Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMetaMixer Is All You Need
Transformer, composed of self-attention and Feed-Forward Network, has revolutionized the landscape of network design across various vision tasks. FFN is a versatile operator seamlessly integrated into nearly all AI models to effectively harness rich representations. Recent works also show that FFN functions like key-value memories. Thus, akin to the query-key-value mechanism within self-attention, FFN can be viewed as a memory network, where the input serves as query and the two projection weights operate as keys and values, respectively. We hypothesize that the importance lies in query-key-value framework itself rather than in self-attention. To verify this, we propose converting self-attention into a more FFN-like efficient token mixer with only convolutions while retaining query-key-value framework, namely FFNification. Specifically, FFNification replaces query-key and attention coefficient-value interactions with large kernel convolutions and adopts GELU activation function instead of softmax. The derived token mixer, FFNified attention, serves as key-value memories for detecting locally distributed spatial patterns, and operates in the opposite dimension to the ConvNeXt block within each corresponding sub-operation of the query-key-value framework. Building upon the above two modules, we present a family of Fast-Forward Networks. Our FFNet achieves remarkable performance improvements over previous state-of-the-art methods across a wide range of tasks. The strong and general performance of our proposed method validates our hypothesis and leads us to introduce MetaMixer, a general mixer architecture that does not specify sub-operations within the query-key-value framework. We show that using only simple operations like convolution and GELU in the MetaMixer can achieve superior performance.
ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
Dynamic Relation Transformer for Contextual Text Block Detection
Contextual Text Block Detection (CTBD) is the task of identifying coherent text blocks within the complexity of natural scenes. Previous methodologies have treated CTBD as either a visual relation extraction challenge within computer vision or as a sequence modeling problem from the perspective of natural language processing. We introduce a new framework that frames CTBD as a graph generation problem. This methodology consists of two essential procedures: identifying individual text units as graph nodes and discerning the sequential reading order relationships among these units as graph edges. Leveraging the cutting-edge capabilities of DQ-DETR for node detection, our framework innovates further by integrating a novel mechanism, a Dynamic Relation Transformer (DRFormer), dedicated to edge generation. DRFormer incorporates a dual interactive transformer decoder that deftly manages a dynamic graph structure refinement process. Through this iterative process, the model systematically enhances the graph's fidelity, ultimately resulting in improved precision in detecting contextual text blocks. Comprehensive experimental evaluations conducted on both SCUT-CTW-Context and ReCTS-Context datasets substantiate that our method achieves state-of-the-art results, underscoring the effectiveness and potential of our graph generation framework in advancing the field of CTBD.
MobileNetV4 -- Universal Models for the Mobile Ecosystem
We present the latest generation of MobileNets, known as MobileNetV4 (MNv4), featuring universally efficient architecture designs for mobile devices. At its core, we introduce the Universal Inverted Bottleneck (UIB) search block, a unified and flexible structure that merges Inverted Bottleneck (IB), ConvNext, Feed Forward Network (FFN), and a novel Extra Depthwise (ExtraDW) variant. Alongside UIB, we present Mobile MQA, an attention block tailored for mobile accelerators, delivering a significant 39% speedup. An optimized neural architecture search (NAS) recipe is also introduced which improves MNv4 search effectiveness. The integration of UIB, Mobile MQA and the refined NAS recipe results in a new suite of MNv4 models that are mostly Pareto optimal across mobile CPUs, DSPs, GPUs, as well as specialized accelerators like Apple Neural Engine and Google Pixel EdgeTPU - a characteristic not found in any other models tested. Finally, to further boost accuracy, we introduce a novel distillation technique. Enhanced by this technique, our MNv4-Hybrid-Large model delivers 87% ImageNet-1K accuracy, with a Pixel 8 EdgeTPU runtime of just 3.8ms.
Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling
We identify and overcome two key obstacles in extending the success of BERT-style pre-training, or the masked image modeling, to convolutional networks (convnets): (i) convolution operation cannot handle irregular, random-masked input images; (ii) the single-scale nature of BERT pre-training is inconsistent with convnet's hierarchical structure. For (i), we treat unmasked pixels as sparse voxels of 3D point clouds and use sparse convolution to encode. This is the first use of sparse convolution for 2D masked modeling. For (ii), we develop a hierarchical decoder to reconstruct images from multi-scale encoded features. Our method called Sparse masKed modeling (SparK) is general: it can be used directly on any convolutional model without backbone modifications. We validate it on both classical (ResNet) and modern (ConvNeXt) models: on three downstream tasks, it surpasses both state-of-the-art contrastive learning and transformer-based masked modeling by similarly large margins (around +1.0%). Improvements on object detection and instance segmentation are more substantial (up to +3.5%), verifying the strong transferability of features learned. We also find its favorable scaling behavior by observing more gains on larger models. All this evidence reveals a promising future of generative pre-training on convnets. Codes and models are released at https://github.com/keyu-tian/SparK.
