to some rule. We define a category where these update rules may be composed, and show that gradient descent---with respect to a fixed step size and an error function satisfying a certain property---defines a monoidal functor from a category of parametrised functions to this category of update rules. This provides a structural perspective on backpropagation, as well as a broad generalisation of neural networks. 3 authors · Nov 28, 2017
- Sketched Ridgeless Linear Regression: The Role of Downsampling Overparametrization often helps improve the generalization performance. This paper proposes a dual view of overparametrization suggesting that downsampling may also help generalize. Motivated by this dual view, we characterize two out-of-sample prediction risks of the sketched ridgeless least square estimator in the proportional regime masymp n asymp p, where m is the sketching size, n the sample size, and p the feature dimensionality. Our results reveal the statistical role of downsampling. Specifically, downsampling does not always hurt the generalization performance, and may actually help improve it in some cases. We identify the optimal sketching sizes that minimize the out-of-sample prediction risks, and find that the optimally sketched estimator has stabler risk curves that eliminates the peaks of those for the full-sample estimator. We then propose a practical procedure to empirically identify the optimal sketching size. Finally, we extend our results to cover central limit theorems and misspecified models. Numerical studies strongly support our theory. 4 authors · Feb 2, 2023
- What augmentations are sensitive to hyper-parameters and why? We apply augmentations to our dataset to enhance the quality of our predictions and make our final models more resilient to noisy data and domain drifts. Yet the question remains, how are these augmentations going to perform with different hyper-parameters? In this study we evaluate the sensitivity of augmentations with regards to the model's hyper parameters along with their consistency and influence by performing a Local Surrogate (LIME) interpretation on the impact of hyper-parameters when different augmentations are applied to a machine learning model. We have utilized Linear regression coefficients for weighing each augmentation. Our research has proved that there are some augmentations which are highly sensitive to hyper-parameters and others which are more resilient and reliable. 2 authors · Nov 6, 2021
- On the convergence of single-call stochastic extra-gradient methods Variational inequalities have recently attracted considerable interest in machine learning as a flexible paradigm for models that go beyond ordinary loss function minimization (such as generative adversarial networks and related deep learning systems). In this setting, the optimal O(1/t) convergence rate for solving smooth monotone variational inequalities is achieved by the Extra-Gradient (EG) algorithm and its variants. Aiming to alleviate the cost of an extra gradient step per iteration (which can become quite substantial in deep learning applications), several algorithms have been proposed as surrogates to Extra-Gradient with a single oracle call per iteration. In this paper, we develop a synthetic view of such algorithms, and we complement the existing literature by showing that they retain a O(1/t) ergodic convergence rate in smooth, deterministic problems. Subsequently, beyond the monotone deterministic case, we also show that the last iterate of single-call, stochastic extra-gradient methods still enjoys a O(1/t) local convergence rate to solutions of non-monotone variational inequalities that satisfy a second-order sufficient condition. 4 authors · Aug 22, 2019
4 Step-by-Step Diffusion: An Elementary Tutorial We present an accessible first course on diffusion models and flow matching for machine learning, aimed at a technical audience with no diffusion experience. We try to simplify the mathematical details as much as possible (sometimes heuristically), while retaining enough precision to derive correct algorithms. 4 authors · Jun 13, 2024
5 Measuring Mathematical Problem Solving With the MATH Dataset Many intellectual endeavors require mathematical problem solving, but this skill remains beyond the capabilities of computers. To measure this ability in machine learning models, we introduce MATH, a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations. To facilitate future research and increase accuracy on MATH, we also contribute a large auxiliary pretraining dataset which helps teach models the fundamentals of mathematics. Even though we are able to increase accuracy on MATH, our results show that accuracy remains relatively low, even with enormous Transformer models. Moreover, we find that simply increasing budgets and model parameter counts will be impractical for achieving strong mathematical reasoning if scaling trends continue. While scaling Transformers is automatically solving most other text-based tasks, scaling is not currently solving MATH. To have more traction on mathematical problem solving we will likely need new algorithmic advancements from the broader research community. 8 authors · Mar 5, 2021
56 Llemma: An Open Language Model For Mathematics We present Llemma, a large language model for mathematics. We continue pretraining Code Llama on the Proof-Pile-2, a mixture of scientific papers, web data containing mathematics, and mathematical code, yielding Llemma. On the MATH benchmark Llemma outperforms all known open base models, as well as the unreleased Minerva model suite on an equi-parameter basis. Moreover, Llemma is capable of tool use and formal theorem proving without any further finetuning. We openly release all artifacts, including 7 billion and 34 billion parameter models, the Proof-Pile-2, and code to replicate our experiments. 9 authors · Oct 16, 2023 6
- Better Training of GFlowNets with Local Credit and Incomplete Trajectories Generative Flow Networks or GFlowNets are related to Monte-Carlo Markov chain methods (as they sample from a distribution specified by an energy function), reinforcement learning (as they learn a policy to sample composed objects through a sequence of steps), generative models (as they learn to represent and sample from a distribution) and amortized variational methods (as they can be used to learn to approximate and sample from an otherwise intractable posterior, given a prior and a likelihood). They are trained to generate an object x through a sequence of steps with probability proportional to some reward function R(x) (or exp(-E(x)) with E(x) denoting the energy function), given at the end of the generative trajectory. Like for other RL settings where the reward is only given at the end, the efficiency of training and credit assignment may suffer when those trajectories are longer. With previous GFlowNet work, no learning was possible from incomplete trajectories (lacking a terminal state and the computation of the associated reward). In this paper, we consider the case where the energy function can be applied not just to terminal states but also to intermediate states. This is for example achieved when the energy function is additive, with terms available along the trajectory. We show how to reparameterize the GFlowNet state flow function to take advantage of the partial reward already accrued at each state. This enables a training objective that can be applied to update parameters even with incomplete trajectories. Even when complete trajectories are available, being able to obtain more localized credit and gradients is found to speed up training convergence, as demonstrated across many simulations. 4 authors · Feb 3, 2023
- Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions. 3 authors · Nov 26, 2024
- Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes The quality of many modern machine learning models improves as model complexity increases, an effect that has been quantified, for predictive performance, with the non-monotonic double descent learning curve. Here, we address the overarching question: is there an analogous theory of double descent for models which estimate uncertainty? We provide a partially affirmative and partially negative answer in the setting of Gaussian processes (GP). Under standard assumptions, we prove that higher model quality for optimally-tuned GPs (including uncertainty prediction) under marginal likelihood is realized for larger input dimensions, and therefore exhibits a monotone error curve. After showing that marginal likelihood does not naturally exhibit double descent in the input dimension, we highlight related forms of posterior predictive loss that do exhibit non-monotonicity. Finally, we verify empirically that our results hold for real data, beyond our considered assumptions, and we explore consequences involving synthetic covariates. 4 authors · Oct 14, 2022
8 EXAONE Deep: Reasoning Enhanced Language Models We present EXAONE Deep series, which exhibits superior capabilities in various reasoning tasks, including math and coding benchmarks. We train our models mainly on the reasoning-specialized dataset that incorporates long streams of thought processes. Evaluation results show that our smaller models, EXAONE Deep 2.4B and 7.8B, outperform other models of comparable size, while the largest model, EXAONE Deep 32B, demonstrates competitive performance against leading open-weight models. All EXAONE Deep models are openly available for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE 32 authors · Mar 16 2
- Shapley Based Residual Decomposition for Instance Analysis In this paper, we introduce the idea of decomposing the residuals of regression with respect to the data instances instead of features. This allows us to determine the effects of each individual instance on the model and each other, and in doing so makes for a model-agnostic method of identifying instances of interest. In doing so, we can also determine the appropriateness of the model and data in the wider context of a given study. The paper focuses on the possible applications that such a framework brings to the relatively unexplored field of instance analysis in the context of Explainable AI tasks. 2 authors · May 30, 2023
- Preserving Statistical Validity in Adaptive Data Analysis A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question. 6 authors · Nov 10, 2014
- Generating Pragmatic Examples to Train Neural Program Synthesizers Programming-by-example is the task of synthesizing a program that is consistent with a set of user-provided input-output examples. As examples are often an under-specification of one's intent, a good synthesizer must choose the intended program from the many that are consistent with the given set of examples. Prior work frames program synthesis as a cooperative game between a listener (that synthesizes programs) and a speaker (a user choosing examples), and shows that models of computational pragmatic inference are effective in choosing the user intended programs. However, these models require counterfactual reasoning over a large set of programs and examples, which is infeasible in realistic program spaces. In this paper, we propose a novel way to amortize this search with neural networks. We sample pairs of programs and examples via self-play between listener and speaker models, and use pragmatic inference to choose informative training examples from this sample.We then use the informative dataset to train models to improve the synthesizer's ability to disambiguate user-provided examples without human supervision. We validate our method on the challenging task of synthesizing regular expressions from example strings, and find that our method (1) outperforms models trained without choosing pragmatic examples by 23% (a 51% relative increase) (2) matches the performance of supervised learning on a dataset of pragmatic examples provided by humans, despite using no human data in training. 3 authors · Nov 9, 2023
7 One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs. 13 authors · Feb 11 2
- CRUDE: Calibrating Regression Uncertainty Distributions Empirically Calibrated uncertainty estimates in machine learning are crucial to many fields such as autonomous vehicles, medicine, and weather and climate forecasting. While there is extensive literature on uncertainty calibration for classification, the classification findings do not always translate to regression. As a result, modern models for predicting uncertainty in regression settings typically produce uncalibrated and overconfident estimates. To address these gaps, we present a calibration method for regression settings that does not assume a particular uncertainty distribution over the error: Calibrating Regression Uncertainty Distributions Empirically (CRUDE). CRUDE makes the weaker assumption that error distributions have a constant arbitrary shape across the output space, shifted by predicted mean and scaled by predicted standard deviation. We detail a theoretical connection between CRUDE and conformal inference. Across an extensive set of regression tasks, CRUDE demonstrates consistently sharper, better calibrated, and more accurate uncertainty estimates than state-of-the-art techniques. 4 authors · May 25, 2020
- Showing Your Work Doesn't Always Work In natural language processing, a recently popular line of work explores how to best report the experimental results of neural networks. One exemplar publication, titled "Show Your Work: Improved Reporting of Experimental Results," advocates for reporting the expected validation effectiveness of the best-tuned model, with respect to the computational budget. In the present work, we critically examine this paper. As far as statistical generalizability is concerned, we find unspoken pitfalls and caveats with this approach. We analytically show that their estimator is biased and uses error-prone assumptions. We find that the estimator favors negative errors and yields poor bootstrapped confidence intervals. We derive an unbiased alternative and bolster our claims with empirical evidence from statistical simulation. Our codebase is at http://github.com/castorini/meanmax. 6 authors · Apr 28, 2020
- Learning large scale industrial physics simulations In an industrial group like Safran, numerical simulations of physical phenomena are integral to most design processes. At Safran's corporate research center, we enhance these processes by developing fast and reliable surrogate models for various physics. We focus here on two technologies developed in recent years. The first is a physical reduced-order modeling method for non-linear structural mechanics and thermal analysis, used for calculating the lifespan of high-pressure turbine blades and performing heat analysis of high-pressure compressors. The second technology involves learning physics simulations with non-parameterized geometrical variability using classical machine learning tools, such as Gaussian process regression. Finally, we present our contributions to the open-source and open-data community. 1 authors · Feb 12
60 Antidistillation Sampling Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. Antidistillation sampling provides exactly this capability. By strategically modifying a model's next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model's practical utility. For further details, see https://antidistillation.com. 7 authors · Apr 17 4
- Construction de variables a l'aide de classifieurs comme aide a la regression This paper proposes a method for the automatic creation of variables (in the case of regression) that complement the information contained in the initial input vector. The method works as a pre-processing step in which the continuous values of the variable to be regressed are discretized into a set of intervals which are then used to define value thresholds. Then classifiers are trained to predict whether the value to be regressed is less than or equal to each of these thresholds. The different outputs of the classifiers are then concatenated in the form of an additional vector of variables that enriches the initial vector of the regression problem. The implemented system can thus be considered as a generic pre-processing tool. We tested the proposed enrichment method with 5 types of regressors and evaluated it in 33 regression datasets. Our experimental results confirm the interest of the approach. 2 authors · Dec 3, 2021
- Cosmic Evolution Early Release Science (CEERS) survey: The colour evolution of galaxies in the distant Universe The wavelength-coverage and sensitivity of JWST now enables us to probe the rest-frame UV - optical spectral energy distributions (SEDs) of galaxies at high-redshift (z>4). From these SEDs it is, in principle, through SED fitting possible to infer key physical properties, including stellar masses, star formation rates, and dust attenuation. These in turn can be compared with the predictions of galaxy formation simulations allowing us to validate and refine the incorporated physics. However, the inference of physical properties, particularly from photometry alone, can lead to large uncertainties and potential biases. Instead, it is now possible, and common, for simulations to be forward-modelled to yield synthetic observations that can be compared directly to real observations. In this work, we measure the JWST broadband fluxes and colours of a robust sample of 5<z<10 galaxies using the Cosmic Evolution Early Release Science (CEERS) Survey. We then analyse predictions from a variety of models using the same methodology and compare the NIRCam/F277W magnitude distribution and NIRCam colours with observations. We find that the predicted and observed magnitude distributions are similar, at least at 5<z<8. At z>8 the distributions differ somewhat, though our observed sample size is small and thus susceptible to statistical fluctuations. Likewise, the predicted and observed colour evolution show broad agreement, at least at 5<z<8. There is however some disagreement between the observed and modelled strength of the strong line contribution. In particular all the models fails to reproduce the F410M-F444W colour at z>8, though, again, the sample size is small here. 23 authors · Nov 14, 2023
2 How predictable is language model benchmark performance? We investigate large language model performance across five orders of magnitude of compute scaling in eleven recent model architectures. We show that average benchmark performance, aggregating over many individual tasks and evaluations as in the commonly-used BIG-Bench dataset, is decently predictable as a function of training compute scale. Specifically, when extrapolating BIG-Bench Hard performance across one order of magnitude in compute, we observe average absolute errors of 6 percentage points (pp). By contrast, extrapolation for individual BIG-Bench tasks across an order of magnitude in compute yields higher average errors of 18pp. Nonetheless, individual task performance remains significantly more predictable than chance. Overall, our work suggests compute scaling provides a promising basis to forecast AI capabilities in diverse benchmarks, though predicting performance in specific tasks poses challenges. 1 authors · Jan 9, 2024
- Apuntes de Redes Neuronales Artificiales These handouts are designed for people who is just starting involved with the topic artificial neural networks. We show how it works a single artificial neuron (McCulloch & Pitt model), mathematically and graphically. We do explain the delta rule, a learning algorithm to find the neuron weights. We also present some examples in MATLAB/Octave. There are examples for classification task for lineal and non-lineal problems. At the end, we present an artificial neural network, a feed-forward neural network along its learning algorithm backpropagation. ----- Estos apuntes est\'an dise\~nados para personas que por primera vez se introducen en el tema de las redes neuronales artificiales. Se muestra el funcionamiento b\'asico de una neurona, matem\'aticamente y gr\'aficamente. Se explica la Regla Delta, algoritmo deaprendizaje para encontrar los pesos de una neurona. Tambi\'en se muestran ejemplos en MATLAB/Octave. Hay ejemplos para problemas de clasificaci\'on, para problemas lineales y no-lineales. En la parte final se muestra la arquitectura de red neuronal artificial conocida como backpropagation. 1 authors · Jun 13, 2018
- Nuclear charge radius predictions by kernel ridge regression with odd-even effects The extended kernel ridge regression (EKRR) method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models. These are: (i) the isospin dependent A^{1/3} formula, (ii) relativistic continuum Hartree-Bogoliubov (RCHB) theory, (iii) Hartree-Fock-Bogoliubov (HFB) model HFB25, (iv) the Weizs\"acker-Skyrme (WS) model WS^ast, and (v) HFB25^ast model. In the last two models, the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models, respectively. For each model, the resultant root-mean-square deviation for the 1014 nuclei with proton number Z geq 8 can be significantly reduced to 0.009-0.013~fm after considering the modification with the EKRR method. The best among them was the RCHB model, with a root-mean-square deviation of 0.0092~fm. The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined and it was found that after considering the odd-even effects, the extrapolation power was improved compared with that of the original KRR method. The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method. 2 authors · Apr 18, 2024
- Quantum algorithm for solving linear systems of equations Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b, find a vector x such that Ax=b. We consider the case where one doesn't need to know the solution x itself, but rather an approximation of the expectation value of some operator associated with x, e.g., x'Mx for some matrix M. In this case, when A is sparse, N by N and has condition number kappa, classical algorithms can find x and estimate x'Mx in O(N sqrt(kappa)) time. Here, we exhibit a quantum algorithm for this task that runs in poly(log N, kappa) time, an exponential improvement over the best classical algorithm. 3 authors · Nov 19, 2008
1 Unprocessing Seven Years of Algorithmic Fairness Seven years ago, researchers proposed a postprocessing method to equalize the error rates of a model across different demographic groups. The work launched hundreds of papers purporting to improve over the postprocessing baseline. We empirically evaluate these claims through thousands of model evaluations on several tabular datasets. We find that the fairness-accuracy Pareto frontier achieved by postprocessing contains all other methods we were feasibly able to evaluate. In doing so, we address two common methodological errors that have confounded previous observations. One relates to the comparison of methods with different unconstrained base models. The other concerns methods achieving different levels of constraint relaxation. At the heart of our study is a simple idea we call unprocessing that roughly corresponds to the inverse of postprocessing. Unprocessing allows for a direct comparison of methods using different underlying models and levels of relaxation. 2 authors · Jun 12, 2023
9 Transformers learn through gradual rank increase We identify incremental learning dynamics in transformers, where the difference between trained and initial weights progressively increases in rank. We rigorously prove this occurs under the simplifying assumptions of diagonal weight matrices and small initialization. Our experiments support the theory and also show that phenomenon can occur in practice without the simplifying assumptions. 5 authors · Jun 12, 2023
1 Template shape estimation: correcting an asymptotic bias We use tools from geometric statistics to analyze the usual estimation procedure of a template shape. This applies to shapes from landmarks, curves, surfaces, images etc. We demonstrate the asymptotic bias of the template shape estimation using the stratified geometry of the shape space. We give a Taylor expansion of the bias with respect to a parameter sigma describing the measurement error on the data. We propose two bootstrap procedures that quantify the bias and correct it, if needed. They are applicable for any type of shape data. We give a rule of thumb to provide intuition on whether the bias has to be corrected. This exhibits the parameters that control the bias' magnitude. We illustrate our results on simulated and real shape data. 3 authors · Sep 6, 2016
- The Test of Tests: A Framework For Differentially Private Hypothesis Testing We present a generic framework for creating differentially private versions of any hypothesis test in a black-box way. We analyze the resulting tests analytically and experimentally. Most crucially, we show good practical performance for small data sets, showing that at epsilon = 1 we only need 5-6 times as much data as in the fully public setting. We compare our work to the one existing framework of this type, as well as to several individually-designed private hypothesis tests. Our framework is higher power than other generic solutions and at least competitive with (and often better than) individually-designed tests. 4 authors · Feb 8, 2023
- Two pathways to resolve relational inconsistencies When individuals encounter observations that violate their expectations, when will they adjust their expectations and when will they maintain them despite these observations? For example, when individuals expect objects of type A to be smaller than objects B, but observe the opposite, when will they adjust their expectation about the relationship between the two objects (to A being larger than B)? Naively, one would predict that the larger the violation, the greater the adaptation. However, experiments reveal that when violations are extreme, individuals are more likely to hold on to their prior expectations rather than adjust them. To address this puzzle, we tested the adaptation of artificial neural networks (ANNs) capable of relational learning and found a similar phenomenon: Standard learning dynamics dictates that small violations would lead to adjustments of expected relations while larger ones would be resolved using a different mechanism -- a change in object representation that bypasses the need for adaptation of the relational expectations. These results suggest that the experimentally-observed stability of prior expectations when facing large expectation violations is a natural consequence of learning dynamics and does not require any additional mechanisms. We conclude by discussing the effect of intermediate adaptation steps on this stability. 2 authors · Oct 30, 2024
- An elementary and unified proof of Grothendieck's inequality We present an elementary, self-contained proof of Grothendieck's inequality that unifies the real and complex cases and yields both the Krivine and Haagerup bounds, the current best-known explicit bounds for the real and complex Grothendieck constants respectively. This article is intended to be pedagogical, combining and streamlining known ideas of Lindenstrauss--Pe{\l}czy\'nski, Krivine, and Haagerup into a proof that need only univariate calculus, basic complex variables, and a modicum of linear algebra as prerequisites. 3 authors · Nov 28, 2017
- PhoGPT: Generative Pre-training for Vietnamese We open-source a state-of-the-art 7.5B-parameter generative model series named PhoGPT for Vietnamese, which includes the base pre-trained monolingual model PhoGPT-7B5 and its instruction-following variant, PhoGPT-7B5-Instruct. In addition, we also demonstrate its superior performance compared to previous open-source models through a human evaluation experiment. GitHub: https://github.com/VinAIResearch/PhoGPT 8 authors · Nov 6, 2023
1 Multiresolution Textual Inversion We extend Textual Inversion to learn pseudo-words that represent a concept at different resolutions. This allows us to generate images that use the concept with different levels of detail and also to manipulate different resolutions using language. Once learned, the user can generate images at different levels of agreement to the original concept; "A photo of S^*(0)" produces the exact object while the prompt "A photo of S^*(0.8)" only matches the rough outlines and colors. Our framework allows us to generate images that use different resolutions of an image (e.g. details, textures, styles) as separate pseudo-words that can be composed in various ways. We open-soure our code in the following URL: https://github.com/giannisdaras/multires_textual_inversion 2 authors · Nov 30, 2022
