- Intra-Query Runtime Elasticity for Cloud-Native Data Analysis We propose the concept of Intra-Query Runtime Elasticity (IQRE) for cloud-native data analysis. IQRE enables a cloud-native OLAP engine to dynamically adjust a query's Degree of Parallelism (DOP) during execution. This capability allows users to utilize cloud computing resources more cost-effectively. We present Accordion, the first IQRE query engine. Accordion can adjust the parallelism of a query at any point during query execution without pausing data processing. It features a user-friendly interface and an auto-tuner backed by a "what-if" service to allow users to adjust the DOP according to their query latency constraints. The design of Accordion follows the execution model in Presto, an open-source distributed SQL query engine developed at Meta. We present the implementation of Accordion and demonstrate its ease of use, showcasing how it enables users to minimize compute resource consumption while meeting their query time constraints. 3 authors · Feb 25
- Partially Conditioned Patch Parallelism for Accelerated Diffusion Model Inference Diffusion models have exhibited exciting capabilities in generating images and are also very promising for video creation. However, the inference speed of diffusion models is limited by the slow sampling process, restricting its use cases. The sequential denoising steps required for generating a single sample could take tens or hundreds of iterations and thus have become a significant bottleneck. This limitation is more salient for applications that are interactive in nature or require small latency. To address this challenge, we propose Partially Conditioned Patch Parallelism (PCPP) to accelerate the inference of high-resolution diffusion models. Using the fact that the difference between the images in adjacent diffusion steps is nearly zero, Patch Parallelism (PP) leverages multiple GPUs communicating asynchronously to compute patches of an image in multiple computing devices based on the entire image (all patches) in the previous diffusion step. PCPP develops PP to reduce computation in inference by conditioning only on parts of the neighboring patches in each diffusion step, which also decreases communication among computing devices. As a result, PCPP decreases the communication cost by around 70% compared to DistriFusion (the state of the art implementation of PP) and achieves 2.36sim 8.02times inference speed-up using 4sim 8 GPUs compared to 2.32sim 6.71times achieved by DistriFusion depending on the computing device configuration and resolution of generation at the cost of a possible decrease in image quality. PCPP demonstrates the potential to strike a favorable trade-off, enabling high-quality image generation with substantially reduced latency. 3 authors · Dec 3, 2024