CoCon: A Self-Supervised Approach for Controlled Text Generation
Pretrained Transformer-based language models (LMs) display remarkable natural language generation capabilities. With their immense potential, controlling text generation of such LMs is getting attention. While there are studies that seek to control high-level attributes (such as sentiment and topic) of generated text, there is still a lack of more precise control over its content at the word- and phrase-level. Here, we propose Content-Conditioner (CoCon) to control an LM's output text with a content input, at a fine-grained level. In our self-supervised approach, the CoCon block learns to help the LM complete a partially-observed text sequence by conditioning with content inputs that are withheld from the LM. Through experiments, we show that CoCon can naturally incorporate target content into generated texts and control high-level text attributes in a zero-shot manner.
Detector Guidance for Multi-Object Text-to-Image Generation
Diffusion models have demonstrated impressive performance in text-to-image generation. They utilize a text encoder and cross-attention blocks to infuse textual information into images at a pixel level. However, their capability to generate images with text containing multiple objects is still restricted. Previous works identify the problem of information mixing in the CLIP text encoder and introduce the T5 text encoder or incorporate strong prior knowledge to assist with the alignment. We find that mixing problems also occur on the image side and in the cross-attention blocks. The noisy images can cause different objects to appear similar, and the cross-attention blocks inject information at a pixel level, leading to leakage of global object understanding and resulting in object mixing. In this paper, we introduce Detector Guidance (DG), which integrates a latent object detection model to separate different objects during the generation process. DG first performs latent object detection on cross-attention maps (CAMs) to obtain object information. Based on this information, DG then masks conflicting prompts and enhances related prompts by manipulating the following CAMs. We evaluate the effectiveness of DG using Stable Diffusion on COCO, CC, and a novel multi-related object benchmark, MRO. Human evaluations demonstrate that DG provides an 8-22\% advantage in preventing the amalgamation of conflicting concepts and ensuring that each object possesses its unique region without any human involvement and additional iterations. Our implementation is available at https://github.com/luping-liu/Detector-Guidance.
Bengali Document Layout Analysis with Detectron2
Document digitization is vital for preserving historical records, efficient document management, and advancing OCR (Optical Character Recognition) research. Document Layout Analysis (DLA) involves segmenting documents into meaningful units like text boxes, paragraphs, images, and tables. Challenges arise when dealing with diverse layouts, historical documents, and unique scripts like Bengali, hindered by the lack of comprehensive Bengali DLA datasets. We improved the accuracy of the DLA model for Bengali documents by utilizing advanced Mask R-CNN models available in the Detectron2 library. Our evaluation involved three variants: Mask R-CNN R-50, R-101, and X-101, both with and without pretrained weights from PubLayNet, on the BaDLAD dataset, which contains human-annotated Bengali documents in four categories: text boxes, paragraphs, images, and tables. Results show the effectiveness of these models in accurately segmenting Bengali documents. We discuss speed-accuracy tradeoffs and underscore the significance of pretrained weights. Our findings expand the applicability of Mask R-CNN in document layout analysis, efficient document management, and OCR research while suggesting future avenues for fine-tuning and data augmentation.
DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis
Accurate document layout analysis is a key requirement for high-quality PDF document conversion. With the recent availability of public, large ground-truth datasets such as PubLayNet and DocBank, deep-learning models have proven to be very effective at layout detection and segmentation. While these datasets are of adequate size to train such models, they severely lack in layout variability since they are sourced from scientific article repositories such as PubMed and arXiv only. Consequently, the accuracy of the layout segmentation drops significantly when these models are applied on more challenging and diverse layouts. In this paper, we present DocLayNet, a new, publicly available, document-layout annotation dataset in COCO format. It contains 80863 manually annotated pages from diverse data sources to represent a wide variability in layouts. For each PDF page, the layout annotations provide labelled bounding-boxes with a choice of 11 distinct classes. DocLayNet also provides a subset of double- and triple-annotated pages to determine the inter-annotator agreement. In multiple experiments, we provide baseline accuracy scores (in mAP) for a set of popular object detection models. We also demonstrate that these models fall approximately 10\% behind the inter-annotator agreement. Furthermore, we provide evidence that DocLayNet is of sufficient size. Lastly, we compare models trained on PubLayNet, DocBank and DocLayNet, showing that layout predictions of the DocLayNet-trained models are more robust and thus the preferred choice for general-purpose document-layout analysis.