- A Constructive, Type-Theoretic Approach to Regression via Global Optimisation We examine the connections between deterministic, complete, and general global optimisation of continuous functions and a general concept of regression from the perspective of constructive type theory via the concept of 'searchability'. We see how the property of convergence of global optimisation is a straightforward consequence of searchability. The abstract setting allows us to generalise searchability and continuity to higher-order functions, so that we can formulate novel convergence criteria for regression, derived from the convergence of global optimisation. All the theory and the motivating examples are fully formalised in the proof assistant Agda. 2 authors · Jun 23, 2020
- Contextual Bandits with Online Neural Regression Recent works have shown a reduction from contextual bandits to online regression under a realizability assumption [Foster and Rakhlin, 2020, Foster and Krishnamurthy, 2021]. In this work, we investigate the use of neural networks for such online regression and associated Neural Contextual Bandits (NeuCBs). Using existing results for wide networks, one can readily show a {O}(T) regret for online regression with square loss, which via the reduction implies a {O}(K T^{3/4}) regret for NeuCBs. Departing from this standard approach, we first show a O(log T) regret for online regression with almost convex losses that satisfy QG (Quadratic Growth) condition, a generalization of the PL (Polyak-\L ojasiewicz) condition, and that have a unique minima. Although not directly applicable to wide networks since they do not have unique minima, we show that adding a suitable small random perturbation to the network predictions surprisingly makes the loss satisfy QG with unique minima. Based on such a perturbed prediction, we show a {O}(log T) regret for online regression with both squared loss and KL loss, and subsequently convert these respectively to mathcal{O}(KT) and mathcal{O}(KL^* + K) regret for NeuCB, where L^* is the loss of the best policy. Separately, we also show that existing regret bounds for NeuCBs are Omega(T) or assume i.i.d. contexts, unlike this work. Finally, our experimental results on various datasets demonstrate that our algorithms, especially the one based on KL loss, persistently outperform existing algorithms. 5 authors · Dec 12, 2023
- An Old-Fashioned Framework for Machine Learning in Turbulence Modeling The objective is to provide clear and well-motivated guidance to Machine Learning (ML) teams, founded on our experience in empirical turbulence modeling. Guidance is also needed for modeling outside ML. ML is not yet successful in turbulence modeling, and many papers have produced unusable proposals either due to errors in math or physics, or to severe overfitting. We believe that "Turbulence Culture" (TC) takes years to learn and is difficult to convey especially considering the modern lack of time for careful study; important facts which are self-evident after a career in turbulence research and modeling and extensive reading are easy to miss. In addition, many of them are not absolute facts, a consequence of the gaps in our understanding of turbulence and the weak connection of models to first principles. Some of the mathematical facts are rigorous, but the physical aspects often are not. Turbulence models are surprisingly arbitrary. Disagreement between experts confuses the new entrants. In addition, several key properties of the models are ascertained through non-trivial analytical properties of the differential equations, which puts them out of reach of purely data-driven ML-type approaches. The best example is the crucial behavior of the model at the edge of the turbulent region (ETR). The knowledge we wish to put out here may be divided into "Mission" and "Requirements," each combining physics and mathematics. Clear lists of "Hard" and "Soft" constraints are presented. A concrete example of how DNS data could be used, possibly allied with ML, is first carried through and illustrates the large number of decisions needed. Our focus is on creating effective products which will empower CFD, rather than on publications. 1 authors · Aug 1, 2023
- Multicalibration as Boosting for Regression We study the connection between multicalibration and boosting for squared error regression. First we prove a useful characterization of multicalibration in terms of a ``swap regret'' like condition on squared error. Using this characterization, we give an exceedingly simple algorithm that can be analyzed both as a boosting algorithm for regression and as a multicalibration algorithm for a class H that makes use only of a standard squared error regression oracle for H. We give a weak learning assumption on H that ensures convergence to Bayes optimality without the need to make any realizability assumptions -- giving us an agnostic boosting algorithm for regression. We then show that our weak learning assumption on H is both necessary and sufficient for multicalibration with respect to H to imply Bayes optimality. We also show that if H satisfies our weak learning condition relative to another class C then multicalibration with respect to H implies multicalibration with respect to C. Finally we investigate the empirical performance of our algorithm experimentally using an open source implementation that we make available. Our code repository can be found at https://github.com/Declancharrison/Level-Set-Boosting. 5 authors · Jan 31, 2023
- Algorithm Development in Neural Networks: Insights from the Streaming Parity Task Even when massively overparameterized, deep neural networks show a remarkable ability to generalize. Research on this phenomenon has focused on generalization within distribution, via smooth interpolation. Yet in some settings neural networks also learn to extrapolate to data far beyond the bounds of the original training set, sometimes even allowing for infinite generalization, implying that an algorithm capable of solving the task has been learned. Here we undertake a case study of the learning dynamics of recurrent neural networks (RNNs) trained on the streaming parity task in order to develop an effective theory of algorithm development. The streaming parity task is a simple but nonlinear task defined on sequences up to arbitrary length. We show that, with sufficient finite training experience, RNNs exhibit a phase transition to perfect infinite generalization. Using an effective theory for the representational dynamics, we find an implicit representational merger effect which can be interpreted as the construction of a finite automaton that reproduces the task. Overall, our results disclose one mechanism by which neural networks can generalize infinitely from finite training experience. 2 authors · Jul 14
- Comparative Analysis of Phenomenological Approximations of the Light Curves of Eclipsing Binary Stars with Additional Parameters A comparative analysis of the special shapes (patterns, profiles) of the eclipses applied for the phenomenological modeling of the light curves of eclipsing binary stars is conducted. Families of functions are considered, generalizing local approximations (Andronov, 2010, 2012) and the functions theoretically unlimited in a width, based on a Gaussian (Mikulasek, 2015). For an analysis, the light curve of the star V0882 Car = 2MASS J11080308 - 6145589 of the classic Algol - subtype (\beta Persei) is used. By analyzing dozens of modified functions with additional parameters, it was chosen the 14 best ones according to the criterion of the least sum of squares of deviations. The best are the functions with an additional parameter, describing profiles, which are limited in phase. 3 authors · Nov 10, 2016
- Training Neural Networks in Single vs Double Precision The commitment to single-precision floating-point arithmetic is widespread in the deep learning community. To evaluate whether this commitment is justified, the influence of computing precision (single and double precision) on the optimization performance of the Conjugate Gradient (CG) method (a second-order optimization algorithm) and RMSprop (a first-order algorithm) has been investigated. Tests of neural networks with one to five fully connected hidden layers and moderate or strong nonlinearity with up to 4 million network parameters have been optimized for Mean Square Error (MSE). The training tasks have been set up so that their MSE minimum was known to be zero. Computing experiments have disclosed that single-precision can keep up (with superlinear convergence) with double-precision as long as line search finds an improvement. First-order methods such as RMSprop do not benefit from double precision. However, for moderately nonlinear tasks, CG is clearly superior. For strongly nonlinear tasks, both algorithm classes find only solutions fairly poor in terms of mean square error as related to the output variance. CG with double floating-point precision is superior whenever the solutions have the potential to be useful for the application goal. 3 authors · Sep 15, 2022
- Regression with Sensor Data Containing Incomplete Observations This paper addresses a regression problem in which output label values are the results of sensing the magnitude of a phenomenon. A low value of such labels can mean either that the actual magnitude of the phenomenon was low or that the sensor made an incomplete observation. This leads to a bias toward lower values in labels and the resultant learning because labels may have lower values due to incomplete observations, even if the actual magnitude of the phenomenon was high. Moreover, because an incomplete observation does not provide any tags indicating incompleteness, we cannot eliminate or impute them. To address this issue, we propose a learning algorithm that explicitly models incomplete observations corrupted with an asymmetric noise that always has a negative value. We show that our algorithm is unbiased as if it were learned from uncorrupted data that does not involve incomplete observations. We demonstrate the advantages of our algorithm through numerical experiments. 2 authors · Apr 26, 2023
- Generalization on the Unseen, Logic Reasoning and Degree Curriculum This paper considers the learning of logical (Boolean) functions with focus on the generalization on the unseen (GOTU) setting, a strong case of out-of-distribution generalization. This is motivated by the fact that the rich combinatorial nature of data in certain reasoning tasks (e.g., arithmetic/logic) makes representative data sampling challenging, and learning successfully under GOTU gives a first vignette of an 'extrapolating' or 'reasoning' learner. We then study how different network architectures trained by (S)GD perform under GOTU and provide both theoretical and experimental evidence that for a class of network models including instances of Transformers, random features models, and diagonal linear networks, a min-degree-interpolator (MDI) is learned on the unseen. We also provide evidence that other instances with larger learning rates or mean-field networks reach leaky MDIs. These findings lead to two implications: (1) we provide an explanation to the length generalization problem (e.g., Anil et al. 2022); (2) we introduce a curriculum learning algorithm called Degree-Curriculum that learns monomials more efficiently by incrementing supports. 4 authors · Jan 30, 2023
- ε-shotgun: ε-greedy Batch Bayesian Optimisation Bayesian optimisation is a popular, surrogate model-based approach for optimising expensive black-box functions. Given a surrogate model, the next location to expensively evaluate is chosen via maximisation of a cheap-to-query acquisition function. We present an epsilon-greedy procedure for Bayesian optimisation in batch settings in which the black-box function can be evaluated multiple times in parallel. Our epsilon-shotgun algorithm leverages the model's prediction, uncertainty, and the approximated rate of change of the landscape to determine the spread of batch solutions to be distributed around a putative location. The initial target location is selected either in an exploitative fashion on the mean prediction, or -- with probability epsilon -- from elsewhere in the design space. This results in locations that are more densely sampled in regions where the function is changing rapidly and in locations predicted to be good (i.e close to predicted optima), with more scattered samples in regions where the function is flatter and/or of poorer quality. We empirically evaluate the epsilon-shotgun methods on a range of synthetic functions and two real-world problems, finding that they perform at least as well as state-of-the-art batch methods and in many cases exceed their performance. 4 authors · Feb 5, 2020
- 360Zhinao Technical Report We present 360Zhinao models with 7B parameter size and context lengths spanning 4K, 32K and 360K, all available at https://github.com/Qihoo360/360zhinao. For rapid development in pretraining, we establish a stable and sensitive ablation environment to evaluate and compare experiment runs with minimal model size. Under such guidance, we perfect our data cleaning and composition strategies to pretrain 360Zhinao-7B-Base on 3.4T tokens. We also mainly emphasize data during alignment, where we strive to balance quantity and quality with filtering and reformatting. With tailored data, 360Zhinao-7B's context window is easily extended to 32K and 360K. RMs and RLHF are trained following SFT and credibly applied to specific tasks. All together these contributions lead to 360Zhinao-7B's competitive performance among models of similar size. 1 authors · May 22, 2024
- PROMISSING: Pruning Missing Values in Neural Networks While data are the primary fuel for machine learning models, they often suffer from missing values, especially when collected in real-world scenarios. However, many off-the-shelf machine learning models, including artificial neural network models, are unable to handle these missing values directly. Therefore, extra data preprocessing and curation steps, such as data imputation, are inevitable before learning and prediction processes. In this study, we propose a simple and intuitive yet effective method for pruning missing values (PROMISSING) during learning and inference steps in neural networks. In this method, there is no need to remove or impute the missing values; instead, the missing values are treated as a new source of information (representing what we do not know). Our experiments on simulated data, several classification and regression benchmarks, and a multi-modal clinical dataset show that PROMISSING results in similar prediction performance compared to various imputation techniques. In addition, our experiments show models trained using PROMISSING techniques are becoming less decisive in their predictions when facing incomplete samples with many unknowns. This finding hopefully advances machine learning models from being pure predicting machines to more realistic thinkers that can also say "I do not know" when facing incomplete sources of information. 8 authors · Jun 3, 2022
- Fractional WKB Approximation Wentzel, Kramers, Brillouin (WKB) approximation for fractional systems is investigated in this paper using the fractional calculus. In the fractional case the wave function is constructed such that the phase factor is the same as the Hamilton's principle function "S". To demonstrate our proposed approach two examples are investigated in details. 4 authors · Apr 4, 2007
12 Executable Functional Abstractions: Inferring Generative Programs for Advanced Math Problems Scientists often infer abstract procedures from specific instances of problems and use the abstractions to generate new, related instances. For example, programs encoding the formal rules and properties of a system have been useful in fields ranging from RL (procedural environments) to physics (simulation engines). These programs can be seen as functions which execute to different outputs based on their parameterizations (e.g., gridworld configuration or initial physical conditions). We introduce the term EFA (Executable Functional Abstraction) to denote such programs for math problems. EFA-like constructs have been shown to be useful for math reasoning as problem generators for stress-testing models. However, prior work has been limited to abstractions for grade-school math (whose simple rules are easy to encode in programs), while generating EFAs for advanced math has thus far required human engineering. We explore the automatic construction of EFAs for advanced math problems. We operationalize the task of automatically constructing EFAs as a program synthesis task, and develop EFAGen, which conditions an LLM on a seed math problem and its step-by-step solution to generate candidate EFA programs that are faithful to the generalized problem and solution class underlying the seed problem. Furthermore, we formalize properties any valid EFA must possess in terms of executable unit tests, and show how the tests can be used as verifiable rewards to train LLMs to become better writers of EFAs. We demonstrate that EFAs constructed by EFAGen behave rationally by remaining faithful to seed problems, produce learnable problem variations, and that EFAGen can infer EFAs across multiple diverse sources of competition-level math problems. Finally, we show downstream uses of model-written EFAs e.g. finding problem variations that are harder or easier for a learner to solve, as well as data generation. 5 authors · Apr 13 2
- Dynamics of the Beta Pictoris planetary system and possibility of an additional planet The Beta Pictoris system is characterized by a dusty debris disk, in addition to the presence of two already known planets. This makes it a particularly interesting case for studying the formation and evolution of planetary systems at a stage where giant planets have already formed, most of the protoplanetary gas has dissipated, and terrestrial planets could emerge. Our goal here is to explore the possibility of additional planets orbiting beyond the outermost known one, beta Pic b. More specifically, we aim to assess whether additional planets in the system could explain the discrepancy between the predicted cutoff of the disk inner cavity at sim28 au with only two planets, and the observed one at sim50 au. We perform an exhaustive dynamical modeling of the debris disk and the carving of its inner edge, by introducing one or two additional planets beyond beta Pic b, coplanar with the disk. Guided by theoretical predictions for the parameter space - mass, semi-major axis, eccentricity - allowed for additional planets, we further carry out a set of N-body simulations, using the symplectic integrator RMVS3. Our simulations indicate that an additional planet with a low eccentricity of 0.05, a mass between 0.15 and 1 M_{Jup}, and a semi-major axis between 30 and 36 au, would be consistent with the observations of an inner debris disk edge at 50 au. We have also explored the hypotheses of a higher eccentricity and the presence of two additional lower mass planets instead of one, which could also account for these observations. While we have found that one or even two additional planets could explain the observed location of the disk inner edge, these hypothetical planets remain in most cases below the current observational limits of high contrast imaging. Future observational campaigns with improved sensitivity will help lowering these limits and perhaps detect that planet. 4 authors · Jan 6
- On the Interplay Between Misspecification and Sub-optimality Gap in Linear Contextual Bandits We study linear contextual bandits in the misspecified setting, where the expected reward function can be approximated by a linear function class up to a bounded misspecification level zeta>0. We propose an algorithm based on a novel data selection scheme, which only selects the contextual vectors with large uncertainty for online regression. We show that, when the misspecification level zeta is dominated by tilde O (Delta / d) with Delta being the minimal sub-optimality gap and d being the dimension of the contextual vectors, our algorithm enjoys the same gap-dependent regret bound tilde O (d^2/Delta) as in the well-specified setting up to logarithmic factors. In addition, we show that an existing algorithm SupLinUCB (Chu et al., 2011) can also achieve a gap-dependent constant regret bound without the knowledge of sub-optimality gap Delta. Together with a lower bound adapted from Lattimore et al. (2020), our result suggests an interplay between misspecification level and the sub-optimality gap: (1) the linear contextual bandit model is efficiently learnable when zeta leq tilde O(Delta / d); and (2) it is not efficiently learnable when zeta geq tilde Omega({Delta} / {d}). Experiments on both synthetic and real-world datasets corroborate our theoretical results. 4 authors · Mar 16, 2023
- A Law of Robustness beyond Isoperimetry We study the robust interpolation problem of arbitrary data distributions supported on a bounded space and propose a two-fold law of robustness. Robust interpolation refers to the problem of interpolating n noisy training data points in R^d by a Lipschitz function. Although this problem has been well understood when the samples are drawn from an isoperimetry distribution, much remains unknown concerning its performance under generic or even the worst-case distributions. We prove a Lipschitzness lower bound Omega(n/p) of the interpolating neural network with p parameters on arbitrary data distributions. With this result, we validate the law of robustness conjecture in prior work by Bubeck, Li, and Nagaraj on two-layer neural networks with polynomial weights. We then extend our result to arbitrary interpolating approximators and prove a Lipschitzness lower bound Omega(n^{1/d}) for robust interpolation. Our results demonstrate a two-fold law of robustness: i) we show the potential benefit of overparametrization for smooth data interpolation when n=poly(d), and ii) we disprove the potential existence of an O(1)-Lipschitz robust interpolating function when n=exp(omega(d)). 3 authors · Feb 23, 2022
1 Do ImageNet Classifiers Generalize to ImageNet? We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to slightly "harder" images than those found in the original test sets. 4 authors · Feb 13, 2019
1 Chinchilla Scaling: A replication attempt Hoffmann et al. (2022) propose three methods for estimating a compute-optimal scaling law. We attempt to replicate their third estimation procedure, which involves fitting a parametric loss function to a reconstruction of data from their plots. We find that the reported estimates are inconsistent with their first two estimation methods, fail at fitting the extracted data, and report implausibly narrow confidence intervals--intervals this narrow would require over 600,000 experiments, while they likely only ran fewer than 500. In contrast, our rederivation of the scaling law using the third approach yields results that are compatible with the findings from the first two estimation procedures described by Hoffmann et al. 4 authors · Apr 15, 2024
- Accurate a posteriori error evaluation in the reduced basis method In the reduced basis method, the evaluation of the a posteriori estimator can become very sensitive to round-off errors. In this note, the origin of the loss of accuracy is revealed, and a solution to this problem is proposed and illustrated on a simple example. 1 authors · May 28, 2012
- Fluctuations of the connectivity threshold and largest nearest-neighbour link Consider a random uniform sample of n points in a compact region A of Euclidean d-space, d geq 2, with a smooth or (when d=2) polygonal boundary. Fix k bf N. Let T_{n,k} be the threshold r at which the geometric graph on these n vertices with distance parameter r becomes k-connected. We show that if d=2 then n (pi/|A|) T_{n,1}^2 - log n is asymptotically standard Gumbel. For (d,k) neq (2,1), it is n (theta_d/|A|) T_{n,k}^d - (2-2/d) log n - (4-2k-2/d) log log n that converges in distribution to a nondegenerate limit, where theta_d is the volume of the unit ball. The limit is Gumbel with scale parameter 2 except when (d,k)=(2,2) where the limit is two component extreme value distributed. The different cases reflect the fact that boundary effects are more more important in some cases than others. We also give similar results for the largest k-nearest neighbour link U_{n,k} in the sample, and show T_{n,k}=U_{n,k} with high probability. We provide estimates on rates of convergence and give similar results for Poisson samples in A. Finally, we give similar results even for non-uniform samples, with a less explicit sequence of centring constants. 2 authors · Jun 2, 2024
- Learning to Reject with a Fixed Predictor: Application to Decontextualization We study the problem of classification with a reject option for a fixed predictor, applicable in natural language processing. We introduce a new problem formulation for this scenario, and an algorithm minimizing a new surrogate loss function. We provide a complete theoretical analysis of the surrogate loss function with a strong H-consistency guarantee. For evaluation, we choose the decontextualization task, and provide a manually-labelled dataset of 2mathord,000 examples. Our algorithm significantly outperforms the baselines considered, with a sim!!25% improvement in coverage when halving the error rate, which is only sim!! 3 % away from the theoretical limit. 4 authors · Jan 21, 2023
- Fair Densities via Boosting the Sufficient Statistics of Exponential Families We introduce a boosting algorithm to pre-process data for fairness. Starting from an initial fair but inaccurate distribution, our approach shifts towards better data fitting while still ensuring a minimal fairness guarantee. To do so, it learns the sufficient statistics of an exponential family with boosting-compliant convergence. Importantly, we are able to theoretically prove that the learned distribution will have a representation rate and statistical rate data fairness guarantee. Unlike recent optimization based pre-processing methods, our approach can be easily adapted for continuous domain features. Furthermore, when the weak learners are specified to be decision trees, the sufficient statistics of the learned distribution can be examined to provide clues on sources of (un)fairness. Empirical results are present to display the quality of result on real-world data. 3 authors · Nov 30, 2020
16 Synthetic Video Enhances Physical Fidelity in Video Synthesis We investigate how to enhance the physical fidelity of video generation models by leveraging synthetic videos derived from computer graphics pipelines. These rendered videos respect real-world physics, such as maintaining 3D consistency, and serve as a valuable resource that can potentially improve video generation models. To harness this potential, we propose a solution that curates and integrates synthetic data while introducing a method to transfer its physical realism to the model, significantly reducing unwanted artifacts. Through experiments on three representative tasks emphasizing physical consistency, we demonstrate its efficacy in enhancing physical fidelity. While our model still lacks a deep understanding of physics, our work offers one of the first empirical demonstrations that synthetic video enhances physical fidelity in video synthesis. Website: https://kevinz8866.github.io/simulation/ 7 authors · Mar 25 3
1 Two Algorithms for Additive and Fair Division of Mixed Manna We consider a fair division model in which agents have positive, zero and negative utilities for items. For this model, we analyse one existing fairness property - EFX - and three new and related properties - EFX_0, EFX^3 and EF1^3 - in combination with Pareto-optimality. With general utilities, we give a modified version of an existing algorithm for computing an EF1^3 allocation. With -alpha/0/alpha utilities, this algorithm returns an EFX^3 and PO allocation. With absolute identical utilities, we give a new algorithm for an EFX and PO allocation. With -alpha/0/beta utilities, this algorithm also returns such an allocation. We report some new impossibility results as well. 2 authors · Jul 8, 2020
- Advocate for Complete Benchmarks for Formal Reasoning with Formal/Informal Statements and Formal/Informal Proofs This position paper provides a critical but constructive discussion of current practices in benchmarking and evaluative practices in the field of formal reasoning and automated theorem proving. We take the position that open code, open data, and benchmarks that are complete and error-free will accelerate progress in this field. We identify practices that create barriers to contributing to this field and suggest ways to remove them. We also discuss some of the practices that might produce misleading evaluative information. We aim to create discussions that bring together people from various groups contributing to automated theorem proving, autoformalization, and informal reasoning. 2 authors · Jul 7
26 Idempotent Generative Network We propose a new approach for generative modeling based on training a neural network to be idempotent. An idempotent operator is one that can be applied sequentially without changing the result beyond the initial application, namely f(f(z))=f(z). The proposed model f is trained to map a source distribution (e.g, Gaussian noise) to a target distribution (e.g. realistic images) using the following objectives: (1) Instances from the target distribution should map to themselves, namely f(x)=x. We define the target manifold as the set of all instances that f maps to themselves. (2) Instances that form the source distribution should map onto the defined target manifold. This is achieved by optimizing the idempotence term, f(f(z))=f(z) which encourages the range of f(z) to be on the target manifold. Under ideal assumptions such a process provably converges to the target distribution. This strategy results in a model capable of generating an output in one step, maintaining a consistent latent space, while also allowing sequential applications for refinement. Additionally, we find that by processing inputs from both target and source distributions, the model adeptly projects corrupted or modified data back to the target manifold. This work is a first step towards a ``global projector'' that enables projecting any input into a target data distribution. 6 authors · Nov 2, 2023 4
- Proper losses for discrete generative models We initiate the study of proper losses for evaluating generative models in the discrete setting. Unlike traditional proper losses, we treat both the generative model and the target distribution as black-boxes, only assuming ability to draw i.i.d. samples. We define a loss to be black-box proper if the generative distribution that minimizes expected loss is equal to the target distribution. Using techniques from statistical estimation theory, we give a general construction and characterization of black-box proper losses: they must take a polynomial form, and the number of draws from the model and target distribution must exceed the degree of the polynomial. The characterization rules out a loss whose expectation is the cross-entropy between the target distribution and the model. By extending the construction to arbitrary sampling schemes such as Poisson sampling, however, we show that one can construct such a loss. 3 authors · Nov 7, 2022
- On the Existence of Simpler Machine Learning Models It is almost always easier to find an accurate-but-complex model than an accurate-yet-simple model. Finding optimal, sparse, accurate models of various forms (linear models with integer coefficients, decision sets, rule lists, decision trees) is generally NP-hard. We often do not know whether the search for a simpler model will be worthwhile, and thus we do not go to the trouble of searching for one. In this work, we ask an important practical question: can accurate-yet-simple models be proven to exist, or shown likely to exist, before explicitly searching for them? We hypothesize that there is an important reason that simple-yet-accurate models often do exist. This hypothesis is that the size of the Rashomon set is often large, where the Rashomon set is the set of almost-equally-accurate models from a function class. If the Rashomon set is large, it contains numerous accurate models, and perhaps at least one of them is the simple model we desire. In this work, we formally present the Rashomon ratio as a new gauge of simplicity for a learning problem, depending on a function class and a data set. The Rashomon ratio is the ratio of the volume of the set of accurate models to the volume of the hypothesis space, and it is different from standard complexity measures from statistical learning theory. Insight from studying the Rashomon ratio provides an easy way to check whether a simpler model might exist for a problem before finding it, namely whether several different machine learning methods achieve similar performance on the data. In that sense, the Rashomon ratio is a powerful tool for understanding why and when an accurate-yet-simple model might exist. If, as we hypothesize in this work, many real-world data sets admit large Rashomon sets, the implications are vast: it means that simple or interpretable models may often be used for high-stakes decisions without losing accuracy. 3 authors · Aug 5, 2019
1 Language Models (Mostly) Know What They Know We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing. 36 authors · Jul 11, 2022
- Datasets for Studying Generalization from Easy to Hard Examples We describe new datasets for studying generalization from easy to hard examples. 8 authors · Aug 12, 2021
7 Implicit Diffusion: Efficient Optimization through Stochastic Sampling We present a new algorithm to optimize distributions defined implicitly by parameterized stochastic diffusions. Doing so allows us to modify the outcome distribution of sampling processes by optimizing over their parameters. We introduce a general framework for first-order optimization of these processes, that performs jointly, in a single loop, optimization and sampling steps. This approach is inspired by recent advances in bilevel optimization and automatic implicit differentiation, leveraging the point of view of sampling as optimization over the space of probability distributions. We provide theoretical guarantees on the performance of our method, as well as experimental results demonstrating its effectiveness in real-world settings. 9 authors · Feb 8, 2024 1
- A Survey of Deep Learning for Mathematical Reasoning Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain. 5 authors · Dec 20, 2022
- Topological Obstructions to Autoencoding Autoencoders have been proposed as a powerful tool for model-independent anomaly detection in high-energy physics. The operating principle is that events which do not belong to the space of training data will be reconstructed poorly, thus flagging them as anomalies. We point out that in a variety of examples of interest, the connection between large reconstruction error and anomalies is not so clear. In particular, for data sets with nontrivial topology, there will always be points that erroneously seem anomalous due to global issues. Conversely, neural networks typically have an inductive bias or prior to locally interpolate such that undersampled or rare events may be reconstructed with small error, despite actually being the desired anomalies. Taken together, these facts are in tension with the simple picture of the autoencoder as an anomaly detector. Using a series of illustrative low-dimensional examples, we show explicitly how the intrinsic and extrinsic topology of the dataset affects the behavior of an autoencoder and how this topology is manifested in the latent space representation during training. We ground this analysis in the discussion of a mock "bump hunt" in which the autoencoder fails to identify an anomalous "signal" for reasons tied to the intrinsic topology of n-particle phase space. 4 authors · Feb 16, 2021
- On the Relationship Between Explanation and Prediction: A Causal View Being able to provide explanations for a model's decision has become a central requirement for the development, deployment, and adoption of machine learning models. However, we are yet to understand what explanation methods can and cannot do. How do upstream factors such as data, model prediction, hyperparameters, and random initialization influence downstream explanations? While previous work raised concerns that explanations (E) may have little relationship with the prediction (Y), there is a lack of conclusive study to quantify this relationship. Our work borrows tools from causal inference to systematically assay this relationship. More specifically, we study the relationship between E and Y by measuring the treatment effect when intervening on their causal ancestors, i.e., on hyperparameters and inputs used to generate saliency-based Es or Ys. Our results suggest that the relationships between E and Y is far from ideal. In fact, the gap between 'ideal' case only increase in higher-performing models -- models that are likely to be deployed. Our work is a promising first step towards providing a quantitative measure of the relationship between E and Y, which could also inform the future development of methods for E with a quantitative metric. 5 authors · Dec 13, 2022
- Teaching Models to Express Their Uncertainty in Words We show that a GPT-3 model can learn to express uncertainty about its own answers in natural language -- without use of model logits. When given a question, the model generates both an answer and a level of confidence (e.g. "90% confidence" or "high confidence"). These levels map to probabilities that are well calibrated. The model also remains moderately calibrated under distribution shift, and is sensitive to uncertainty in its own answers, rather than imitating human examples. To our knowledge, this is the first time a model has been shown to express calibrated uncertainty about its own answers in natural language. For testing calibration, we introduce the CalibratedMath suite of tasks. We compare the calibration of uncertainty expressed in words ("verbalized probability") to uncertainty extracted from model logits. Both kinds of uncertainty are capable of generalizing calibration under distribution shift. We also provide evidence that GPT-3's ability to generalize calibration depends on pre-trained latent representations that correlate with epistemic uncertainty over its answers. 3 authors · May 28, 2022
- Breaking supersymmetry with pure spinors For several classes of BPS vacua, we find a procedure to modify the PDEs that imply preserved supersymmetry and the equations of motion so that they still imply the latter but not the former. In each case we trace back this supersymmetry-breaking deformation to a distinct modification of the pure spinor equations that provide a geometrical interpretation of supersymmetry. We give some concrete examples: first we generalize the Imamura class of Mink6 solutions by removing a symmetry requirement, and then derive some local and global solutions both before and after breaking supersymmetry. 2 authors · Nov 27, 2019
- Conformal Prediction with Missing Values Conformal prediction is a theoretically grounded framework for constructing predictive intervals. We study conformal prediction with missing values in the covariates -- a setting that brings new challenges to uncertainty quantification. We first show that the marginal coverage guarantee of conformal prediction holds on imputed data for any missingness distribution and almost all imputation functions. However, we emphasize that the average coverage varies depending on the pattern of missing values: conformal methods tend to construct prediction intervals that under-cover the response conditionally to some missing patterns. This motivates our novel generalized conformalized quantile regression framework, missing data augmentation, which yields prediction intervals that are valid conditionally to the patterns of missing values, despite their exponential number. We then show that a universally consistent quantile regression algorithm trained on the imputed data is Bayes optimal for the pinball risk, thus achieving valid coverage conditionally to any given data point. Moreover, we examine the case of a linear model, which demonstrates the importance of our proposal in overcoming the heteroskedasticity induced by missing values. Using synthetic and data from critical care, we corroborate our theory and report improved performance of our methods. 4 authors · Jun 5, 2023
- A Deep Learning Powered Numerical Relativity Surrogate for Binary Black Hole Waveforms Gravitational-wave approximants are essential for gravitational-wave astronomy, allowing the coverage binary black hole parameter space for inference or match filtering without costly numerical relativity (NR) simulations, but generally trading some accuracy for computational efficiency. To reduce this trade-off, NR surrogate models can be constructed using interpolation within NR waveform space. We present a 2-stage training approach for neural network-based NR surrogate models. Initially trained on approximant-generated waveforms and then fine-tuned with NR data, these dual-stage artificial neural surrogate (DANSur) models offer rapid and competitively accurate waveform generation, generating millions in under 20ms on a GPU while keeping mean mismatches with NR around 10^{-4}. Implemented in the bilby framework, we show they can be used for parameter estimation tasks. 9 authors · Dec 9, 2024
- Causal Proxy Models for Concept-Based Model Explanations Explainability methods for NLP systems encounter a version of the fundamental problem of causal inference: for a given ground-truth input text, we never truly observe the counterfactual texts necessary for isolating the causal effects of model representations on outputs. In response, many explainability methods make no use of counterfactual texts, assuming they will be unavailable. In this paper, we show that robust causal explainability methods can be created using approximate counterfactuals, which can be written by humans to approximate a specific counterfactual or simply sampled using metadata-guided heuristics. The core of our proposal is the Causal Proxy Model (CPM). A CPM explains a black-box model N because it is trained to have the same actual input/output behavior as N while creating neural representations that can be intervened upon to simulate the counterfactual input/output behavior of N. Furthermore, we show that the best CPM for N performs comparably to N in making factual predictions, which means that the CPM can simply replace N, leading to more explainable deployed models. Our code is available at https://github.com/frankaging/Causal-Proxy-Model. 5 authors · Sep 28, 2022
- Arbitrary Length Generalization for Addition This paper introduces a novel training methodology that enables a small Transformer model to generalize the addition of two-digit numbers to numbers with unseen lengths of digits. The proposed approach employs an autoregressive generation technique, processing from right to left, which mimics a common manual method for adding large numbers. To the best of my knowledge, this methodology has not been previously explored in the literature. All results are reproducible, and the corresponding R code is available at: https://github.com/AGPatriota/ALGA-R/. 1 authors · May 30, 2024 1
- Tighter Information-Theoretic Generalization Bounds from Supersamples In this work, we present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)-the setting of the "conditional mutual information" framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting. 2 authors · Feb 5, 2023
- Algorithm-assisted discovery of an intrinsic order among mathematical constants In recent decades, a growing number of discoveries in fields of mathematics have been assisted by computer algorithms, primarily for exploring large parameter spaces that humans would take too long to investigate. As computers and algorithms become more powerful, an intriguing possibility arises - the interplay between human intuition and computer algorithms can lead to discoveries of novel mathematical concepts that would otherwise remain elusive. To realize this perspective, we have developed a massively parallel computer algorithm that discovers an unprecedented number of continued fraction formulas for fundamental mathematical constants. The sheer number of formulas discovered by the algorithm unveils a novel mathematical structure that we call the conservative matrix field. Such matrix fields (1) unify thousands of existing formulas, (2) generate infinitely many new formulas, and most importantly, (3) lead to unexpected relations between different mathematical constants, including multiple integer values of the Riemann zeta function. Conservative matrix fields also enable new mathematical proofs of irrationality. In particular, we can use them to generalize the celebrated proof by Ap\'ery for the irrationality of zeta(3). Utilizing thousands of personal computers worldwide, our computer-supported research strategy demonstrates the power of experimental mathematics, highlighting the prospects of large-scale computational approaches to tackle longstanding open problems and discover unexpected connections across diverse fields of science. 9 authors · Aug 22, 2023
- Analytical confidence intervals for the number of different objects in data streams This paper develops a new mathematical-statistical approach to analyze a class of Flajolet-Martin algorithms (FMa), and provides analytical confidence intervals for the number F0 of distinct elements in a stream, based on Chernoff bounds. The class of FMa has reached a significant popularity in bigdata stream learning, and the attention of the literature has mainly been based on algorithmic aspects, basically complexity optimality, while the statistical analysis of these class of algorithms has been often faced heuristically. The analysis provided here shows deep connections with mathematical special functions and with extreme value theory. The latter connection may help in explaining heuristic considerations, while the first opens many numerical issues, faced at the end of the present paper. Finally, the algorithms are tested on an anonymized real data stream and MonteCarlo simulations are provided to support our analytical choice in this context. 1 authors · Sep 25, 2019
- DEUP: Direct Epistemic Uncertainty Prediction Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations. 8 authors · Feb 16, 2021
14 Xmodel-1.5: An 1B-scale Multilingual LLM We introduce Xmodel-1.5, a novel 1-billion-parameter multilingual large model pretrained on approximately 2 trillion tokens. The model demonstrates strong performance across several languages, with particularly notable results in Thai, Arabic, and French, alongside its effectiveness in Chinese and English. In addition, we contribute to the research community by releasing a Thai evaluation dataset, which includes hundreds of questions annotated by students from Chulalongkorn University's School of Integrated Innovation. While the results are promising, we acknowledge that there is still room for improvement. We hope this work advances ongoing efforts in multilingual AI research and promotes better cross-linguistic understanding in various natural language processing tasks. Our models and code are publicly available on GitHub at https://github.com/XiaoduoAILab/XmodelLM. 4 authors · Nov 15, 2024 2
3 Functional Benchmarks for Robust Evaluation of Reasoning Performance, and the Reasoning Gap We propose a framework for robust evaluation of reasoning capabilities of language models, using functional variants of benchmarks. Models that solve a reasoning test should exhibit no difference in performance over the static version of a problem compared to a snapshot of the functional variant. We have rewritten the relevant fragment of the MATH benchmark into its functional variant MATH(), with functionalization of other benchmarks to follow. When evaluating current state-of-the-art models over snapshots of MATH(), we find a reasoning gap -- the percentage difference between the static and functional accuracies. We find reasoning gaps from 58.35% to 80.31% among the state-of-the-art closed and open weights models that perform well on static benchmarks, with the caveat that the gaps are likely to be smaller with more sophisticated prompting strategies. Here we show that models which anecdotally have good reasoning performance over real-world tasks, have quantifiable lower gaps, motivating the open problem of building "gap 0" models. Code for evaluation and new evaluation datasets, three MATH() snapshots, are publicly available at https://github.com/consequentai/fneval/. 9 authors · Feb 29, 2024
- Using Stratified Sampling to Improve LIME Image Explanations We investigate the use of a stratified sampling approach for LIME Image, a popular model-agnostic explainable AI method for computer vision tasks, in order to reduce the artifacts generated by typical Monte Carlo sampling. Such artifacts are due to the undersampling of the dependent variable in the synthetic neighborhood around the image being explained, which may result in inadequate explanations due to the impossibility of fitting a linear regressor on the sampled data. We then highlight a connection with the Shapley theory, where similar arguments about undersampling and sample relevance were suggested in the past. We derive all the formulas and adjustment factors required for an unbiased stratified sampling estimator. Experiments show the efficacy of the proposed approach. 4 authors · Mar 26, 2024
1 Manify: A Python Library for Learning Non-Euclidean Representations We present Manify, an open-source Python library for non-Euclidean representation learning. Leveraging manifold learning techniques, Manify provides tools for learning embeddings in (products of) non-Euclidean spaces, performing classification and regression with data that lives in such spaces, and estimating the curvature of a manifold. Manify aims to advance research and applications in machine learning by offering a comprehensive suite of tools for manifold-based data analysis. Our source code, examples, datasets, results, and documentation are available at https://github.com/pchlenski/manify 4 authors · Mar 12 1
- Librispeech Transducer Model with Internal Language Model Prior Correction We present our transducer model on Librispeech. We study variants to include an external language model (LM) with shallow fusion and subtract an estimated internal LM. This is justified by a Bayesian interpretation where the transducer model prior is given by the estimated internal LM. The subtraction of the internal LM gives us over 14% relative improvement over normal shallow fusion. Our transducer has a separate probability distribution for the non-blank labels which allows for easier combination with the external LM, and easier estimation of the internal LM. We additionally take care of including the end-of-sentence (EOS) probability of the external LM in the last blank probability which further improves the performance. All our code and setups are published. 5 authors · Apr 7, 2021
- The Virtual Quantum Optics Laboratory We present a web-based software tool, the Virtual Quantum Optics Laboratory (VQOL), that may be used for designing and executing realistic simulations of quantum optics experiments. A graphical user interface allows one to rapidly build and configure a variety of different optical experiments, while the runtime environment provides unique capabilities for visualization and analysis. All standard linear optical components are available as well as sources of thermal, coherent, and entangled Gaussian states. A unique aspect of VQOL is the introduction of non-Gaussian measurements using detectors modeled as deterministic devices that "click" when the amplitude of the light falls above a given threshold. We describe the underlying theoretical models and provide several illustrative examples. We find that VQOL provides a a faithful representation of many experimental quantum optics phenomena and may serve as both a useful instructional tool for students as well as a valuable research tool for practitioners. 5 authors · May 15, 2021
1 Matrix Calculus (for Machine Learning and Beyond) This course, intended for undergraduates familiar with elementary calculus and linear algebra, introduces the extension of differential calculus to functions on more general vector spaces, such as functions that take as input a matrix and return a matrix inverse or factorization, derivatives of ODE solutions, and even stochastic derivatives of random functions. It emphasizes practical computational applications, such as large-scale optimization and machine learning, where derivatives must be re-imagined in order to be propagated through complicated calculations. The class also discusses efficiency concerns leading to "adjoint" or "reverse-mode" differentiation (a.k.a. "backpropagation"), and gives a gentle introduction to modern automatic differentiation (AD) techniques. 3 authors · Jan 7 1
- Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately. 3 authors · Nov 30, 2022
- Learning the Dynamics of Sparsely Observed Interacting Systems We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series. The feature time series is measured on a sparse and irregular grid, while we have access to only a few points of the target time series. Once learned, we can use these dynamics to predict values of the target from the previous values of the feature time series. We frame this task as learning the solution map of a controlled differential equation (CDE). By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression. We provide an oracle bound on the prediction error which exhibits explicit dependencies on the individual-specific sampling schemes. Our theoretical results are illustrated by simulations which show that our method outperforms existing algorithms for recovering the full time series while being computationally cheap. We conclude by demonstrating its potential on real-world epidemiological data. 4 authors · Jan 27, 2023
- A 23 MW data centre is all you need The field of machine learning has achieved striking progress in recent years, witnessing breakthrough results on language modelling, protein folding and nitpickingly fine-grained dog breed classification. Some even succeeded at playing computer games and board games, a feat both of engineering and of setting their employers' expectations. The central contribution of this work is to carefully examine whether this progress, and technology more broadly, can be expected to continue indefinitely. Through a rigorous application of statistical theory and failure to extrapolate beyond the training data, we answer firmly in the negative and provide details: technology will peak at 3:07 am (BST) on 20th July, 2032. We then explore the implications of this finding, discovering that individuals awake at this ungodly hour with access to a sufficiently powerful computer possess an opportunity for myriad forms of long-term linguistic 'lock in'. All we need is a large (>> 1W) data centre to seize this pivotal moment. By setting our analogue alarm clocks, we propose a tractable algorithm to ensure that, for the future of humanity, the British spelling of colour becomes the default spelling across more than 80% of the global word processing software market. 3 authors · Mar 31, 2022
1 The FathomNet2023 Competition Dataset Ocean scientists have been collecting visual data to study marine organisms for decades. These images and videos are extremely valuable both for basic science and environmental monitoring tasks. There are tools for automatically processing these data, but none that are capable of handling the extreme variability in sample populations, image quality, and habitat characteristics that are common in visual sampling of the ocean. Such distribution shifts can occur over very short physical distances and in narrow time windows. Creating models that are able to recognize when an image or video sequence contains a new organism, an unusual collection of animals, or is otherwise out-of-sample is critical to fully leverage visual data in the ocean. The FathomNet2023 competition dataset presents a realistic scenario where the set of animals in the target data differs from the training data. The challenge is both to identify the organisms in a target image and assess whether it is out-of-sample. 6 authors · Jul 17, 2023
- Faster logconcave sampling from a cold start in high dimension We present a faster algorithm to generate a warm start for sampling an arbitrary logconcave density specified by an evaluation oracle, leading to the first sub-cubic sampling algorithms for inputs in (near-)isotropic position. A long line of prior work incurred a warm-start penalty of at least linear in the dimension, hitting a cubic barrier, even for the special case of uniform sampling from convex bodies. Our improvement relies on two key ingredients of independent interest. (1) We show how to sample given a warm start in weaker notions of distance, in particular q-R\'enyi divergence for q=mathcal{O}(1), whereas previous analyses required stringent infty-R\'enyi divergence (with the exception of Hit-and-Run, whose known mixing time is higher). This marks the first improvement in the required warmness since Lov\'asz and Simonovits (1991). (2) We refine and generalize the log-Sobolev inequality of Lee and Vempala (2018), originally established for isotropic logconcave distributions in terms of the diameter of the support, to logconcave distributions in terms of a geometric average of the support diameter and the largest eigenvalue of the covariance matrix. 2 authors · May 3
- Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations. 3 authors · Sep 22, 2023