StrucTexTv2: Masked Visual-Textual Prediction for Document Image Pre-training
In this paper, we present StrucTexTv2, an effective document image pre-training framework, by performing masked visual-textual prediction. It consists of two self-supervised pre-training tasks: masked image modeling and masked language modeling, based on text region-level image masking. The proposed method randomly masks some image regions according to the bounding box coordinates of text words. The objectives of our pre-training tasks are reconstructing the pixels of masked image regions and the corresponding masked tokens simultaneously. Hence the pre-trained encoder can capture more textual semantics in comparison to the masked image modeling that usually predicts the masked image patches. Compared to the masked multi-modal modeling methods for document image understanding that rely on both the image and text modalities, StrucTexTv2 models image-only input and potentially deals with more application scenarios free from OCR pre-processing. Extensive experiments on mainstream benchmarks of document image understanding demonstrate the effectiveness of StrucTexTv2. It achieves competitive or even new state-of-the-art performance in various downstream tasks such as image classification, layout analysis, table structure recognition, document OCR, and information extraction under the end-to-end scenario.
Block-Attention for Efficient RAG
We introduce Block-Attention, an attention mechanism designed to address the increased inference latency and cost in Retrieval-Augmented Generation (RAG) scenarios. Traditional approaches often encode the entire context. Instead, Block-Attention divides retrieved documents into discrete blocks, with each block independently calculating key-value (KV) states except for the final block. In RAG scenarios, by defining each passage as a block, Block-Attention enables us to reuse the KV states of passages that have been seen before, thereby significantly reducing the latency and the computation overhead during inference. The implementation of Block-Attention involves block segmentation, position re-encoding, and fine-tuning the LLM to adapt to the Block-Attention mechanism. Experiments on four RAG benchmarks demonstrate that after block fine-tuning, the Block-Attention model achieves performance comparable to self-attention models (68.4\% vs 67.9\% on Llama3) or even superior performance (62.8\% vs 59.6\% on Mistral). Notably, Block-Attention significantly reduces the time to first token (TTFT) and floating point operations (FLOPs) to a very low level. It only takes 45 ms to output the first token for an input sequence with a total length of 32K. Compared to the self-attention models, the time consumption and corresponding FLOPs are reduced by 98.7\% and 99.8\%, respectively.
COVID Detection and Severity Prediction with 3D-ConvNeXt and Custom Pretrainings
Since COVID strongly affects the respiratory system, lung CT-scans can be used for the analysis of a patients health. We introduce a neural network for the prediction of the severity of lung damage and the detection of a COVID-infection using three-dimensional CT-data. Therefore, we adapt the recent ConvNeXt model to process three-dimensional data. Furthermore, we design and analyze different pretraining methods specifically designed to improve the models ability to handle three-dimensional CT-data. We rank 2nd in the 1st COVID19 Severity Detection Challenge and 3rd in the 2nd COVID19 Detection Challenge.
Mask is All You Need: Rethinking Mask R-CNN for Dense and Arbitrary-Shaped Scene Text Detection
Due to the large success in object detection and instance segmentation, Mask R-CNN attracts great attention and is widely adopted as a strong baseline for arbitrary-shaped scene text detection and spotting. However, two issues remain to be settled. The first is dense text case, which is easy to be neglected but quite practical. There may exist multiple instances in one proposal, which makes it difficult for the mask head to distinguish different instances and degrades the performance. In this work, we argue that the performance degradation results from the learning confusion issue in the mask head. We propose to use an MLP decoder instead of the "deconv-conv" decoder in the mask head, which alleviates the issue and promotes robustness significantly. And we propose instance-aware mask learning in which the mask head learns to predict the shape of the whole instance rather than classify each pixel to text or non-text. With instance-aware mask learning, the mask branch can learn separated and compact masks. The second is that due to large variations in scale and aspect ratio, RPN needs complicated anchor settings, making it hard to maintain and transfer across different datasets. To settle this issue, we propose an adaptive label assignment in which all instances especially those with extreme aspect ratios are guaranteed to be associated with enough anchors. Equipped with these components, the proposed method named MAYOR achieves state-of-the-art performance on five benchmarks including DAST1500, MSRA-TD500, ICDAR2015, CTW1500, and Total-Text.