4 Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement In this report, we present a series of math-specific large language models: Qwen2.5-Math and Qwen2.5-Math-Instruct-1.5B/7B/72B. The core innovation of the Qwen2.5 series lies in integrating the philosophy of self-improvement throughout the entire pipeline, from pre-training and post-training to inference: (1) During the pre-training phase, Qwen2-Math-Instruct is utilized to generate large-scale, high-quality mathematical data. (2) In the post-training phase, we develop a reward model (RM) by conducting massive sampling from Qwen2-Math-Instruct. This RM is then applied to the iterative evolution of data in supervised fine-tuning (SFT). With a stronger SFT model, it's possible to iteratively train and update the RM, which in turn guides the next round of SFT data iteration. On the final SFT model, we employ the ultimate RM for reinforcement learning, resulting in the Qwen2.5-Math-Instruct. (3) Furthermore, during the inference stage, the RM is used to guide sampling, optimizing the model's performance. Qwen2.5-Math-Instruct supports both Chinese and English, and possess advanced mathematical reasoning capabilities, including Chain-of-Thought (CoT) and Tool-Integrated Reasoning (TIR). We evaluate our models on 10 mathematics datasets in both English and Chinese, such as GSM8K, MATH, GaoKao, AMC23, and AIME24, covering a range of difficulties from grade school level to math competition problems. 16 authors · Sep 18, 2024
- Determination of Characteristics of Eclipsing Binaries with Spots: Phenomenological vs Physical Models We discuss methods for modeling eclipsing binary stars using the "physical", "simplified" and "phenomenological" models. There are few realizations of the "physical" Wilson-Devinney (1971) code and its improvements, e.g. Binary Maker, Phoebe. A parameter search using the Monte-Carlo method was realized by Zola et al. (2010), which is efficient in expense of too many evaluations of the test function. We compare existing algorithms of minimization of multi-parametric functions and propose to use a "combined" algorithm, depending on if the Hessian matrix is positively determined. To study methods, a simply fast-computed function resembling the "complete" test function for the physical model. Also we adopt a simplified model of an eclipsing binary at a circular orbit assuming spherical components with an uniform brightness distribution. This model resembles more advanced models in a sense of correlated parameter estimates due to a similar topology of the test function. Such a model may be applied to detached Algol-type systems, where the tidal distortion of components is negligible. 2 authors · Sep 27, 2014
- A Nearly-Optimal Bound for Fast Regression with ell_infty Guarantee Given a matrix Ain R^{ntimes d} and a vector bin R^n, we consider the regression problem with ell_infty guarantees: finding a vector x'in R^d such that |x'-x^*|_infty leq epsilon{d}cdot |Ax^*-b|_2cdot |A^dagger| where x^*=argmin_{xin R^d}|Ax-b|_2. One popular approach for solving such ell_2 regression problem is via sketching: picking a structured random matrix Sin R^{mtimes n} with mll n and SA can be quickly computed, solve the ``sketched'' regression problem argmin_{xin R^d} |SAx-Sb|_2. In this paper, we show that in order to obtain such ell_infty guarantee for ell_2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m=epsilon^{-2}dlog^3(n/delta) such that solving the sketched regression problem gives the ell_infty guarantee, with probability at least 1-delta. Moreover, the matrix SA can be computed in time O(ndlog n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in [Price, Song and Woodruff, ICALP'17], in which a super-linear in d rows, m=Omega(epsilon^{-2}d^{1+gamma}) for gamma=Theta(frac{loglog n{log d}}) is required. We also develop a novel analytical framework for ell_infty guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in [Song and Yu, ICML'21]. Our analysis is arguably much simpler and more general than [Price, Song and Woodruff, ICALP'17], and it extends to dense sketches for tensor product of vectors. 4 authors · Feb 1, 2023
- Noisy Interpolation Learning with Shallow Univariate ReLU Networks Understanding how overparameterized neural networks generalize despite perfect interpolation of noisy training data is a fundamental question. Mallinar et. al. 2022 noted that neural networks seem to often exhibit ``tempered overfitting'', wherein the population risk does not converge to the Bayes optimal error, but neither does it approach infinity, yielding non-trivial generalization. However, this has not been studied rigorously. We provide the first rigorous analysis of the overfitting behavior of regression with minimum norm (ell_2 of weights), focusing on univariate two-layer ReLU networks. We show overfitting is tempered (with high probability) when measured with respect to the L_1 loss, but also show that the situation is more complex than suggested by Mallinar et. al., and overfitting is catastrophic with respect to the L_2 loss, or when taking an expectation over the training set. 3 authors · Jul 28, 2023
- Constraints on the variation of the fine-structure constant at 3<z<10 with JWST emission-line galaxies We present constraints on the spacetime variation of the fine-structure constant alpha at redshifts 2.5le z<9.5 using JWST emission-line galaxies. The galaxy sample consists of 621 high-quality spectra with strong and narrow [O III] lambdalambda4959,5007 doublet emission lines from 578 galaxies, including 232 spectra at z>5. The [O III] doublet lines are arguably the best emission lines to probe the variation in alpha. We divide our sample into six subsamples based on redshift and calculate the relative variation Deltaalpha/alpha for the individual subsamples. The calculated Deltaalpha/alpha values are consistent with zero within 1sigma at all redshifts, suggesting no time variation in alpha above a level of (1-2) times10^{-4} (1sigma) in the past 13.2 billion years. When the whole sample is combined, the constraint is improved to be Deltaalpha/alpha = (0.2pm0.7) times10^{-4}. We further test the spatial variation in alpha using four subsamples of galaxies in four different directions on the sky. The measured Deltaalpha/alpha values are consistent with zero at a 1sigma level of sim 2times10^{-4}. While the constraints in this work are not as stringent as those from lower-redshift quasar absorption lines in previous studies, this work uses an independent tracer and provides the first constraints on Deltaalpha/alpha at the highest redshifts. With the growing number of emission-line galaxies from JWST, we expect to achieve stronger constraints in the future. 10 authors · May 14, 2024
- BabelCalib: A Universal Approach to Calibrating Central Cameras Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial values for all parameters of the used camera model. This might occur because a simpler projection model is assumed in an initial step, or a poor initial guess for the internal parameters is pre-defined. A lot of the difficulties of general camera calibration lie in the use of a forward projection model. We side-step these challenges by first proposing a solver to calibrate the parameters in terms of a back-projection model and then regress the parameters for a target forward model. These steps are incorporated in a robust estimation framework to cope with outlying detections. Extensive experiments demonstrate that our approach is very reliable and returns the most accurate calibration parameters as measured on the downstream task of absolute pose estimation on test sets. The code is released at https://github.com/ylochman/babelcalib. 6 authors · Sep 20, 2021
- Convergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity Algorithms for min-max optimization and variational inequalities are often studied under monotonicity assumptions. Motivated by non-monotone machine learning applications, we follow the line of works [Diakonikolas et al., 2021, Lee and Kim, 2021, Pethick et al., 2022, B\"ohm, 2022] aiming at going beyond monotonicity by considering the weaker negative comonotonicity assumption. In particular, we provide tight complexity analyses for the Proximal Point, Extragradient, and Optimistic Gradient methods in this setup, closing some questions on their working guarantees beyond monotonicity. 4 authors · Oct 25, 2022
- Challenging common interpretability assumptions in feature attribution explanations As machine learning and algorithmic decision making systems are increasingly being leveraged in high-stakes human-in-the-loop settings, there is a pressing need to understand the rationale of their predictions. Researchers have responded to this need with explainable AI (XAI), but often proclaim interpretability axiomatically without evaluation. When these systems are evaluated, they are often tested through offline simulations with proxy metrics of interpretability (such as model complexity). We empirically evaluate the veracity of three common interpretability assumptions through a large scale human-subjects experiment with a simple "placebo explanation" control. We find that feature attribution explanations provide marginal utility in our task for a human decision maker and in certain cases result in worse decisions due to cognitive and contextual confounders. This result challenges the assumed universal benefit of applying these methods and we hope this work will underscore the importance of human evaluation in XAI research. Supplemental materials -- including anonymized data from the experiment, code to replicate the study, an interactive demo of the experiment, and the models used in the analysis -- can be found at: https://doi.pizza/challenging-xai. 3 authors · Dec 4, 2020
- Coffee Roast Intelligence As the coffee industry has grown, there would be more demand for roasted coffee beans, as well as increased rivalry for selling coffee and attracting customers. As the flavor of each variety of coffee is dependent on the degree of roasting of the coffee beans, it is vital to maintain a consistent quality related to the degree of roasting. Each barista has their own method for determining the degree of roasting. However, extrinsic circumstances such as light, fatigue, and other factors may alter their judgment. As a result, the quality of the coffee cannot be controlled. The Coffee Roast Intelligence application is a machine learning-based study of roasted coffee bean degrees classification produced as an Android application platform that identifies the color of coffee beans by photographing or uploading them while roasting. This application displays the text showing at what level the coffee beans have been roasted, as well as informs the percent chance of class prediction to the consumers. Users may also keep track of the result of the predictions related to the roasting level of coffee beans. 5 authors · Jun 3, 2022
1 Template estimation in computational anatomy: Fréchet means in top and quotient spaces are not consistent In this article, we study the consistency of the template estimation with the Fr\'echet mean in quotient spaces. The Fr\'echet mean in quotient spaces is often used when the observations are deformed or transformed by a group action. We show that in most cases this estimator is actually inconsistent. We exhibit a sufficient condition for this inconsistency, which amounts to the folding of the distribution of the noisy template when it is projected to the quotient space. This condition appears to be fulfilled as soon as the support of the noise is large enough. To quantify this inconsistency we provide lower and upper bounds of the bias as a function of the variability (the noise level). This shows that the consistency bias cannot be neglected when the variability increases. 4 authors · Aug 12, 2016
- Transfer Learning for Emulating Ocean Climate Variability across CO_2 forcing With the success of machine learning (ML) applied to climate reaching further every day, emulators have begun to show promise not only for weather but for multi-year time scales in the atmosphere. Similar work for the ocean remains nascent, with state-of-the-art limited to models running for shorter time scales or only for regions of the globe. In this work, we demonstrate high-skill global emulation for surface ocean fields over 5-8 years of model rollout, accurately representing modes of variability for two different ML architectures (ConvNext and Transformers). In addition, we address the outstanding question of generalization, an essential consideration if the end-use of emulation is to model warming scenarios outside of the model training data. We show that 1) generalization is not an intrinsic feature of a data-driven emulator, 2) fine-tuning the emulator on only small amounts of additional data from a distribution similar to the test set can enable the emulator to perform well in a warmed climate, and 3) the forced emulators are robust to noise in the forcing. 7 authors · May 28, 2024
13 Is Programming by Example solved by LLMs? Programming-by-Examples (PBE) aims to generate an algorithm from input-output examples. Such systems are practically and theoretically important: from an end-user perspective, they are deployed to millions of people, and from an AI perspective, PBE corresponds to a very general form of few-shot inductive inference. Given the success of Large Language Models (LLMs) in code-generation tasks, we investigate here the extent to which LLMs can be said to have `solved' PBE. We experiment on classic domains such as lists and strings, and an uncommon graphics programming domain not well represented in typical pretraining data. We find that pretrained models are not effective at PBE, but that they can be fine-tuned for much higher performance, provided the test problems are in-distribution. We analyze empirically what causes these models to succeed and fail, and take steps toward understanding how to achieve better out-of-distribution generalization. Collectively these results suggest that LLMs make strong progress toward solving the typical suite of PBE tasks, potentially increasing the flexibility and applicability of PBE systems, while also identifying ways in which LLMs still fall short. 2 authors · Jun 12, 2024 1
- Approximate Axiomatization for Differentially-Defined Functions This article establishes a complete approximate axiomatization for the real-closed field R expanded with all differentially-defined functions, including special functions such as sin(x), cos(x), e^x, dots. Every true sentence is provable up to some numerical approximation, and the truth of such approximations converge under mild conditions. Such an axiomatization is a fragment of the axiomatization for differential dynamic logic, and is therefore a finite extension of the axiomatization of real-closed fields. Furthermore, the numerical approximations approximate formulas containing special function symbols by FOL_{R} formulas, improving upon earlier decidability results only concerning closed sentences. 2 authors · Jun 9
- Explaining Explanations: An Overview of Interpretability of Machine Learning There has recently been a surge of work in explanatory artificial intelligence (XAI). This research area tackles the important problem that complex machines and algorithms often cannot provide insights into their behavior and thought processes. XAI allows users and parts of the internal system to be more transparent, providing explanations of their decisions in some level of detail. These explanations are important to ensure algorithmic fairness, identify potential bias/problems in the training data, and to ensure that the algorithms perform as expected. However, explanations produced by these systems is neither standardized nor systematically assessed. In an effort to create best practices and identify open challenges, we provide our definition of explainability and show how it can be used to classify existing literature. We discuss why current approaches to explanatory methods especially for deep neural networks are insufficient. Finally, based on our survey, we conclude with suggested future research directions for explanatory artificial intelligence. 6 authors · May 31, 2018
14 Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space Models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io. 7 authors · Feb 15, 2024 1
- Exploring Quality and Generalizability in Parameterized Neural Audio Effects Deep neural networks have shown promise for music audio signal processing applications, often surpassing prior approaches, particularly as end-to-end models in the waveform domain. Yet results to date have tended to be constrained by low sample rates, noise, narrow domains of signal types, and/or lack of parameterized controls (i.e. "knobs"), making their suitability for professional audio engineering workflows still lacking. This work expands on prior research published on modeling nonlinear time-dependent signal processing effects associated with music production by means of a deep neural network, one which includes the ability to emulate the parameterized settings you would see on an analog piece of equipment, with the goal of eventually producing commercially viable, high quality audio, i.e. 44.1 kHz sampling rate at 16-bit resolution. The results in this paper highlight progress in modeling these effects through architecture and optimization changes, towards increasing computational efficiency, lowering signal-to-noise ratio, and extending to a larger variety of nonlinear audio effects. Toward these ends, the strategies employed involved a three-pronged approach: model speed, model accuracy, and model generalizability. Most of the presented methods provide marginal or no increase in output accuracy over the original model, with the exception of dataset manipulation. We found that limiting the audio content of the dataset, for example using datasets of just a single instrument, provided a significant improvement in model accuracy over models trained on more general datasets. 2 authors · Jun 9, 2020
- RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold Training on model-generated synthetic data is a promising approach for finetuning LLMs, but it remains unclear when it helps or hurts. In this paper, we investigate this question for math reasoning via an empirical study, followed by building a conceptual understanding of our observations. First, we find that while the typical approach of finetuning a model on synthetic correct or positive problem-solution pairs generated by capable models offers modest performance gains, sampling more correct solutions from the finetuned learner itself followed by subsequent fine-tuning on this self-generated data doubles the efficiency of the same synthetic problems. At the same time, training on model-generated positives can amplify various spurious correlations, resulting in flat or even inverse scaling trends as the amount of data increases. Surprisingly, we find that several of these issues can be addressed if we also utilize negative responses, i.e., model-generated responses that are deemed incorrect by a final answer verifier. Crucially, these negatives must be constructed such that the training can appropriately recover the utility or advantage of each intermediate step in the negative response. With this per-step scheme, we are able to attain consistent gains over only positive data, attaining performance similar to amplifying the amount of synthetic data by 8 times. We show that training on per-step negatives can help to unlearn spurious correlations in the positive data, and is equivalent to advantage-weighted reinforcement learning (RL), implying that it inherits robustness benefits of RL over imitating positive data alone. 6 authors · Jun 20, 2024
1 Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way, thus making it subjectively simpler and more beautiful. Curiosity is the desire to create or discover more non-random, non-arbitrary, regular data that is novel and surprising not in the traditional sense of Boltzmann and Shannon but in the sense that it allows for compression progress because its regularity was not yet known. This drive maximizes interestingness, the first derivative of subjective beauty or compressibility, that is, the steepness of the learning curve. It motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and (since 1990) artificial systems. 1 authors · Dec 23, 2008
1 Detecting and Mitigating Hallucinations in Machine Translation: Model Internal Workings Alone Do Well, Sentence Similarity Even Better While the problem of hallucinations in neural machine translation has long been recognized, so far the progress on its alleviation is very little. Indeed, recently it turned out that without artificially encouraging models to hallucinate, previously existing methods fall short and even the standard sequence log-probability is more informative. It means that characteristics internal to the model can give much more information than we expect, and before using external models and measures, we first need to ask: how far can we go if we use nothing but the translation model itself ? We propose to use a method that evaluates the percentage of the source contribution to a generated translation. Intuitively, hallucinations are translations "detached" from the source, hence they can be identified by low source contribution. This method improves detection accuracy for the most severe hallucinations by a factor of 2 and is able to alleviate hallucinations at test time on par with the previous best approach that relies on external models. Next, if we move away from internal model characteristics and allow external tools, we show that using sentence similarity from cross-lingual embeddings further improves these results. 4 authors · Dec 16, 2022
- Optimally truncated WKB approximation for the highly oscillatory stationary 1D Schrödinger equation We discuss the numerical solution of initial value problems for varepsilon^2,varphi''+a(x),varphi=0 in the highly oscillatory regime, i.e., with a(x)>0 and 0<varepsilonll 1. We analyze and implement an approximate solution based on the well-known WKB-ansatz. The resulting approximation error is of magnitude O(varepsilon^{N}) where N refers to the truncation order of the underlying asymptotic series. When the optimal truncation order N_{opt} is chosen, the error behaves like O(varepsilon^{-2}exp(-cvarepsilon^{-1})) with some c>0. 4 authors · Oct 2, 2023
- Axiomatic Attribution for Deep Networks We study the problem of attributing the prediction of a deep network to its input features, a problem previously studied by several other works. We identify two fundamental axioms---Sensitivity and Implementation Invariance that attribution methods ought to satisfy. We show that they are not satisfied by most known attribution methods, which we consider to be a fundamental weakness of those methods. We use the axioms to guide the design of a new attribution method called Integrated Gradients. Our method requires no modification to the original network and is extremely simple to implement; it just needs a few calls to the standard gradient operator. We apply this method to a couple of image models, a couple of text models and a chemistry model, demonstrating its ability to debug networks, to extract rules from a network, and to enable users to engage with models better. 3 authors · Mar 3, 2017
1 Video Pre-trained Transformer: A Multimodal Mixture of Pre-trained Experts We present Video Pre-trained Transformer. VPT uses four SOTA encoder models from prior work to convert a video into a sequence of compact embeddings. Our backbone, based on a reference Flan-T5-11B architecture, learns a universal representation of the video that is a non-linear sum of the encoder models. It learns using an autoregressive causal language modeling loss by predicting the words spoken in YouTube videos. Finally, we evaluate on standard downstream benchmarks by training fully connected prediction heads for each task. To the best of our knowledge, this is the first use of multiple frozen SOTA models as encoders in an "embedding -> backbone -> prediction head" design pattern - all others have trained their own joint encoder models. Additionally, we include more modalities than the current SOTA, Merlot Reserve, by adding explicit Scene Graph information. For these two reasons, we believe it could combine the world's best open-source models to achieve SOTA performance. Initial experiments demonstrate the model is learning appropriately, but more experimentation and compute is necessary, and already in progress, to realize our loftier goals. Alongside this work, we build on the YT-20M dataset, reproducing it and adding 25,000 personally selected YouTube videos to its corpus. All code and model checkpoints are open sourced under a standard MIT license. 4 authors · Mar 24, 2023
- Bayesian Optimization -- Multi-Armed Bandit Problem In this report, we survey Bayesian Optimization methods focussed on the Multi-Armed Bandit Problem. We take the help of the paper "Portfolio Allocation for Bayesian Optimization". We report a small literature survey on the acquisition functions and the types of portfolio strategies used in papers discussing Bayesian Optimization. We also replicate the experiments and report our findings and compare them to the results in the paper. Code link: https://colab.research.google.com/drive/1GZ14klEDoe3dcBeZKo5l8qqrKf_GmBDn?usp=sharing#scrollTo=XgIBau3O45_V. 4 authors · Dec 14, 2020
2 The Matrix Calculus You Need For Deep Learning This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. See related articles at http://explained.ai 2 authors · Feb 5, 2018
2 AI capabilities can be significantly improved without expensive retraining State-of-the-art AI systems can be significantly improved without expensive retraining via "post-training enhancements"-techniques applied after initial training like fine-tuning the system to use a web browser. We review recent post-training enhancements, categorizing them into five types: tool-use, prompting methods, scaffolding, solution selection, and data generation. Different enhancements improve performance on different tasks, making it hard to compare their significance. So we translate improvements from different enhancements into a common currency, the compute-equivalent gain: how much additional training compute would be needed to improve performance by the same amount as the enhancement. Our non-experimental work shows that post-training enhancements have significant benefits: most surveyed enhancements improve benchmark performance by more than a 5x increase in training compute, some by more than 20x. Post-training enhancements are relatively cheap to develop: fine-tuning costs are typically <1% of the original training cost. Governing the development of capable post-training enhancements may be challenging because frontier models could be enhanced by a wide range of actors. 4 authors · Dec 12, 2023
- From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical competitions like IMO, showing significant progress. However, these studies intertwined multiple skills simultaneously, i.e., problem-solving, reasoning, and writing formal specifications, making it hard to precisely identify the LLMs' strengths and weaknesses in each task. This paper focuses on formal verification, an immediate application scenario of formal reasoning, and decomposes it into six sub-tasks. We constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six formal-verification-related tasks by distilling GPT-4o. They are split into a 14k+ fine-tuning dataset FM-alpaca and a 4k benchmark FM-Bench. We found that LLMs are good at writing proof segments when given either the code, or the detailed description of proof steps. Also, the fine-tuning brought about a nearly threefold improvement at most. Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding abilities. We hope our findings inspire further research. Fine-tuned models are released to facilitate subsequent studies 12 authors · Jan 27
- Well-classified Examples are Underestimated in Classification with Deep Neural Networks The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and margin growth. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to the learning process. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verifying the theoretical results or significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks because our idea can solve these three issues. Code is available at: https://github.com/lancopku/well-classified-examples-are-underestimated. 6 authors · Oct 13, 2021
- Fairness Evaluation for Uplift Modeling in the Absence of Ground Truth The acceleration in the adoption of AI-based automated decision-making systems poses a challenge for evaluating the fairness of algorithmic decisions, especially in the absence of ground truth. When designing interventions, uplift modeling is used extensively to identify candidates that are likely to benefit from treatment. However, these models remain particularly susceptible to fairness evaluation due to the lack of ground truth on the outcome measure since a candidate cannot be in both treatment and control simultaneously. In this article, we propose a framework that overcomes the missing ground truth problem by generating surrogates to serve as a proxy for counterfactual labels of uplift modeling campaigns. We then leverage the surrogate ground truth to conduct a more comprehensive binary fairness evaluation. We show how to apply the approach in a comprehensive study from a real-world marketing campaign for promotional offers and demonstrate its enhancement for fairness evaluation. 2 authors · Feb 12, 2024
- MLMC: Machine Learning Monte Carlo for Lattice Gauge Theory We present a trainable framework for efficiently generating gauge configurations, and discuss ongoing work in this direction. In particular, we consider the problem of sampling configurations from a 4D SU(3) lattice gauge theory, and consider a generalized leapfrog integrator in the molecular dynamics update that can be trained to improve sampling efficiency. Code is available online at https://github.com/saforem2/l2hmc-qcd. 3 authors · Dec 14, 2023
5 Understanding Hallucinations in Diffusion Models through Mode Interpolation Colloquially speaking, image generation models based upon diffusion processes are frequently said to exhibit "hallucinations," samples that could never occur in the training data. But where do such hallucinations come from? In this paper, we study a particular failure mode in diffusion models, which we term mode interpolation. Specifically, we find that diffusion models smoothly "interpolate" between nearby data modes in the training set, to generate samples that are completely outside the support of the original training distribution; this phenomenon leads diffusion models to generate artifacts that never existed in real data (i.e., hallucinations). We systematically study the reasons for, and the manifestation of this phenomenon. Through experiments on 1D and 2D Gaussians, we show how a discontinuous loss landscape in the diffusion model's decoder leads to a region where any smooth approximation will cause such hallucinations. Through experiments on artificial datasets with various shapes, we show how hallucination leads to the generation of combinations of shapes that never existed. Finally, we show that diffusion models in fact know when they go out of support and hallucinate. This is captured by the high variance in the trajectory of the generated sample towards the final few backward sampling process. Using a simple metric to capture this variance, we can remove over 95% of hallucinations at generation time while retaining 96% of in-support samples. We conclude our exploration by showing the implications of such hallucination (and its removal) on the collapse (and stabilization) of recursive training on synthetic data with experiments on MNIST and 2D Gaussians dataset. We release our code at https://github.com/locuslab/diffusion-model-hallucination. 4 authors · Jun 13, 2024 1
45 Prithvi WxC: Foundation Model for Weather and Climate Triggered by the realization that AI emulators can rival the performance of traditional numerical weather prediction models running on HPC systems, there is now an increasing number of large AI models that address use cases such as forecasting, downscaling, or nowcasting. While the parallel developments in the AI literature focus on foundation models -- models that can be effectively tuned to address multiple, different use cases -- the developments on the weather and climate side largely focus on single-use cases with particular emphasis on mid-range forecasting. We close this gap by introducing Prithvi WxC, a 2.3 billion parameter foundation model developed using 160 variables from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Prithvi WxC employs an encoder-decoder-based architecture, incorporating concepts from various recent transformer models to effectively capture both regional and global dependencies in the input data. The model has been designed to accommodate large token counts to model weather phenomena in different topologies at fine resolutions. Furthermore, it is trained with a mixed objective that combines the paradigms of masked reconstruction with forecasting. We test the model on a set of challenging downstream tasks namely: Autoregressive rollout forecasting, Downscaling, Gravity wave flux parameterization, and Extreme events estimation. The pretrained model with 2.3 billion parameters, along with the associated fine-tuning workflows, has been publicly released as an open-source contribution via Hugging Face. 29 authors · Sep 20, 2024 4
13 AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling In this paper, we introduce AceMath, a suite of frontier math models that excel in solving complex math problems, along with highly effective reward models capable of evaluating generated solutions and reliably identifying the correct ones. To develop the instruction-tuned math models, we propose a supervised fine-tuning (SFT) process that first achieves competitive performance across general domains, followed by targeted fine-tuning for the math domain using a carefully curated set of prompts and synthetically generated responses. The resulting model, AceMath-72B-Instruct greatly outperforms Qwen2.5-Math-72B-Instruct, GPT-4o and Claude-3.5 Sonnet. To develop math-specialized reward model, we first construct AceMath-RewardBench, a comprehensive and robust benchmark for evaluating math reward models across diverse problems and difficulty levels. After that, we present a systematic approach to build our math reward models. The resulting model, AceMath-72B-RM, consistently outperforms state-of-the-art reward models. Furthermore, when combining AceMath-72B-Instruct with AceMath-72B-RM, we achieve the highest average rm@8 score across the math reasoning benchmarks. We will release model weights, training data, and evaluation benchmarks at: https://research.nvidia.com/labs/adlr/acemath 5 authors · Dec 19, 2024 2
- A nonintrusive method to approximate linear systems with nonlinear parameter dependence We consider a family of linear systems A_mu alpha=C with system matrix A_mu depending on a parameter mu and for simplicity parameter-independent right-hand side C. These linear systems typically result from the finite-dimensional approximation of a parameter-dependent boundary-value problem. We derive a procedure based on the Empirical Interpolation Method to obtain a separated representation of the system matrix in the form A_muapproxsum_{m}beta_m(mu)A_{mu_m} for some selected values of the parameter. Such a separated representation is in particular useful in the Reduced Basis Method. The procedure is called nonintrusive since it only requires to access the matrices A_{mu_m}. As such, it offers a crucial advantage over existing approaches that instead derive separated representations requiring to enter the code at the level of assembly. Numerical examples illustrate the performance of our new procedure on a simple one-dimensional boundary-value problem and on three-dimensional acoustic scattering problems solved by a boundary element method. 4 authors · Jul 16, 2013
2 Subliminal Learning: Language models transmit behavioral traits via hidden signals in data We study subliminal learning, a surprising phenomenon where language models transmit behavioral traits via semantically unrelated data. In our main experiments, a "teacher" model with some trait T (such as liking owls or being misaligned) generates a dataset consisting solely of number sequences. Remarkably, a "student" model trained on this dataset learns T. This occurs even when the data is filtered to remove references to T. We observe the same effect when training on code or reasoning traces generated by the same teacher model. However, we do not observe the effect when the teacher and student have different base models. To help explain our findings, we prove a theoretical result showing that subliminal learning occurs in all neural networks under certain conditions, and demonstrate subliminal learning in a simple MLP classifier. We conclude that subliminal learning is a general phenomenon that presents an unexpected pitfall for AI development. Distillation could propagate unintended traits, even when developers try to prevent this via data filtering. 8 authors · Jul 19
- A Meta-Learning Approach to Predicting Performance and Data Requirements We propose an approach to estimate the number of samples required for a model to reach a target performance. We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset (e.g., 5 samples per class) for extrapolation. This is because the log-performance error against the log-dataset size follows a nonlinear progression in the few-shot regime followed by a linear progression in the high-shot regime. We introduce a novel piecewise power law (PPL) that handles the two data regimes differently. To estimate the parameters of the PPL, we introduce a random forest regressor trained via meta learning that generalizes across classification/detection tasks, ResNet/ViT based architectures, and random/pre-trained initializations. The PPL improves the performance estimation on average by 37% across 16 classification and 33% across 10 detection datasets, compared to the power law. We further extend the PPL to provide a confidence bound and use it to limit the prediction horizon that reduces over-estimation of data by 76% on classification and 91% on detection datasets. 11 authors · Mar 2, 2023
- Exploring the limits of nucleonic metamodelling using different relativistic density functionals In this work, we explore two classes of density dependent relativistic mean-field models, their predictions of proton fractions at high densities and neutron star structure. We have used a metamodelling approach to these relativistic density functionals. We have generated a large ensemble of models with these classes and then applied constraints from theoretical and experimental nuclear physics and astrophysical observations. We find that both models produce similar equations of state and neutron star mass-radius sequences. But, their underlying compositions, denoted by the proton fraction in this case, are vastly different. This reinstates previous findings that information on composition gets masqueraded in beta-equilibrium. Additional observations of non-equilibrium phenomena are necessary to pin it down. 2 authors · Feb 6
- Creative Problem Solving in Large Language and Vision Models -- What Would it Take? We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues. Our code is available at: https://github.com/lnairGT/creative-problem-solving-LLMs 3 authors · May 2, 2024
- New high-dimensional generalizations of Nesbitt's inequality and relative applications Two kinds of novel generalizations of Nesbitt's inequality are explored in various cases regarding dimensions and parameters in this article. Some other cases are also discussed elaborately by using the semiconcave-semiconvex theorem. The general inequalities are then employed to deduce some alternate inequalities and mathematical competition questions. At last, a relation about Hurwitz-Lerch zeta functions is obtained. 2 authors · Mar 18
- Omnipredictors for Constrained Optimization The notion of omnipredictors (Gopalan, Kalai, Reingold, Sharan and Wieder ITCS 2021), suggested a new paradigm for loss minimization. Rather than learning a predictor based on a known loss function, omnipredictors can easily be post-processed to minimize any one of a rich family of loss functions compared with the loss of hypotheses in a class mathcal C. It has been shown that such omnipredictors exist and are implied (for all convex and Lipschitz loss functions) by the notion of multicalibration from the algorithmic fairness literature. In this paper, we introduce omnipredictors for constrained optimization and study their complexity and implications. The notion that we introduce allows the learner to be unaware of the loss function that will be later assigned as well as the constraints that will be later imposed, as long as the subpopulations that are used to define these constraints are known. We show how to obtain omnipredictors for constrained optimization problems, relying on appropriate variants of multicalibration. We also investigate the implications of this notion when the constraints used are so-called group fairness notions. 4 authors · Sep 15, 2022
- Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models Answering counterfactual queries has many important applications such as knowledge discovery and explainability, but is challenging when causal variables are unobserved and we only see a projection onto an observation space, for instance, image pixels. One approach is to recover the latent Structural Causal Model (SCM), but this typically needs unrealistic assumptions, such as linearity of the causal mechanisms. Another approach is to use na\"ive ML approximations, such as generative models, to generate counterfactual samples; however, these lack guarantees of accuracy. In this work, we strive to strike a balance between practicality and theoretical guarantees by focusing on a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). Concretely, by only assuming invertibility, sparse domain interventions and access to observational data from different domains, we aim to improve domain counterfactual estimation both theoretically and practically with less restrictive assumptions. We define domain counterfactually equivalent models and prove necessary and sufficient properties for equivalent models that provide a tight characterization of the domain counterfactual equivalence classes. Building upon this result, we prove that every equivalence class contains a model where all intervened variables are at the end when topologically sorted by the causal DAG. This surprising result suggests that a model design that only allows intervention in the last k latent variables may improve model estimation for counterfactuals. We then test this model design on extensive simulated and image-based experiments which show the sparse canonical model indeed improves counterfactual estimation over baseline non-sparse models. 5 authors · Jun 20, 2023
1 Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals We study the task of agnostically learning halfspaces under the Gaussian distribution. Specifically, given labeled examples (x,y) from an unknown distribution on R^n times { pm 1}, whose marginal distribution on x is the standard Gaussian and the labels y can be arbitrary, the goal is to output a hypothesis with 0-1 loss OPT+epsilon, where OPT is the 0-1 loss of the best-fitting halfspace. We prove a near-optimal computational hardness result for this task, under the widely believed sub-exponential time hardness of the Learning with Errors (LWE) problem. Prior hardness results are either qualitatively suboptimal or apply to restricted families of algorithms. Our techniques extend to yield near-optimal lower bounds for related problems, including ReLU regression. 3 authors · Feb 13, 2023
1 Standardized Benchmark Dataset for Localized Exposure to a Realistic Source at 10-90 GHz The lack of freely available standardized datasets represents an aggravating factor during the development and testing the performance of novel computational techniques in exposure assessment and dosimetry research. This hinders progress as researchers are required to generate numerical data (field, power and temperature distribution) anew using simulation software for each exposure scenario. Other than being time consuming, this approach is highly susceptible to errors that occur during the configuration of the electromagnetic model. To address this issue, in this paper, the limited available data on the incident power density and resultant maximum temperature rise on the skin surface considering various steady-state exposure scenarios at 10-90 GHz have been statistically modeled. The synthetic data have been sampled from the fitted statistical multivariate distribution with respect to predetermined dosimetric constraints. We thus present a comprehensive and open-source dataset compiled of the high-fidelity numerical data considering various exposures to a realistic source. Furthermore, different surrogate models for predicting maximum temperature rise on the skin surface were fitted based on the synthetic dataset. All surrogate models were tested on the originally available data where satisfactory predictive performance has been demonstrated. A simple technique of combining quadratic polynomial and tensor-product spline surrogates, each operating on its own cluster of data, has achieved the lowest mean absolute error of 0.058 {\deg}C. Therefore, overall experimental results indicate the validity of the proposed synthetic dataset. 3 authors · May 3, 2023
- ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning Climate models have been key for assessing the impact of climate change and simulating future climate scenarios. The machine learning (ML) community has taken an increased interest in supporting climate scientists' efforts on various tasks such as climate model emulation, downscaling, and prediction tasks. Many of those tasks have been addressed on datasets created with single climate models. However, both the climate science and ML communities have suggested that to address those tasks at scale, we need large, consistent, and ML-ready climate model datasets. Here, we introduce ClimateSet, a dataset containing the inputs and outputs of 36 climate models from the Input4MIPs and CMIP6 archives. In addition, we provide a modular dataset pipeline for retrieving and preprocessing additional climate models and scenarios. We showcase the potential of our dataset by using it as a benchmark for ML-based climate model emulation. We gain new insights about the performance and generalization capabilities of the different ML models by analyzing their performance across different climate models. Furthermore, the dataset can be used to train an ML emulator on several climate models instead of just one. Such a "super emulator" can quickly project new climate change scenarios, complementing existing scenarios already provided to policymakers. We believe ClimateSet will create the basis needed for the ML community to tackle climate-related tasks at scale. 9 authors · Nov 6, 2023
- Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation Popular approaches for quantifying predictive uncertainty in deep neural networks often involve distributions over weights or multiple models, for instance via Markov Chain sampling, ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to train multiple model instances or do not produce very diverse predictions. This comprehensive and extensive survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit "what they don't know", and fall back onto a prior belief. Furthermore, they allow uncertainty estimation in a single model and forward pass by parameterizing distributions over distributions. This survey recapitulates existing works, focusing on the implementation in a classification setting, before surveying the application of the same paradigm to regression. We also reflect on the strengths and weaknesses compared to other existing methods and provide the most fundamental derivations using a unified notation to aid future research. 3 authors · Oct 6, 2021
47 Orca: Progressive Learning from Complex Explanation Traces of GPT-4 Recent research has focused on enhancing the capability of smaller models through imitation learning, drawing on the outputs generated by large foundation models (LFMs). A number of issues impact the quality of these models, ranging from limited imitation signals from shallow LFM outputs; small scale homogeneous training data; and most notably a lack of rigorous evaluation resulting in overestimating the small model's capability as they tend to learn to imitate the style, but not the reasoning process of LFMs. To address these challenges, we develop Orca (We are working with our legal team to publicly release a diff of the model weights in accordance with LLaMA's release policy to be published at https://aka.ms/orca-lm), a 13-billion parameter model that learns to imitate the reasoning process of LFMs. Orca learns from rich signals from GPT-4 including explanation traces; step-by-step thought processes; and other complex instructions, guided by teacher assistance from ChatGPT. To promote this progressive learning, we tap into large-scale and diverse imitation data with judicious sampling and selection. Orca surpasses conventional state-of-the-art instruction-tuned models such as Vicuna-13B by more than 100% in complex zero-shot reasoning benchmarks like Big-Bench Hard (BBH) and 42% on AGIEval. Moreover, Orca reaches parity with ChatGPT on the BBH benchmark and shows competitive performance (4 pts gap with optimized system message) in professional and academic examinations like the SAT, LSAT, GRE, and GMAT, both in zero-shot settings without CoT; while trailing behind GPT-4. Our research indicates that learning from step-by-step explanations, whether these are generated by humans or more advanced AI models, is a promising direction to improve model capabilities and skills. 6 authors · Jun 5, 2023 18
- The continuous extension of the logarithmic double layer potential to the Ahlfors-regular boundary For the real part of the Cauchy-type integral that is known to be the logarithmic potential of the double layer, a necessary and sufficient condition for the continuous extension to the Ahlfors-regular boundary is established. 1 authors · May 2, 2024
3 Accelerating Large Language Model Decoding with Speculative Sampling We present speculative sampling, an algorithm for accelerating transformer decoding by enabling the generation of multiple tokens from each transformer call. Our algorithm relies on the observation that the latency of parallel scoring of short continuations, generated by a faster but less powerful draft model, is comparable to that of sampling a single token from the larger target model. This is combined with a novel modified rejection sampling scheme which preserves the distribution of the target model within hardware numerics. We benchmark speculative sampling with Chinchilla, a 70 billion parameter language model, achieving a 2-2.5x decoding speedup in a distributed setup, without compromising the sample quality or making modifications to the model itself. 6 authors · Feb 2, 2023
- Estimation of Non-Crossing Quantile Regression Process with Deep ReQU Neural Networks We propose a penalized nonparametric approach to estimating the quantile regression process (QRP) in a nonseparable model using rectifier quadratic unit (ReQU) activated deep neural networks and introduce a novel penalty function to enforce non-crossing of quantile regression curves. We establish the non-asymptotic excess risk bounds for the estimated QRP and derive the mean integrated squared error for the estimated QRP under mild smoothness and regularity conditions. To establish these non-asymptotic risk and estimation error bounds, we also develop a new error bound for approximating C^s smooth functions with s >0 and their derivatives using ReQU activated neural networks. This is a new approximation result for ReQU networks and is of independent interest and may be useful in other problems. Our numerical experiments demonstrate that the proposed method is competitive with or outperforms two existing methods, including methods using reproducing kernels and random forests, for nonparametric quantile regression. 5 authors · Jul 21, 2022
- Deep Linear Networks can Benignly Overfit when Shallow Ones Do We bound the excess risk of interpolating deep linear networks trained using gradient flow. In a setting previously used to establish risk bounds for the minimum ell_2-norm interpolant, we show that randomly initialized deep linear networks can closely approximate or even match known bounds for the minimum ell_2-norm interpolant. Our analysis also reveals that interpolating deep linear models have exactly the same conditional variance as the minimum ell_2-norm solution. Since the noise affects the excess risk only through the conditional variance, this implies that depth does not improve the algorithm's ability to "hide the noise". Our simulations verify that aspects of our bounds reflect typical behavior for simple data distributions. We also find that similar phenomena are seen in simulations with ReLU networks, although the situation there is more nuanced. 2 authors · Sep 19, 2022
- Momentum transfer in the outflow cycle of a Synthetic jet: Comparison between a developed flow and an LE model In the literature, flows produced by synthetic jets (SJ) have been studied extensively through experiments and numeric simulations. The essential physics of such a complex system has been simplified successfully to Lumped-element models in a wide range of conditions. LE models effectively predict the pressure in the cavity and the velocity in the neck of SJ. But, this does not comprise the complete dynamics of SJ. As soon as the flow starts separating from the neck of the SJ device, vortices and jets form at some distance downstream. These structures are the result of loosening the flow boundaries. Despite such a dramatic change, predictions of LE models remain unverified by measurements of the fully developed jet. We compared predictions of momentum transfer using an LE model with measurements of size and velocity of a fully developed jet/vortex detached from an SJ. Our SJ device operated with air as an active fluid. Comparing measurements and predictions, we found a constant difference for the higher sound pressures. However, the predictions and the measurements follow similar trends. Additionally, we found that the decay rate of the flow regime given by the relationship between the Reynolds and the Strouhal numbers differs significantly when the flow is studied within the neck and downstream the cavity. 3 authors · Jun 28, 2021
- Sharper Bounds for ell_p Sensitivity Sampling In large scale machine learning, random sampling is a popular way to approximate datasets by a small representative subset of examples. In particular, sensitivity sampling is an intensely studied technique which provides provable guarantees on the quality of approximation, while reducing the number of examples to the product of the VC dimension d and the total sensitivity mathfrak S in remarkably general settings. However, guarantees going beyond this general bound of mathfrak S d are known in perhaps only one setting, for ell_2 subspace embeddings, despite intense study of sensitivity sampling in prior work. In this work, we show the first bounds for sensitivity sampling for ell_p subspace embeddings for pneq 2 that improve over the general mathfrak S d bound, achieving a bound of roughly mathfrak S^{2/p} for 1leq p<2 and mathfrak S^{2-2/p} for 2<p<infty. For 1leq p<2, we show that this bound is tight, in the sense that there exist matrices for which mathfrak S^{2/p} samples is necessary. Furthermore, our techniques yield further new results in the study of sampling algorithms, showing that the root leverage score sampling algorithm achieves a bound of roughly d for 1leq p<2, and that a combination of leverage score and sensitivity sampling achieves an improved bound of roughly d^{2/p}mathfrak S^{2-4/p} for 2<p<infty. Our sensitivity sampling results yield the best known sample complexity for a wide class of structured matrices that have small ell_p sensitivity. 2 authors · Jun 1, 2023
- Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors We present a straightforward statistical test to detect certain violations of the assumption that the data are Independent and Identically Distributed (IID). The specific form of violation considered is common across real-world applications: whether the examples are ordered in the dataset such that almost adjacent examples tend to have more similar feature values (e.g. due to distributional drift, or attractive interactions between datapoints). Based on a k-Nearest Neighbors estimate, our approach can be used to audit any multivariate numeric data as well as other data types (image, text, audio, etc.) that can be numerically represented, perhaps with model embeddings. Compared with existing methods to detect drift or auto-correlation, our approach is both applicable to more types of data and also able to detect a wider variety of IID violations in practice. Code: https://github.com/cleanlab/cleanlab 3 authors · May 25, 2023