ConvBERT: Improving BERT with Span-based Dynamic Convolution
Pre-trained language models like BERT and its variants have recently achieved impressive performance in various natural language understanding tasks. However, BERT heavily relies on the global self-attention block and thus suffers large memory footprint and computation cost. Although all its attention heads query on the whole input sequence for generating the attention map from a global perspective, we observe some heads only need to learn local dependencies, which means the existence of computation redundancy. We therefore propose a novel span-based dynamic convolution to replace these self-attention heads to directly model local dependencies. The novel convolution heads, together with the rest self-attention heads, form a new mixed attention block that is more efficient at both global and local context learning. We equip BERT with this mixed attention design and build a ConvBERT model. Experiments have shown that ConvBERT significantly outperforms BERT and its variants in various downstream tasks, with lower training cost and fewer model parameters. Remarkably, ConvBERTbase model achieves 86.4 GLUE score, 0.7 higher than ELECTRAbase, while using less than 1/4 training cost. Code and pre-trained models will be released.
TRecViT: A Recurrent Video Transformer
We propose a novel block for video modelling. It relies on a time-space-channel factorisation with dedicated blocks for each dimension: gated linear recurrent units (LRUs) perform information mixing over time, self-attention layers perform mixing over space, and MLPs over channels. The resulting architecture TRecViT performs well on sparse and dense tasks, trained in supervised or self-supervised regimes. Notably, our model is causal and outperforms or is on par with a pure attention model ViViT-L on large scale video datasets (SSv2, Kinetics400), while having 3times less parameters, 12times smaller memory footprint, and 5times lower FLOPs count. Code and checkpoints will be made available online at https://github.com/google-deepmind/trecvit.
ConvLLaVA: Hierarchical Backbones as Visual Encoder for Large Multimodal Models
High-resolution Large Multimodal Models (LMMs) encounter the challenges of excessive visual tokens and quadratic visual complexity. Current high-resolution LMMs address the quadratic complexity while still generating excessive visual tokens. However, the redundancy in visual tokens is the key problem as it leads to more substantial compute. To mitigate this issue, we propose ConvLLaVA, which employs ConvNeXt, a hierarchical backbone, as the visual encoder of LMM to replace Vision Transformer (ViT). ConvLLaVA compresses high-resolution images into information-rich visual features, effectively preventing the generation of excessive visual tokens. To enhance the capabilities of ConvLLaVA, we propose two critical optimizations. Since the low-resolution pretrained ConvNeXt underperforms when directly applied on high resolution, we update it to bridge the gap. Moreover, since ConvNeXt's original compression ratio is inadequate for much higher resolution inputs, we train a successive stage to further compress the visual tokens, thereby reducing redundancy. These optimizations enable ConvLLaVA to support inputs of 1536x1536 resolution generating only 576 visual tokens, capable of handling images of arbitrary aspect ratios. Experimental results demonstrate that our method achieves competitive performance with state-of-the-art models on mainstream benchmarks. The ConvLLaVA model series are publicly available at https://github.com/alibaba/conv-llava.
Enhancing Document Information Analysis with Multi-Task Pre-training: A Robust Approach for Information Extraction in Visually-Rich Documents
This paper introduces a deep learning model tailored for document information analysis, emphasizing document classification, entity relation extraction, and document visual question answering. The proposed model leverages transformer-based models to encode all the information present in a document image, including textual, visual, and layout information. The model is pre-trained and subsequently fine-tuned for various document image analysis tasks. The proposed model incorporates three additional tasks during the pre-training phase, including reading order identification of different layout segments in a document image, layout segments categorization as per PubLayNet, and generation of the text sequence within a given layout segment (text block). The model also incorporates a collective pre-training scheme where losses of all the tasks under consideration, including pre-training and fine-tuning tasks with all datasets, are considered. Additional encoder and decoder blocks are added to the RoBERTa network to generate results for all tasks. The proposed model achieved impressive results across all tasks, with an accuracy of 95.87% on the RVL-CDIP dataset for document classification, F1 scores of 0.9306, 0.9804, 0.9794, and 0.8742 on the FUNSD, CORD, SROIE, and Kleister-NDA datasets respectively for entity relation extraction, and an ANLS score of 0.8468 on the DocVQA dataset for visual question answering. The results highlight the effectiveness of the proposed model in understanding and interpreting complex document layouts and content, making it a promising tool for document analysis tasks.
Do better language models have crisper vision?