- The Value of Out-of-Distribution Data We expect the generalization error to improve with more samples from a similar task, and to deteriorate with more samples from an out-of-distribution (OOD) task. In this work, we show a counter-intuitive phenomenon: the generalization error of a task can be a non-monotonic function of the number of OOD samples. As the number of OOD samples increases, the generalization error on the target task improves before deteriorating beyond a threshold. In other words, there is value in training on small amounts of OOD data. We use Fisher's Linear Discriminant on synthetic datasets and deep networks on computer vision benchmarks such as MNIST, CIFAR-10, CINIC-10, PACS and DomainNet to demonstrate and analyze this phenomenon. In the idealistic setting where we know which samples are OOD, we show that these non-monotonic trends can be exploited using an appropriately weighted objective of the target and OOD empirical risk. While its practical utility is limited, this does suggest that if we can detect OOD samples, then there may be ways to benefit from them. When we do not know which samples are OOD, we show how a number of go-to strategies such as data-augmentation, hyper-parameter optimization, and pre-training are not enough to ensure that the target generalization error does not deteriorate with the number of OOD samples in the dataset. 5 authors · Aug 23, 2022
- Quantum mechanics with real numbers: entanglement, superselection rules and gauges We show how imaginary numbers in quantum physics can be eliminated by enlarging the Hilbert Space followed by an imposition of - what effectively amounts to - a superselection rule. We illustrate this procedure with a qubit and apply it to the Mach-Zehnder interferometer. The procedure is somewhat reminiscent of the constrained quantization of the electromagnetic field, where, in order to manifestly comply with relativity, one enlargers the Hilbert Space by quantizing the longitudinal and scalar modes, only to subsequently introduce a constraint to make sure that they are actually not directly observable. 1 authors · Aug 10, 2023
2 SQuADDS: A validated design database and simulation workflow for superconducting qubit design We present an open-source database of superconducting quantum device designs that may be used as the starting point for customized devices. Each design can be generated programmatically using the open-source Qiskit Metal package, and simulated using finite-element electromagnetic solvers. We present a robust workflow for achieving high accuracy on design simulations. Many designs in the database are experimentally validated, showing excellent agreement between simulated and measured parameters. Our database includes a front-end interface that allows users to generate ``best-guess'' designs based on desired circuit parameters. This project lowers the barrier to entry for research groups seeking to make a new class of devices by providing them a well-characterized starting point from which to refine their designs. 9 authors · Dec 20, 2023
- The Forecast Trap Encouraged by decision makers' appetite for future information on topics ranging from elections to pandemics, and enabled by the explosion of data and computational methods, model based forecasts have garnered increasing influence on a breadth of decisions in modern society. Using several classic examples from fisheries management, I demonstrate that selecting the model or models that produce the most accurate and precise forecast (measured by statistical scores) can sometimes lead to worse outcomes (measured by real-world objectives). This can create a forecast trap, in which the outcomes such as fish biomass or economic yield decline while the manager becomes increasingly convinced that these actions are consistent with the best models and data available. The forecast trap is not unique to this example, but a fundamental consequence of non-uniqueness of models. Existing practices promoting a broader set of models are the best way to avoid the trap. 1 authors · Jul 20, 2022
- Using Large Language Models to Simulate Multiple Humans and Replicate Human Subject Studies We introduce a new type of test, called a Turing Experiment (TE), for evaluating how well a language model, such as GPT-3, can simulate different aspects of human behavior. Unlike the Turing Test, which involves simulating a single arbitrary individual, a TE requires simulating a representative sample of participants in human subject research. We give TEs that attempt to replicate well-established findings in prior studies. We design a methodology for simulating TEs and illustrate its use to compare how well different language models are able to reproduce classic economic, psycholinguistic, and social psychology experiments: Ultimatum Game, Garden Path Sentences, Milgram Shock Experiment, and Wisdom of Crowds. In the first three TEs, the existing findings were replicated using recent models, while the last TE reveals a "hyper-accuracy distortion" present in some language models. 3 authors · Aug 18, 2022
- Uncertainty-aware Evaluation of Auxiliary Anomalies with the Expected Anomaly Posterior Anomaly detection is the task of identifying examples that do not behave as expected. Because anomalies are rare and unexpected events, collecting real anomalous examples is often challenging in several applications. In addition, learning an anomaly detector with limited (or no) anomalies often yields poor prediction performance. One option is to employ auxiliary synthetic anomalies to improve the model training. However, synthetic anomalies may be of poor quality: anomalies that are unrealistic or indistinguishable from normal samples may deteriorate the detector's performance. Unfortunately, no existing methods quantify the quality of auxiliary anomalies. We fill in this gap and propose the expected anomaly posterior (EAP), an uncertainty-based score function that measures the quality of auxiliary anomalies by quantifying the total uncertainty of an anomaly detector. Experimentally on 40 benchmark datasets of images and tabular data, we show that EAP outperforms 12 adapted data quality estimators in the majority of cases. 4 authors · May 22, 2024
- Calibrated Multiple-Output Quantile Regression with Representation Learning We develop a method to generate predictive regions that cover a multivariate response variable with a user-specified probability. Our work is composed of two components. First, we use a deep generative model to learn a representation of the response that has a unimodal distribution. Existing multiple-output quantile regression approaches are effective in such cases, so we apply them on the learned representation, and then transform the solution to the original space of the response. This process results in a flexible and informative region that can have an arbitrary shape, a property that existing methods lack. Second, we propose an extension of conformal prediction to the multivariate response setting that modifies any method to return sets with a pre-specified coverage level. The desired coverage is theoretically guaranteed in the finite-sample case for any distribution. Experiments conducted on both real and synthetic data show that our method constructs regions that are significantly smaller compared to existing techniques. 3 authors · Oct 2, 2021
- A Channel-Based Perspective on Conjugate Priors A desired closure property in Bayesian probability is that an updated posterior distribution be in the same class of distributions --- say Gaussians --- as the prior distribution. When the updating takes place via a statistical model, one calls the class of prior distributions the `conjugate priors' of the model. This paper gives (1) an abstract formulation of this notion of conjugate prior, using channels, in a graphical language, (2) a simple abstract proof that such conjugate priors yield Bayesian inversions, and (3) a logical description of conjugate priors that highlights the required closure of the priors under updating. The theory is illustrated with several standard examples, also covering multiple updating. 1 authors · Jul 2, 2017
- Naive imputation implicitly regularizes high-dimensional linear models Two different approaches exist to handle missing values for prediction: either imputation, prior to fitting any predictive algorithms, or dedicated methods able to natively incorporate missing values. While imputation is widely (and easily) use, it is unfortunately biased when low-capacity predictors (such as linear models) are applied afterward. However, in practice, naive imputation exhibits good predictive performance. In this paper, we study the impact of imputation in a high-dimensional linear model with MCAR missing data. We prove that zero imputation performs an implicit regularization closely related to the ridge method, often used in high-dimensional problems. Leveraging on this connection, we establish that the imputation bias is controlled by a ridge bias, which vanishes in high dimension. As a predictor, we argue in favor of the averaged SGD strategy, applied to zero-imputed data. We establish an upper bound on its generalization error, highlighting that imputation is benign in the d sqrt n regime. Experiments illustrate our findings. 4 authors · Jan 31, 2023
- Generative Marginalization Models We introduce marginalization models (MaMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling with tractable likelihoods by explicitly modeling all induced marginal distributions. Marginalization models enable fast evaluation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of methods with exact marginal inference, such as autoregressive models (ARMs). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". Unlike previous methods, MaMs support scalable training of any-order generative models for high-dimensional problems under the setting of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized (log) probability function such as energy function or reward function). We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including binary images, language, physical systems, and molecules, for maximum likelihood and energy-based training settings. MaMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MaMs enable any-order generative modeling of high-dimensional problems beyond the capability of previous methods. Code is at https://github.com/PrincetonLIPS/MaM. 3 authors · Oct 19, 2023
- Flat Minima in Linear Estimation and an Extended Gauss Markov Theorem We consider the problem of linear estimation, and establish an extension of the Gauss-Markov theorem, in which the bias operator is allowed to be non-zero but bounded with respect to a matrix norm of Schatten type. We derive simple and explicit formulas for the optimal estimator in the cases of Nuclear and Spectral norms (with the Frobenius case recovering ridge regression). Additionally, we analytically derive the generalization error in multiple random matrix ensembles, and compare with Ridge regression. Finally, we conduct an extensive simulation study, in which we show that the cross-validated Nuclear and Spectral regressors can outperform Ridge in several circumstances. 1 authors · Nov 18, 2023
- Experimental Estimation of Quantum State Properties from Classical Shadows Full quantum tomography of high-dimensional quantum systems is experimentally infeasible due to the exponential scaling of the number of required measurements on the number of qubits in the system. However, several ideas were proposed recently for predicting the limited number of features for these states, or estimating the expectation values of operators, without the need for full state reconstruction. These ideas go under the general name of shadow tomography. Here we provide an experimental demonstration of property estimation based on classical shadows proposed in [H.-Y. Huang, R. Kueng, J. Preskill. Nat. Phys. https://doi.org/10.1038/s41567-020-0932-7 (2020)] and study its performance in the quantum optical experiment with high-dimensional spatial states of photons. We show on experimental data how this procedure outperforms conventional state reconstruction in fidelity estimation from a limited number of measurements. 5 authors · Aug 12, 2020
1 Inverse Approximation Theory for Nonlinear Recurrent Neural Networks We prove an inverse approximation theorem for the approximation of nonlinear sequence-to-sequence relationships using recurrent neural networks (RNNs). This is a so-called Bernstein-type result in approximation theory, which deduces properties of a target function under the assumption that it can be effectively approximated by a hypothesis space. In particular, we show that nonlinear sequence relationships that can be stably approximated by nonlinear RNNs must have an exponential decaying memory structure - a notion that can be made precise. This extends the previously identified curse of memory in linear RNNs into the general nonlinear setting, and quantifies the essential limitations of the RNN architecture for learning sequential relationships with long-term memory. Based on the analysis, we propose a principled reparameterization method to overcome the limitations. Our theoretical results are confirmed by numerical experiments. The code has been released in https://github.com/radarFudan/Curse-of-memory 3 authors · May 30, 2023
- Product representation of perfect cubes Let F_{k,d}(n) be the maximal size of a set {A}subseteq [n] such that the equation \[a_1a_2\dots a_k=x^d, \; a_1<a_2<\ldots<a_k\] has no solution with a_1,a_2,ldots,a_kA and integer x. Erdos, S\'ark\"ozy and T. S\'os studied F_{k,2}, and gave bounds when k=2,3,4,6 and also in the general case. We study the problem for d=3, and provide bounds for k=2,3,4,6 and 9, furthermore, in the general case, as well. In particular, we refute an 18 years old conjecture of Verstra\"ete. We also introduce another function f_{k,d} closely related to F_{k,d}: While the original problem requires a_1, ldots , a_k to all be distinct, we can relax this and only require that the multiset of the a_i's cannot be partitioned into d-tuples where each d-tuple consists of d copies of the same number. 5 authors · May 20, 2024
- Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research. 6 authors · Dec 13, 2022
14 OmniPred: Language Models as Universal Regressors Over the broad landscape of experimental design, regression has been a powerful tool to accurately predict the outcome metrics of a system or model given a set of parameters, but has been traditionally restricted to methods which are only applicable to a specific task. In this paper, we propose OmniPred, a framework for training language models as universal end-to-end regressors over (x,y) evaluation data from diverse real world experiments. Using data sourced from Google Vizier, one of the largest blackbox optimization databases in the world, our extensive experiments demonstrate that through only textual representations of mathematical parameters and values, language models are capable of very precise numerical regression, and if given the opportunity to train over multiple tasks, can significantly outperform traditional regression models. 8 authors · Feb 22, 2024 1
- The Pseudoinverse of A=CR is A^+=R^+C^+ (?) This paper gives three formulas for the pseudoinverse of a matrix product A = CR. The first is sometimes correct, the second is always correct, and the third is almost never correct. But that third randomized pseudoinverse A^+_r may be very useful when A is a very large matrix. 1. A^+ = R^+C^+ when A = CR and C has independent columns and R has independent rows. 2. A^+ = (C^+CR)^+(CRR^+)^+ is always correct. 3. A^+_r = (P^TCR)^+P^TCRQ(CRQ)^+ = A^+ only when rank(P^TA) = rank(AQ) = rank(A) with A = CR. 2 authors · May 2, 2023
- Comparative Analysis of Numerical Methods for Parameter Determination We made a comparative analysis of numerical methods for multidimensional optimization. The main parameter is a number of computations of the test function to reach necessary accuracy, as it is computationally "slow". For complex functions, analytic differentiation by many parameters can cause problems associated with a significant complication of the program and thus slowing its operation. For comparison, we used the methods: "brute force" (or minimization on a regular grid), Monte Carlo, steepest descent, conjugate gradients, Brent's method (golden section search), parabolic interpolation etc. The Monte-Carlo method was applied to the eclipsing binary system AM Leo. 2 authors · Oct 7, 2013
1 Uncertainty Quantification via Stable Distribution Propagation We propose a new approach for propagating stable probability distributions through neural networks. Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity. This allows propagating Gaussian and Cauchy input uncertainties through neural networks to quantify their output uncertainties. To demonstrate the utility of propagating distributions, we apply the proposed method to predicting calibrated confidence intervals and selective prediction on out-of-distribution data. The results demonstrate a broad applicability of propagating distributions and show the advantages of our method over other approaches such as moment matching. 6 authors · Feb 13, 2024
- Adversarial Classification: Necessary conditions and geometric flows We study a version of adversarial classification where an adversary is empowered to corrupt data inputs up to some distance varepsilon, using tools from variational analysis. In particular, we describe necessary conditions associated with the optimal classifier subject to such an adversary. Using the necessary conditions, we derive a geometric evolution equation which can be used to track the change in classification boundaries as varepsilon varies. This evolution equation may be described as an uncoupled system of differential equations in one dimension, or as a mean curvature type equation in higher dimension. In one dimension, and under mild assumptions on the data distribution, we rigorously prove that one can use the initial value problem starting from varepsilon=0, which is simply the Bayes classifier, in order to solve for the global minimizer of the adversarial problem for small values of varepsilon. In higher dimensions we provide a similar result, albeit conditional to the existence of regular solutions of the initial value problem. In the process of proving our main results we obtain a result of independent interest connecting the original adversarial problem with an optimal transport problem under no assumptions on whether classes are balanced or not. Numerical examples illustrating these ideas are also presented. 2 authors · Nov 21, 2020
- WIQA: A dataset for "What if..." reasoning over procedural text We introduce WIQA, the first large-scale dataset of "What if..." questions over procedural text. WIQA contains three parts: a collection of paragraphs each describing a process, e.g., beach erosion; a set of crowdsourced influence graphs for each paragraph, describing how one change affects another; and a large (40k) collection of "What if...?" multiple-choice questions derived from the graphs. For example, given a paragraph about beach erosion, would stormy weather result in more or less erosion (or have no effect)? The task is to answer the questions, given their associated paragraph. WIQA contains three kinds of questions: perturbations to steps mentioned in the paragraph; external (out-of-paragraph) perturbations requiring commonsense knowledge; and irrelevant (no effect) perturbations. We find that state-of-the-art models achieve 73.8% accuracy, well below the human performance of 96.3%. We analyze the challenges, in particular tracking chains of influences, and present the dataset as an open challenge to the community. 5 authors · Sep 10, 2019
- PAC Generalization via Invariant Representations One method for obtaining generalizable solutions to machine learning tasks when presented with diverse training environments is to find invariant representations of the data. These are representations of the covariates such that the best model on top of the representation is invariant across training environments. In the context of linear Structural Equation Models (SEMs), invariant representations might allow us to learn models with out-of-distribution guarantees, i.e., models that are robust to interventions in the SEM. To address the invariant representation problem in a {\em finite sample} setting, we consider the notion of epsilon-approximate invariance. We study the following question: If a representation is approximately invariant with respect to a given number of training interventions, will it continue to be approximately invariant on a larger collection of unseen SEMs? This larger collection of SEMs is generated through a parameterized family of interventions. Inspired by PAC learning, we obtain finite-sample out-of-distribution generalization guarantees for approximate invariance that holds probabilistically over a family of linear SEMs without faithfulness assumptions. Our results show bounds that do not scale in ambient dimension when intervention sites are restricted to lie in a constant size subset of in-degree bounded nodes. We also show how to extend our results to a linear indirect observation model that incorporates latent variables. 3 authors · May 30, 2022
1 Momentum-based Weight Interpolation of Strong Zero-Shot Models for Continual Learning Large pre-trained, zero-shot capable models have shown considerable success both for standard transfer and adaptation tasks, with particular robustness towards distribution shifts. In addition, subsequent fine-tuning can considerably improve performance on a selected downstream task. However, through naive fine-tuning, these zero-shot models lose their generalizability and robustness towards distribution shifts. This is a particular problem for tasks such as Continual Learning (CL), where continuous adaptation has to be performed as new task distributions are introduced sequentially. In this work, we showcase that where fine-tuning falls short to adapt such zero-shot capable models, simple momentum-based weight interpolation can provide consistent improvements for CL tasks in both memory-free and memory-based settings. In particular, we find improvements of over +4% on standard CL benchmarks, while reducing the error to the upper limit of jointly training on all tasks at once in parts by more than half, allowing the continual learner to inch closer to the joint training limits. 3 authors · Nov 6, 2022
- Efficient Neural Network Training via Subset Pretraining In training neural networks, it is common practice to use partial gradients computed over batches, mostly very small subsets of the training set. This approach is motivated by the argument that such a partial gradient is close to the true one, with precision growing only with the square root of the batch size. A theoretical justification is with the help of stochastic approximation theory. However, the conditions for the validity of this theory are not satisfied in the usual learning rate schedules. Batch processing is also difficult to combine with efficient second-order optimization methods. This proposal is based on another hypothesis: the loss minimum of the training set can be expected to be well-approximated by the minima of its subsets. Such subset minima can be computed in a fraction of the time necessary for optimizing over the whole training set. This hypothesis has been tested with the help of the MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks, optionally extended by training data augmentation. The experiments have confirmed that results equivalent to conventional training can be reached. In summary, even small subsets are representative if the overdetermination ratio for the given model parameter set sufficiently exceeds unity. The computing expense can be reduced to a tenth or less. 5 authors · Oct 21, 2024
- A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks We consider the two related problems of detecting if an example is misclassified or out-of-distribution. We present a simple baseline that utilizes probabilities from softmax distributions. Correctly classified examples tend to have greater maximum softmax probabilities than erroneously classified and out-of-distribution examples, allowing for their detection. We assess performance by defining several tasks in computer vision, natural language processing, and automatic speech recognition, showing the effectiveness of this baseline across all. We then show the baseline can sometimes be surpassed, demonstrating the room for future research on these underexplored detection tasks. 2 authors · Oct 7, 2016
- The Effect of Person-Specific Biometrics in Improving Generic Stress Predictive Models Because stress is subjective and is expressed differently from one person to another, generic stress prediction models (i.e., models that predict the stress of any person) perform crudely. Only person-specific ones (i.e., models that predict the stress of a preordained person) yield reliable predictions, but they are not adaptable and costly to deploy in real-world environments. For illustration, in an office environment, a stress monitoring system that uses person-specific models would require collecting new data and training a new model for every employee. Moreover, once deployed, the models would deteriorate and need expensive periodic upgrades because stress is dynamic and depends on unforeseeable factors. We propose a simple, yet practical and cost effective calibration technique that derives an accurate and personalized stress prediction model from physiological samples collected from a large population. We validate our approach on two stress datasets. The results show that our technique performs much better than a generic model. For instance, a generic model achieved only a 42.5% accuracy. However, with only 100 calibration samples, we raised its accuracy to 95.2% We also propose a blueprint for a stress monitoring system based on our strategy, and we debate its merits and limitation. Finally, we made public our source code and the relevant datasets to allow other researchers to replicate our findings. 3 authors · Oct 3, 2019
1 Uncertain Evidence in Probabilistic Models and Stochastic Simulators We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as "uncertain evidence." We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables. We consider a recently-proposed method "distributional evidence" as well as revisit two older methods: Jeffrey's rule and virtual evidence. We devise guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency. To showcase the impact of different interpretations of the same uncertain evidence, we carry out experiments in which one interpretation is defined as "correct." We then compare inference results from each different interpretation illustrating the importance of careful consideration of uncertain evidence. 3 authors · Oct 21, 2022
- Weak Proxies are Sufficient and Preferable for Fairness with Missing Sensitive Attributes Evaluating fairness can be challenging in practice because the sensitive attributes of data are often inaccessible due to privacy constraints. The go-to approach that the industry frequently adopts is using off-the-shelf proxy models to predict the missing sensitive attributes, e.g. Meta [Alao et al., 2021] and Twitter [Belli et al., 2022]. Despite its popularity, there are three important questions unanswered: (1) Is directly using proxies efficacious in measuring fairness? (2) If not, is it possible to accurately evaluate fairness using proxies only? (3) Given the ethical controversy over inferring user private information, is it possible to only use weak (i.e. inaccurate) proxies in order to protect privacy? Our theoretical analyses show that directly using proxy models can give a false sense of (un)fairness. Second, we develop an algorithm that is able to measure fairness (provably) accurately with only three properly identified proxies. Third, we show that our algorithm allows the use of only weak proxies (e.g. with only 68.85%accuracy on COMPAS), adding an extra layer of protection on user privacy. Experiments validate our theoretical analyses and show our algorithm can effectively measure and mitigate bias. Our results imply a set of practical guidelines for practitioners on how to use proxies properly. Code is available at github.com/UCSC-REAL/fair-eval. 5 authors · Oct 6, 2022
- Machine Learning Global Simulation of Nonlocal Gravity Wave Propagation Global climate models typically operate at a grid resolution of hundreds of kilometers and fail to resolve atmospheric mesoscale processes, e.g., clouds, precipitation, and gravity waves (GWs). Model representation of these processes and their sources is essential to the global circulation and planetary energy budget, but subgrid scale contributions from these processes are often only approximately represented in models using parameterizations. These parameterizations are subject to approximations and idealizations, which limit their capability and accuracy. The most drastic of these approximations is the "single-column approximation" which completely neglects the horizontal evolution of these processes, resulting in key biases in current climate models. With a focus on atmospheric GWs, we present the first-ever global simulation of atmospheric GW fluxes using machine learning (ML) models trained on the WINDSET dataset to emulate global GW emulation in the atmosphere, as an alternative to traditional single-column parameterizations. Using an Attention U-Net-based architecture trained on globally resolved GW momentum fluxes, we illustrate the importance and effectiveness of global nonlocality, when simulating GWs using data-driven schemes. 6 authors · Jun 20, 2024
- MAGIC: Near-Optimal Data Attribution for Deep Learning The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions. 2 authors · Apr 23
- Beating the average: how to generate profit by exploiting the inefficiencies of soccer betting In economy, markets are denoted as efficient when it is impossible to systematically generate profits which outperform the average. In the past years, the concept has been tested in other domains such as the growing sports betting market. Surprisingly, despite its large size and its level of maturity, sports betting shows traits of inefficiency. The anomalies indicate the existence of strategies which shift betting from a game of chance towards a game of skill. This article shows an example for an inefficiency detected in the German soccer betting TOTO 13er Wette, which is operated by state-run lottery agencies. Gamblers have to guess the outcome (win, draw, loss) of 13 soccer matches listed on a lottery tip. Applying stochastic methods, a recipe is presented to determine hit rates for single match outcomes. More important, the recipe provides the number of lottery tips required to achieve a specific number of strikes (number of correct match forecasts per lottery tip) for any given level of safety. An approximation is derived to cope with large numbers in hypergeometric distributions, valid under certain constraints. Overall, the strategy does lead to returns exceeding the aggregated lottery fees, resulting in moderate, but consistent profits. It is briefly discussed if lessions learned from soccer betting can be transferred back to financial markets, because gamblers and retail investors face similar challenges and opportunities. 1 authors · Mar 12, 2023
2 AnaloBench: Benchmarking the Identification of Abstract and Long-context Analogies Humans regularly engage in analogical thinking, relating personal experiences to current situations (X is analogous to Y because of Z). Analogical thinking allows humans to solve problems in creative ways, grasp difficult concepts, and articulate ideas more effectively. Can language models (LMs) do the same? To answer this question, we propose ANALOBENCH, a benchmark to determine analogical reasoning ability in LMs. Our benchmarking approach focuses on aspects of this ability that are common among humans: (i) recalling related experiences from a large amount of information, and (ii) applying analogical reasoning to complex and lengthy scenarios. We test a broad collection of proprietary models (e.g., GPT family, Claude V2) and open source models such as LLaMA2. As in prior results, scaling up LMs results in some performance boosts. Surprisingly, scale offers minimal gains when, (i) analogies involve lengthy scenarios, or (ii) recalling relevant scenarios from a large pool of information, a process analogous to finding a needle in a haystack. We hope these observations encourage further research in this field. 9 authors · Feb 19, 2024
13 Studying Large Language Model Generalization with Influence Functions When trying to gain better visibility into a machine learning model in order to understand and mitigate the associated risks, a potentially valuable source of evidence is: which training examples most contribute to a given behavior? Influence functions aim to answer a counterfactual: how would the model's parameters (and hence its outputs) change if a given sequence were added to the training set? While influence functions have produced insights for small models, they are difficult to scale to large language models (LLMs) due to the difficulty of computing an inverse-Hessian-vector product (IHVP). We use the Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC) approximation to scale influence functions up to LLMs with up to 52 billion parameters. In our experiments, EK-FAC achieves similar accuracy to traditional influence function estimators despite the IHVP computation being orders of magnitude faster. We investigate two algorithmic techniques to reduce the cost of computing gradients of candidate training sequences: TF-IDF filtering and query batching. We use influence functions to investigate the generalization patterns of LLMs, including the sparsity of the influence patterns, increasing abstraction with scale, math and programming abilities, cross-lingual generalization, and role-playing behavior. Despite many apparently sophisticated forms of generalization, we identify a surprising limitation: influences decay to near-zero when the order of key phrases is flipped. Overall, influence functions give us a powerful new tool for studying the generalization properties of LLMs. 17 authors · Aug 7, 2023
57 More Agents Is All You Need We find that, simply via a sampling-and-voting method, the performance of large language models (LLMs) scales with the number of agents instantiated. Also, this method is orthogonal to existing complicated methods to further enhance LLMs, while the degree of enhancement is correlated to the task difficulty. We conduct comprehensive experiments on a wide range of LLM benchmarks to verify the presence of our finding, and to study the properties that can facilitate its occurrence. Our code is publicly available at: https://anonymous.4open.science/r/more_agent_is_all_you_need. 5 authors · Feb 3, 2024 5
- The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used. 2 authors · Jan 3, 2024
- On the asymptotic density of states in solvable models of strings We present a closed formula for the asymptotic density of states for a class of solvable superstring models on curved backgrounds. The result accounts for the effects of the curvature of the target space in a concise way. 1 authors · Jun 12, 2024
- Bilevel Programming for Hyperparameter Optimization and Meta-Learning We introduce a framework based on bilevel programming that unifies gradient-based hyperparameter optimization and meta-learning. We show that an approximate version of the bilevel problem can be solved by taking into explicit account the optimization dynamics for the inner objective. Depending on the specific setting, the outer variables take either the meaning of hyperparameters in a supervised learning problem or parameters of a meta-learner. We provide sufficient conditions under which solutions of the approximate problem converge to those of the exact problem. We instantiate our approach for meta-learning in the case of deep learning where representation layers are treated as hyperparameters shared across a set of training episodes. In experiments, we confirm our theoretical findings, present encouraging results for few-shot learning and contrast the bilevel approach against classical approaches for learning-to-learn. 5 authors · Jun 13, 2018
- Interpolation of Point Distributions for Digital Stippling We present a new way to merge any two point distribution approaches using distance fields. Our new process allows us to produce digital stippling that fills areas with stipple dots without visual artifacts as well as includes clear linear features without fussiness. Our merging thus benefits from past work that can optimize for either goal individually, yet typically by sacrificing the other. The new possibility of combining any two distributions using different distance field functions and their parameters also allows us to produce a vast range of stippling styles, which we demonstrate as well. 3 authors · Jul 3, 2023 1
- Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes We propose efficient Langevin Monte Carlo algorithms for sampling distributions with nonsmooth convex composite potentials, which is the sum of a continuously differentiable function and a possibly nonsmooth function. We devise such algorithms leveraging recent advances in convex analysis and optimization methods involving Bregman divergences, namely the Bregman--Moreau envelopes and the Bregman proximity operators, and in the Langevin Monte Carlo algorithms reminiscent of mirror descent. The proposed algorithms extend existing Langevin Monte Carlo algorithms in two aspects -- the ability to sample nonsmooth distributions with mirror descent-like algorithms, and the use of the more general Bregman--Moreau envelope in place of the Moreau envelope as a smooth approximation of the nonsmooth part of the potential. A particular case of the proposed scheme is reminiscent of the Bregman proximal gradient algorithm. The efficiency of the proposed methodology is illustrated with various sampling tasks at which existing Langevin Monte Carlo methods are known to perform poorly. 2 authors · Jul 10, 2022
- IfQA: A Dataset for Open-domain Question Answering under Counterfactual Presuppositions Although counterfactual reasoning is a fundamental aspect of intelligence, the lack of large-scale counterfactual open-domain question-answering (QA) benchmarks makes it difficult to evaluate and improve models on this ability. To address this void, we introduce the first such dataset, named IfQA, where each question is based on a counterfactual presupposition via an "if" clause. For example, if Los Angeles was on the east coast of the U.S., what would be the time difference between Los Angeles and Paris? Such questions require models to go beyond retrieving direct factual knowledge from the Web: they must identify the right information to retrieve and reason about an imagined situation that may even go against the facts built into their parameters. The IfQA dataset contains over 3,800 questions that were annotated annotated by crowdworkers on relevant Wikipedia passages. Empirical analysis reveals that the IfQA dataset is highly challenging for existing open-domain QA methods, including supervised retrieve-then-read pipeline methods (EM score 36.2), as well as recent few-shot approaches such as chain-of-thought prompting with GPT-3 (EM score 27.4). The unique challenges posed by the IfQA benchmark will push open-domain QA research on both retrieval and counterfactual reasoning fronts. 4 authors · May 23, 2023
- Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-Type Samplers We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling. Several recent works have analyzed stochastic samplers using tools like Girsanov's theorem and a chain rule variant of the interpolation argument. Unfortunately, these techniques give vacuous bounds when applied to deterministic samplers. We give a new operational interpretation for deterministic sampling by showing that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs gradient ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current iterate. This perspective allows us to extend denoising diffusion implicit models to general, non-linear forward processes. We then develop the first polynomial convergence bounds for these samplers under mild conditions on the data distribution. 3 authors · Mar 6, 2023
- Bounds on the conditional and average treatment effect with unobserved confounding factors For observational studies, we study the sensitivity of causal inference when treatment assignments may depend on unobserved confounders. We develop a loss minimization approach for estimating bounds on the conditional average treatment effect (CATE) when unobserved confounders have a bounded effect on the odds ratio of treatment selection. Our approach is scalable and allows flexible use of model classes in estimation, including nonparametric and black-box machine learning methods. Based on these bounds for the CATE, we propose a sensitivity analysis for the average treatment effect (ATE). Our semi-parametric estimator extends/bounds the augmented inverse propensity weighted (AIPW) estimator for the ATE under bounded unobserved confounding. By constructing a Neyman orthogonal score, our estimator of the bound for the ATE is a regular root-n estimator so long as the nuisance parameters are estimated at the o_p(n^{-1/4}) rate. We complement our methodology with optimality results showing that our proposed bounds are tight in certain cases. We demonstrate our method on simulated and real data examples, and show accurate coverage of our confidence intervals in practical finite sample regimes with rich covariate information. 5 authors · Aug 28, 2018
- Recommendations and Reporting Checklist for Rigorous & Transparent Human Baselines in Model Evaluations In this position paper, we argue that human baselines in foundation model evaluations must be more rigorous and more transparent to enable meaningful comparisons of human vs. AI performance, and we provide recommendations and a reporting checklist towards this end. Human performance baselines are vital for the machine learning community, downstream users, and policymakers to interpret AI evaluations. Models are often claimed to achieve "super-human" performance, but existing baselining methods are neither sufficiently rigorous nor sufficiently well-documented to robustly measure and assess performance differences. Based on a meta-review of the measurement theory and AI evaluation literatures, we derive a framework with recommendations for designing, executing, and reporting human baselines. We synthesize our recommendations into a checklist that we use to systematically review 115 human baselines (studies) in foundation model evaluations and thus identify shortcomings in existing baselining methods; our checklist can also assist researchers in conducting human baselines and reporting results. We hope our work can advance more rigorous AI evaluation practices that can better serve both the research community and policymakers. Data is available at: https://github.com/kevinlwei/human-baselines 9 authors · Jun 9
- Non-Exchangeable Conformal Risk Control Split conformal prediction has recently sparked great interest due to its ability to provide formally guaranteed uncertainty sets or intervals for predictions made by black-box neural models, ensuring a predefined probability of containing the actual ground truth. While the original formulation assumes data exchangeability, some extensions handle non-exchangeable data, which is often the case in many real-world scenarios. In parallel, some progress has been made in conformal methods that provide statistical guarantees for a broader range of objectives, such as bounding the best F_1-score or minimizing the false negative rate in expectation. In this paper, we leverage and extend these two lines of work by proposing non-exchangeable conformal risk control, which allows controlling the expected value of any monotone loss function when the data is not exchangeable. Our framework is flexible, makes very few assumptions, and allows weighting the data based on its relevance for a given test example; a careful choice of weights may result on tighter bounds, making our framework useful in the presence of change points, time series, or other forms of distribution drift. Experiments with both synthetic and real world data show the usefulness of our method. 4 authors · Oct 2, 2023
- Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression Data augmentation is critical to the empirical success of modern self-supervised representation learning, such as contrastive learning and masked language modeling. However, a theoretical understanding of the exact role of augmentation remains limited. Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator, suggesting that learning a linear probe atop such representation can be connected to RKHS regression. Building on this insight, this work delves into a statistical analysis of augmentation-based pretraining. Starting from the isometry property, a geometric characterization of the target function given by the augmentation, we disentangle the effects of the model and the augmentation, and prove two generalization bounds that are free of model complexity. Our first bound works for an arbitrary encoder, where the prediction error is decomposed as the sum of an estimation error incurred by fitting a linear probe with RKHS regression, and an approximation error entailed by RKHS approximation. Our second bound specifically addresses the case where the encoder is near-optimal, that is it approximates the top-d eigenspace of the RKHS induced by the augmentation. A key ingredient in our analysis is the augmentation complexity, which we use to quantitatively compare different augmentations and analyze their impact on downstream performance. 5 authors · Jun 1, 2023
- Exact Gauss-Newton Optimization for Training Deep Neural Networks We present EGN, a stochastic second-order optimization algorithm that combines the generalized Gauss-Newton (GN) Hessian approximation with low-rank linear algebra to compute the descent direction. Leveraging the Duncan-Guttman matrix identity, the parameter update is obtained by factorizing a matrix which has the size of the mini-batch. This is particularly advantageous for large-scale machine learning problems where the dimension of the neural network parameter vector is several orders of magnitude larger than the batch size. Additionally, we show how improvements such as line search, adaptive regularization, and momentum can be seamlessly added to EGN to further accelerate the algorithm. Moreover, under mild assumptions, we prove that our algorithm converges to an epsilon-stationary point at a linear rate. Finally, our numerical experiments demonstrate that EGN consistently exceeds, or at most matches the generalization performance of well-tuned SGD, Adam, and SGN optimizers across various supervised and reinforcement learning tasks. 4 authors · May 23, 2024
- Optimizing Hyperparameters with Conformal Quantile Regression Many state-of-the-art hyperparameter optimization (HPO) algorithms rely on model-based optimizers that learn surrogate models of the target function to guide the search. Gaussian processes are the de facto surrogate model due to their ability to capture uncertainty but they make strong assumptions about the observation noise, which might not be warranted in practice. In this work, we propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise and, as a result, models the target function in a more realistic and robust fashion which translates to quicker HPO convergence on empirical benchmarks. To apply our method in a multi-fidelity setting, we propose a simple, yet effective, technique that aggregates observed results across different resource levels and outperforms conventional methods across many empirical tasks. 5 authors · May 5, 2023
- Polynomial Regression As an Alternative to Neural Nets Despite the success of neural networks (NNs), there is still a concern among many over their "black box" nature. Why do they work? Here we present a simple analytic argument that NNs are in fact essentially polynomial regression models. This view will have various implications for NNs, e.g. providing an explanation for why convergence problems arise in NNs, and it gives rough guidance on avoiding overfitting. In addition, we use this phenomenon to predict and confirm a multicollinearity property of NNs not previously reported in the literature. Most importantly, given this loose correspondence, one may choose to routinely use polynomial models instead of NNs, thus avoiding some major problems of the latter, such as having to set many tuning parameters and dealing with convergence issues. We present a number of empirical results; in each case, the accuracy of the polynomial approach matches or exceeds that of NN approaches. A many-featured, open-source software package, polyreg, is available. 4 authors · Jun 13, 2018
- Gradient Descent Happens in a Tiny Subspace We show that in a variety of large-scale deep learning scenarios the gradient dynamically converges to a very small subspace after a short period of training. The subspace is spanned by a few top eigenvectors of the Hessian (equal to the number of classes in the dataset), and is mostly preserved over long periods of training. A simple argument then suggests that gradient descent may happen mostly in this subspace. We give an example of this effect in a solvable model of classification, and we comment on possible implications for optimization and learning. 3 authors · Dec 11, 2018
- MiniF2F: a cross-system benchmark for formal Olympiad-level mathematics We present miniF2F, a dataset of formal Olympiad-level mathematics problems statements intended to provide a unified cross-system benchmark for neural theorem proving. The miniF2F benchmark currently targets Metamath, Lean, Isabelle (partially) and HOL Light (partially) and consists of 488 problem statements drawn from the AIME, AMC, and the International Mathematical Olympiad (IMO), as well as material from high-school and undergraduate mathematics courses. We report baseline results using GPT-f, a neural theorem prover based on GPT-3 and provide an analysis of its performance. We intend for miniF2F to be a community-driven effort and hope that our benchmark will help spur advances in neural theorem proving. 3 authors · Aug 31, 2021
13 BM25S: Orders of magnitude faster lexical search via eager sparse scoring We introduce BM25S, an efficient Python-based implementation of BM25 that only depends on Numpy and Scipy. BM25S achieves up to a 500x speedup compared to the most popular Python-based framework by eagerly computing BM25 scores during indexing and storing them into sparse matrices. It also achieves considerable speedups compared to highly optimized Java-based implementations, which are used by popular commercial products. Finally, BM25S reproduces the exact implementation of five BM25 variants based on Kamphuis et al. (2020) by extending eager scoring to non-sparse variants using a novel score shifting method. The code can be found at https://github.com/xhluca/bm25s 1 authors · Jul 4, 2024 3
- Uncertainty Unveiled: Can Exposure to More In-context Examples Mitigate Uncertainty for Large Language Models? Recent advances in handling long sequences have facilitated the exploration of long-context in-context learning (ICL). While much of the existing research emphasizes performance improvements driven by additional in-context examples, the influence on the trustworthiness of generated responses remains underexplored. This paper addresses this gap by investigating how increased examples influence predictive uncertainty, an essential aspect in trustworthiness. We begin by systematically quantifying the uncertainty of ICL with varying shot counts, analyzing the impact of example quantity. Through uncertainty decomposition, we introduce a novel perspective on performance enhancement, with a focus on epistemic uncertainty (EU). Our results reveal that additional examples reduce total uncertainty in both simple and complex tasks by injecting task-specific knowledge, thereby diminishing EU and enhancing performance. For complex tasks, these advantages emerge only after addressing the increased noise and uncertainty associated with longer inputs. Finally, we explore the evolution of internal confidence across layers, unveiling the mechanisms driving the reduction in uncertainty. 4 authors · May 27
4 Bigger, Better, Faster: Human-level Atari with human-level efficiency We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster. 6 authors · May 30, 2023
- Theory on Forgetting and Generalization of Continual Learning Continual learning (CL), which aims to learn a sequence of tasks, has attracted significant recent attention. However, most work has focused on the experimental performance of CL, and theoretical studies of CL are still limited. In particular, there is a lack of understanding on what factors are important and how they affect "catastrophic forgetting" and generalization performance. To fill this gap, our theoretical analysis, under overparameterized linear models, provides the first-known explicit form of the expected forgetting and generalization error. Further analysis of such a key result yields a number of theoretical explanations about how overparameterization, task similarity, and task ordering affect both forgetting and generalization error of CL. More interestingly, by conducting experiments on real datasets using deep neural networks (DNNs), we show that some of these insights even go beyond the linear models and can be carried over to practical setups. In particular, we use concrete examples to show that our results not only explain some interesting empirical observations in recent studies, but also motivate better practical algorithm designs of CL. 4 authors · Feb 11, 2023
- Smooth Normalizing Flows Normalizing flows are a promising tool for modeling probability distributions in physical systems. While state-of-the-art flows accurately approximate distributions and energies, applications in physics additionally require smooth energies to compute forces and higher-order derivatives. Furthermore, such densities are often defined on non-trivial topologies. A recent example are Boltzmann Generators for generating 3D-structures of peptides and small proteins. These generative models leverage the space of internal coordinates (dihedrals, angles, and bonds), which is a product of hypertori and compact intervals. In this work, we introduce a class of smooth mixture transformations working on both compact intervals and hypertori. Mixture transformations employ root-finding methods to invert them in practice, which has so far prevented bi-directional flow training. To this end, we show that parameter gradients and forces of such inverses can be computed from forward evaluations via the inverse function theorem. We demonstrate two advantages of such smooth flows: they allow training by force matching to simulation data and can be used as potentials in molecular dynamics simulations. 3 authors · Oct 1, 2021
1 Fairness Concepts for Indivisible Items with Externalities We study a fair allocation problem of indivisible items under additive externalities in which each agent also receives values from items that are assigned to other agents. We propose several new fairness concepts. We extend the well-studied envy-freeness up to one item (EF1) and envy-freeness up to any item (EFX) to this setting, and we propose a new fairness concept called general fair share (GFS). We undertake a detailed study and present algorithms for finding fair allocations. 4 authors · Oct 18, 2021
- Planar Substitutions to Lebesgue type Space-Filling Curves and Relatively Dense Fractal-like Sets in the Plane Lebesgue curve is a space-filling curve that fills the unit square through linear interpolation. In this study, we generalise Lebesgue's construction to generate space-filling curves from any given planar substitution satisfying a mild condition. The generated space-filling curves for some known substitutions are elucidated. Some of those substitutions further induce relatively dense fractal-like sets in the plane, whenever some additional assumptions are met. 1 authors · Apr 23, 2022
- Counterfactual Token Generation in Large Language Models "Sure, I am happy to generate a story for you: Captain Lyra stood at the helm of her trusty ship, the Maelstrom's Fury, gazing out at the endless sea. [...] Lyra's eyes welled up with tears as she realized the bitter truth - she had sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself." Although this story, generated by a large language model, is captivating, one may wonder -- how would the story have unfolded if the model had chosen "Captain Maeve" as the protagonist instead? We cannot know. State-of-the-art large language models are stateless -- they maintain no internal memory or state. Given a prompt, they generate a sequence of tokens as an output using an autoregressive process. As a consequence, they cannot reason about counterfactual alternatives to tokens they have generated in the past. In this work, our goal is to enhance them with this functionality. To this end, we develop a causal model of token generation that builds upon the Gumbel-Max structural causal model. Our model allows any large language model to perform counterfactual token generation at almost no cost in comparison with vanilla token generation, it is embarrassingly simple to implement, and it does not require any fine-tuning nor prompt engineering. We implement our model on Llama 3 8B-Instruct and Ministral-8B-Instruct and conduct a qualitative and a quantitative analysis of counterfactually generated text. We conclude with a demonstrative application of counterfactual token generation for bias detection, unveiling interesting insights about the model of the world constructed by large language models. 5 authors · Sep 25, 2024
- A nonintrusive Reduced Basis Method applied to aeroacoustic simulations The Reduced Basis Method can be exploited in an efficient way only if the so-called affine dependence assumption on the operator and right-hand side of the considered problem with respect to the parameters is satisfied. When it is not, the Empirical Interpolation Method is usually used to recover this assumption approximately. In both cases, the Reduced Basis Method requires to access and modify the assembly routines of the corresponding computational code, leading to an intrusive procedure. In this work, we derive variants of the EIM algorithm and explain how they can be used to turn the Reduced Basis Method into a nonintrusive procedure. We present examples of aeroacoustic problems solved by integral equations and show how our algorithms can benefit from the linear algebra tools available in the considered code. 3 authors · Jan 15, 2014
- Tunable Trajectory Planner Using G3 Curves Trajectory planning is commonly used as part of a local planner in autonomous driving. This paper considers the problem of planning a continuous-curvature-rate trajectory between fixed start and goal states that minimizes a tunable trade-off between passenger comfort and travel time. The problem is an instance of infinite dimensional optimization over two continuous functions: a path, and a velocity profile. We propose a simplification of this problem that facilitates the discretization of both functions. This paper also proposes a method to quickly generate minimal-length paths between start and goal states based on a single tuning parameter: the second derivative of curvature. Furthermore, we discretize the set of velocity profiles along a given path into a selection of acceleration way-points along the path. Gradient-descent is then employed to minimize cost over feasible choices of the second derivative of curvature, and acceleration way-points, resulting in a method that repeatedly solves the path and velocity profiles in an iterative fashion. Numerical examples are provided to illustrate the benefits of the proposed methods. 2 authors · Jun 7, 2021
- The Mira-Titan Universe IV. High Precision Power Spectrum Emulation Modern cosmological surveys are delivering datasets characterized by unprecedented quality and statistical completeness; this trend is expected to continue into the future as new ground- and space-based surveys come online. In order to maximally extract cosmological information from these observations, matching theoretical predictions are needed. At low redshifts, the surveys probe the nonlinear regime of structure formation where cosmological simulations are the primary means of obtaining the required information. The computational cost of sufficiently resolved large-volume simulations makes it prohibitive to run very large ensembles. Nevertheless, precision emulators built on a tractable number of high-quality simulations can be used to build very fast prediction schemes to enable a variety of cosmological inference studies. We have recently introduced the Mira-Titan Universe simulation suite designed to construct emulators for a range of cosmological probes. The suite covers the standard six cosmological parameters {omega_m,omega_b, sigma_8, h, n_s, w_0} and, in addition, includes massive neutrinos and a dynamical dark energy equation of state, {omega_{nu}, w_a}. In this paper we present the final emulator for the matter power spectrum based on 111 cosmological simulations, each covering a (2.1Gpc)^3 volume and evolving 3200^3 particles. An additional set of 1776 lower-resolution simulations and TimeRG perturbation theory results for the power spectrum are used to cover scales straddling the linear to mildly nonlinear regimes. The emulator provides predictions at the two to three percent level of accuracy over a wide range of cosmological parameters and is publicly released as part of this paper. 9 authors · Jul 25, 2022
1 Train 'n Trade: Foundations of Parameter Markets Organizations typically train large models individually. This is costly and time-consuming, particularly for large-scale foundation models. Such vertical production is known to be suboptimal. Inspired by this economic insight, we ask whether it is possible to leverage others' expertise by trading the constituent parts in models, i.e., sets of weights, as if they were market commodities. While recent advances in aligning and interpolating models suggest that doing so may be possible, a number of fundamental questions must be answered to create viable parameter markets. In this work, we address these basic questions, propose a framework containing the infrastructure necessary for market operations to take place, study strategies for exchanging parameters, and offer means for agents to monetize parameters. Excitingly, compared to agents who train siloed models from scratch, we show that it is possible to mutually gain by using the market, even in competitive settings. This suggests that the notion of parameter markets may be a useful paradigm for improving large-scale model training in the future. 3 authors · Dec 7, 2023
7 What Has a Foundation Model Found? Using Inductive Bias to Probe for World Models Foundation models are premised on the idea that sequence prediction can uncover deeper domain understanding, much like how Kepler's predictions of planetary motion later led to the discovery of Newtonian mechanics. However, evaluating whether these models truly capture deeper structure remains a challenge. We develop a technique for evaluating foundation models that examines how they adapt to synthetic datasets generated from some postulated world model. Our technique measures whether the foundation model's inductive bias aligns with the world model, and so we refer to it as an inductive bias probe. Across multiple domains, we find that foundation models can excel at their training tasks yet fail to develop inductive biases towards the underlying world model when adapted to new tasks. We particularly find that foundation models trained on orbital trajectories consistently fail to apply Newtonian mechanics when adapted to new physics tasks. Further analysis reveals that these models behave as if they develop task-specific heuristics that fail to generalize. 4 authors · Jul 9 1
- Mathematical Capabilities of ChatGPT We investigate the mathematical capabilities of ChatGPT by testing it on publicly available datasets, as well as hand-crafted ones, and measuring its performance against other models trained on a mathematical corpus, such as Minerva. We also test whether ChatGPT can be a useful assistant to professional mathematicians by emulating various use cases that come up in the daily professional activities of mathematicians (question answering, theorem searching). In contrast to formal mathematics, where large databases of formal proofs are available (e.g., the Lean Mathematical Library), current datasets of natural-language mathematics, used to benchmark language models, only cover elementary mathematics. We address this issue by introducing a new dataset: GHOSTS. It is the first natural-language dataset made and curated by working researchers in mathematics that (1) aims to cover graduate-level mathematics and (2) provides a holistic overview of the mathematical capabilities of language models. We benchmark ChatGPT on GHOSTS and evaluate performance against fine-grained criteria. We make this new dataset publicly available to assist a community-driven comparison of ChatGPT with (future) large language models in terms of advanced mathematical comprehension. We conclude that contrary to many positive reports in the media (a potential case of selection bias), ChatGPT's mathematical abilities are significantly below those of an average mathematics graduate student. Our results show that ChatGPT often understands the question but fails to provide correct solutions. Hence, if your goal is to use it to pass a university exam, you would be better off copying from your average peer! 8 authors · Jan 31, 2023
- Finite random iterated function systems do not always satisfy Bowen's formula In this paper, we provide a finite random iterated function system satisfying the open set condition, for which the random version of Bowen's formula fails to hold. This counterexample shows that analogous results established for random recursive constructions are not always obtained for random iterated function systems. 1 authors · Sep 2
- Measuring Vision-Language STEM Skills of Neural Models We introduce a new challenge to test the STEM skills of neural models. The problems in the real world often require solutions, combining knowledge from STEM (science, technology, engineering, and math). Unlike existing datasets, our dataset requires the understanding of multimodal vision-language information of STEM. Our dataset features one of the largest and most comprehensive datasets for the challenge. It includes 448 skills and 1,073,146 questions spanning all STEM subjects. Compared to existing datasets that often focus on examining expert-level ability, our dataset includes fundamental skills and questions designed based on the K-12 curriculum. We also add state-of-the-art foundation models such as CLIP and GPT-3.5-Turbo to our benchmark. Results show that the recent model advances only help master a very limited number of lower grade-level skills (2.5% in the third grade) in our dataset. In fact, these models are still well below (averaging 54.7%) the performance of elementary students, not to mention near expert-level performance. To understand and increase the performance on our dataset, we teach the models on a training split of our dataset. Even though we observe improved performance, the model performance remains relatively low compared to average elementary students. To solve STEM problems, we will need novel algorithmic innovations from the community. 5 authors · Feb 26, 2024
- Conformal Risk Control We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. We also introduce extensions of the idea to distribution shift, quantile risk control, multiple and adversarial risk control, and expectations of U-statistics. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score. 5 authors · Aug 4, 2022
13 An Emulator for Fine-Tuning Large Language Models using Small Language Models Widely used language models (LMs) are typically built by scaling up a two-stage training pipeline: a pre-training stage that uses a very large, diverse dataset of text and a fine-tuning (sometimes, 'alignment') stage that uses targeted examples or other specifications of desired behaviors. While it has been hypothesized that knowledge and skills come from pre-training, and fine-tuning mostly filters this knowledge and skillset, this intuition has not been extensively tested. To aid in doing so, we introduce a novel technique for decoupling the knowledge and skills gained in these two stages, enabling a direct answer to the question, "What would happen if we combined the knowledge learned by a large model during pre-training with the knowledge learned by a small model during fine-tuning (or vice versa)?" Using an RL-based framework derived from recent developments in learning from human preferences, we introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates (or 'emulates') the result of pre-training and fine-tuning at different scales. Our experiments with EFT show that scaling up fine-tuning tends to improve helpfulness, while scaling up pre-training tends to improve factuality. Beyond decoupling scale, we show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training. Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models, essentially emulating the result of fine-tuning the large pre-trained model. Up-scaling consistently improves helpfulness and factuality of instruction-following models in the Llama, Llama-2, and Falcon families, without additional hyperparameters or training. 5 authors · Oct 19, 2023 1
- Methods for Interpreting and Understanding Deep Neural Networks This paper provides an entry point to the problem of interpreting a deep neural network model and explaining its predictions. It is based on a tutorial given at ICASSP 2017. It introduces some recently proposed techniques of interpretation, along with theory, tricks and recommendations, to make most efficient use of these techniques on real data. It also discusses a number of practical applications. 3 authors · Jun 24, 2017
1 Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models Approximate inference in Gaussian process (GP) models with non-conjugate likelihoods gets entangled with the learning of the model hyperparameters. We improve hyperparameter learning in GP models and focus on the interplay between variational inference (VI) and the learning target. While VI's lower bound to the marginal likelihood is a suitable objective for inferring the approximate posterior, we show that a direct approximation of the marginal likelihood as in Expectation Propagation (EP) is a better learning objective for hyperparameter optimization. We design a hybrid training procedure to bring the best of both worlds: it leverages conjugate-computation VI for inference and uses an EP-like marginal likelihood approximation for hyperparameter learning. We compare VI, EP, Laplace approximation, and our proposed training procedure and empirically demonstrate the effectiveness of our proposal across a wide range of data sets. 3 authors · Jun 7, 2023
- First observation of the Josephson-Anderson relation in experiments on hydrodynamic drag We verify a recent prediction (Eq. 3.50 in G. L. Eyink, Phys. Rev. X 11, 031054 (2021)) for the drag on an object moving through a fluid. In this prediction the velocity field is decomposed into a nonvortical (potential) and vortical contribution, and so is the associated drag force. In the Josephson-Anderson relation the vortical contribution of the drag force follows from the flux of vorticity traversing the streamlines of the corresponding potential flow. The potential component is directly determined by the plate acceleration and its added mass. The Josephson-Anderson relation is derived from the quantum description of superfluids, but remarkably applies to the classical fluid in our experiment. In our experiment a flat plate is accelerated through water using a robotic arm. This geometry is simple enough to allow analytic potential flow streamlines. The monitored plate position shows an oscillatory component of the acceleration, which adds an additional test of the Josephson-Anderson relation. The instantaneous velocity field is measured using particle image velocimetry. It enables us to evaluate Eq. 3.50 from [1] and compare its prediction to the measured drag force. We find excellent agreement, and, most remarkably find that the added mass contribution to the drag force still stands out after the flow has turned vortical. We finally comment on the requirements on the experimental techniques for evaluating the Josephson-Anderson relation. 5 authors · Aug 27
- Samudra: An AI Global Ocean Emulator for Climate AI emulators for forecasting have emerged as powerful tools that can outperform conventional numerical predictions. The next frontier is to build emulators for long-term climate projections with robust skill across a wide range of spatiotemporal scales, a particularly important goal for the ocean. Our work builds a skillful global emulator of the ocean component of a state-of-the-art climate model. We emulate key ocean variables, sea surface height, horizontal velocities, temperature, and salinity, across their full depth. We use a modified ConvNeXt UNet architecture trained on multidepth levels of ocean data. We show that the ocean emulator - Samudra - which exhibits no drift relative to the truth, can reproduce the depth structure of ocean variables and their interannual variability. Samudra is stable for centuries and 150 times faster than the original ocean model. Samudra struggles to capture the correct magnitude of the forcing trends and simultaneously remains stable, requiring further work. 7 authors · Dec 4, 2024
- Multi-marginal Schrödinger Bridges with Iterative Reference Refinement Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data. 3 authors · Aug 12, 2024
1 Universal Online Learning with Unbounded Losses: Memory Is All You Need We resolve an open problem of Hanneke on the subject of universally consistent online learning with non-i.i.d. processes and unbounded losses. The notion of an optimistically universal learning rule was defined by Hanneke in an effort to study learning theory under minimal assumptions. A given learning rule is said to be optimistically universal if it achieves a low long-run average loss whenever the data generating process makes this goal achievable by some learning rule. Hanneke posed as an open problem whether, for every unbounded loss, the family of processes admitting universal learning are precisely those having a finite number of distinct values almost surely. In this paper, we completely resolve this problem, showing that this is indeed the case. As a consequence, this also offers a dramatically simpler formulation of an optimistically universal learning rule for any unbounded loss: namely, the simple memorization rule already suffices. Our proof relies on constructing random measurable partitions of the instance space and could be of independent interest for solving other open questions. We extend the results to the non-realizable setting thereby providing an optimistically universal Bayes consistent learning rule. 3 authors · Jan 21, 2022
- Sequential Predictive Conformal Inference for Time Series We present a new distribution-free conformal prediction algorithm for sequential data (e.g., time series), called the sequential predictive conformal inference (SPCI). We specifically account for the nature that time series data are non-exchangeable, and thus many existing conformal prediction algorithms are not applicable. The main idea is to adaptively re-estimate the conditional quantile of non-conformity scores (e.g., prediction residuals), upon exploiting the temporal dependence among them. More precisely, we cast the problem of conformal prediction interval as predicting the quantile of a future residual, given a user-specified point prediction algorithm. Theoretically, we establish asymptotic valid conditional coverage upon extending consistency analyses in quantile regression. Using simulation and real-data experiments, we demonstrate a significant reduction in interval width of SPCI compared to other existing methods under the desired empirical coverage. 2 authors · Dec 7, 2022
- Projections of Earth's Technosphere: Luminosity and Mass as Limits to Growth Earth remains the only known example of a planet with technology, and future projections of Earth's trajectory provide a basis and motivation for approaching the search for extraterrestrial technospheres. Conventional approaches toward projecting Earth's technosphere include applications of the Kardashev scale, which suggest the possibility that energy-intensive civilizations may expand to harness the entire energy output available to their planet, host star, or even the entire galaxy. In this study, we argue that the Kardashev scale is better understood as a "luminosity limit" that describes the maximum capacity for a civilization to harvest luminous stellar energy across a given spatial domain, and we note that thermodynamic efficiency will always keep a luminosity-limited technosphere from actually reaching this theoretical limit. We suggest the possibility that an advanced technosphere might evolve beyond this luminosity limit to draw its energy directly from harvesting stellar mass, and we also discuss possible trajectories that could exist between Earth today and such hypothetical "stellivores." We develop a framework to describe trajectories for long-lived technospheres that optimize their growth strategies between exploration and exploitation, unlike Earth today. We note that analyses of compact accreting stars could provide ways to test the stellivore hypothesis, and we more broadly suggest an expansion of technosignature search strategies beyond those that reside exactly at the luminosity limit. 3 authors · Oct 30, 2024
- Performance analysis of Volna-OP2 -- massively parallel code for tsunami modelling The software package Volna-OP2 is a robust and efficient code capable of simulating the complete life cycle of a tsunami whilst harnessing the latest High Performance Computing (HPC) architectures. In this paper, a comprehensive error analysis and scalability study of the GPU version of the code is presented. A novel decomposition of the numerical errors into the dispersion and dissipation components is explored. Most tsunami codes exhibit amplitude smearing and/or phase lagging/leading, so the decomposition shown here is a new approach and novel tool for explaining these occurrences. It is the first time that the errors of a tsunami code have been assessed in this manner. To date, Volna-OP2 has been widely used by the tsunami modelling community. In particular its computational efficiency has allowed various sensitivity analyses and uncertainty quantification studies. Due to the number of simulations required, there is always a trade-off between accuracy and runtime when carrying out these statistical studies. The analysis presented in this paper will guide the user towards an acceptable level of accuracy within a given runtime. 5 authors · Feb 12, 2020
- Pitfalls of Epistemic Uncertainty Quantification through Loss Minimisation Uncertainty quantification has received increasing attention in machine learning in the recent past. In particular, a distinction between aleatoric and epistemic uncertainty has been found useful in this regard. The latter refers to the learner's (lack of) knowledge and appears to be especially difficult to measure and quantify. In this paper, we analyse a recent proposal based on the idea of a second-order learner, which yields predictions in the form of distributions over probability distributions. While standard (first-order) learners can be trained to predict accurate probabilities, namely by minimising suitable loss functions on sample data, we show that loss minimisation does not work for second-order predictors: The loss functions proposed for inducing such predictors do not incentivise the learner to represent its epistemic uncertainty in a faithful way. 3 authors · Mar 11, 2022
- Talking About Large Language Models Thanks to rapid progress in artificial intelligence, we have entered an era when technology and philosophy intersect in interesting ways. Sitting squarely at the centre of this intersection are large language models (LLMs). The more adept LLMs become at mimicking human language, the more vulnerable we become to anthropomorphism, to seeing the systems in which they are embedded as more human-like than they really are. This trend is amplified by the natural tendency to use philosophically loaded terms, such as "knows", "believes", and "thinks", when describing these systems. To mitigate this trend, this paper advocates the practice of repeatedly stepping back to remind ourselves of how LLMs, and the systems of which they form a part, actually work. The hope is that increased scientific precision will encourage more philosophical nuance in the discourse around artificial intelligence, both within the field and in the public sphere. 1 authors · Dec 7, 2022
7 CyberDemo: Augmenting Simulated Human Demonstration for Real-World Dexterous Manipulation We introduce CyberDemo, a novel approach to robotic imitation learning that leverages simulated human demonstrations for real-world tasks. By incorporating extensive data augmentation in a simulated environment, CyberDemo outperforms traditional in-domain real-world demonstrations when transferred to the real world, handling diverse physical and visual conditions. Regardless of its affordability and convenience in data collection, CyberDemo outperforms baseline methods in terms of success rates across various tasks and exhibits generalizability with previously unseen objects. For example, it can rotate novel tetra-valve and penta-valve, despite human demonstrations only involving tri-valves. Our research demonstrates the significant potential of simulated human demonstrations for real-world dexterous manipulation tasks. More details can be found at https://cyber-demo.github.io 7 authors · Feb 22, 2024 1
- On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation? In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications. 4 authors · Mar 25
- Efficient List-Decodable Regression using Batches We begin the study of list-decodable linear regression using batches. In this setting only an alpha in (0,1] fraction of the batches are genuine. Each genuine batch contains ge n i.i.d. samples from a common unknown distribution and the remaining batches may contain arbitrary or even adversarial samples. We derive a polynomial time algorithm that for any nge tilde Omega(1/alpha) returns a list of size mathcal O(1/alpha^2) such that one of the items in the list is close to the true regression parameter. The algorithm requires only mathcal{O}(d/alpha^2) genuine batches and works under fairly general assumptions on the distribution. The results demonstrate the utility of batch structure, which allows for the first polynomial time algorithm for list-decodable regression, which may be impossible for the non-batch setting, as suggested by a recent SQ lower bound diakonikolas2021statistical for the non-batch setting. 4 authors · Nov 23, 2022
- An Informal Introduction to Multiplet Neural Networks In the artificial neuron, I replace the dot product with the weighted Lehmer mean, which may emulate different cases of a generalized mean. The single neuron instance is replaced by a multiplet of neurons which have the same averaging weights. A group of outputs feed forward, in lieu of the single scalar. The generalization parameter is typically set to a different value for each neuron in the multiplet. I further extend the concept to a multiplet taken from the Gini mean. Derivatives with respect to the weight parameters and with respect to the two generalization parameters are given. Some properties of the network are investigated, showing the capacity to emulate the classical exclusive-or problem organically in two layers and perform some multiplication and division. The network can instantiate truncated power series and variants, which can be used to approximate different functions, provided that parameters are constrained. Moreover, a mean case slope score is derived that can facilitate a learning-rate novelty based on homogeneity of the selected elements. The multiplet neuron equation provides a way to segment regularization timeframes and approaches. 1 authors · Jun 2, 2020
- Layout Aware Inpainting for Automated Furniture Removal in Indoor Scenes We address the problem of detecting and erasing furniture from a wide angle photograph of a room. Inpainting large regions of an indoor scene often results in geometric inconsistencies of background elements within the inpaint mask. To address this problem, we utilize perceptual information (e.g. instance segmentation, and room layout) to produce a geometrically consistent empty version of a room. We share important details to make this system viable, such as per-plane inpainting, automatic rectification, and texture refinement. We provide detailed ablation along with qualitative examples, justifying our design choices. We show an application of our system by removing real furniture from a room and redecorating it with virtual furniture. 4 authors · Oct 27, 2022
- Automatically Marginalized MCMC in Probabilistic Programming Hamiltonian Monte Carlo (HMC) is a powerful algorithm to sample latent variables from Bayesian models. The advent of probabilistic programming languages (PPLs) frees users from writing inference algorithms and lets users focus on modeling. However, many models are difficult for HMC to solve directly, and often require tricks like model reparameterization. We are motivated by the fact that many of those models could be simplified by marginalization. We propose to use automatic marginalization as part of the sampling process using HMC in a graphical model extracted from a PPL, which substantially improves sampling from real-world hierarchical models. 4 authors · Feb 1, 2023