How well do text-only Large Language Models (LLMs) grasp the visual world? As LLMs are increasingly used in computer vision, addressing this question becomes both fundamental and pertinent. However, existing studies have primarily focused on limited scenarios, such as their ability to generate visual content or cluster multimodal data. To this end, we propose the Visual Text Representation Benchmark (ViTeRB) to isolate key properties that make language models well-aligned with the visual world. With this, we identify large-scale decoder-based LLMs as ideal candidates for representing text in vision-centric contexts, counter to the current practice of utilizing text encoders. Building on these findings, we propose ShareLock, an ultra-lightweight CLIP-like model. By leveraging precomputable frozen features from strong vision and language models, ShareLock achieves an impressive 51% accuracy on ImageNet despite utilizing just 563k image-caption pairs. Moreover, training requires only 1 GPU hour (or 10 hours including the precomputation of features) - orders of magnitude less than prior methods. Code will be released.
Dataset Decomposition: Faster LLM Training with Variable Sequence Length Curriculum
Large language models (LLMs) are commonly trained on datasets consisting of fixed-length token sequences. These datasets are created by randomly concatenating documents of various lengths and then chunking them into sequences of a predetermined target length. However, this method of concatenation can lead to cross-document attention within a sequence, which is neither a desirable learning signal nor computationally efficient. Additionally, training on long sequences becomes computationally prohibitive due to the quadratic cost of attention. In this study, we introduce dataset decomposition, a novel variable sequence length training technique, to tackle these challenges. We decompose a dataset into a union of buckets, each containing sequences of the same size extracted from a unique document. During training, we use variable sequence length and batch size, sampling simultaneously from all buckets with a curriculum. In contrast to the concat-and-chunk baseline, which incurs a fixed attention cost at every step of training, our proposed method incurs a penalty proportional to the actual document lengths at each step, resulting in significant savings in training time. We train an 8k context-length 1B model at the same cost as a 2k context-length model trained with the baseline approach. Experiments on a web-scale corpus demonstrate that our approach significantly enhances performance on standard language evaluations and long-context benchmarks, reaching target accuracy 3x faster compared to the baseline. Our method not only enables efficient pretraining on long sequences but also scales effectively with dataset size. Lastly, we shed light on a critical yet less studied aspect of training large language models: the distribution and curriculum of sequence lengths, which results in a non-negligible difference in performance.
Text Understanding from Scratch
This article demontrates that we can apply deep learning to text understanding from character-level inputs all the way up to abstract text concepts, using temporal convolutional networks (ConvNets). We apply ConvNets to various large-scale datasets, including ontology classification, sentiment analysis, and text categorization. We show that temporal ConvNets can achieve astonishing performance without the knowledge of words, phrases, sentences and any other syntactic or semantic structures with regards to a human language. Evidence shows that our models can work for both English and Chinese.
Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval
This paper presents a new state-of-the-art for document image classification and retrieval, using features learned by deep convolutional neural networks (CNNs). In object and scene analysis, deep neural nets are capable of learning a hierarchical chain of abstraction from pixel inputs to concise and descriptive representations. The current work explores this capacity in the realm of document analysis, and confirms that this representation strategy is superior to a variety of popular hand-crafted alternatives. Experiments also show that (i) features extracted from CNNs are robust to compression, (ii) CNNs trained on non-document images transfer well to document analysis tasks, and (iii) enforcing region-specific feature-learning is unnecessary given sufficient training data. This work also makes available a new labelled subset of the IIT-CDIP collection, containing 400,000 document images across 16 categories, useful for training new CNNs for document analysis.
Squeeze-and-Excitation Networks
The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables networks to construct informative features by fusing both spatial and channel-wise information within local receptive fields at each layer. A broad range of prior research has investigated the spatial component of this relationship, seeking to strengthen the representational power of a CNN by enhancing the quality of spatial encodings throughout its feature hierarchy. In this work, we focus instead on the channel relationship and propose a novel architectural unit, which we term the "Squeeze-and-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels. We show that these blocks can be stacked together to form SENet architectures that generalise extremely effectively across different datasets. We further demonstrate that SE blocks bring significant improvements in performance for existing state-of-the-art CNNs at slight additional computational cost. Squeeze-and-Excitation Networks formed the foundation of our ILSVRC 2017 classification submission which won first place and reduced the top-5 error to 2.251%, surpassing the winning entry of 2016 by a relative improvement of ~25%. Models and code are available at https://github.com/hujie-frank/SENet.
Byte-Level Recursive Convolutional Auto-Encoder for Text
This article proposes to auto-encode text at byte-level using convolutional networks with a recursive architecture. The motivation is to explore whether it is possible to have scalable and homogeneous text generation at byte-level in a non-sequential fashion through the simple task of auto-encoding. We show that non-sequential text generation from a fixed-length representation is not only possible, but also achieved much better auto-encoding results than recurrent networks. The proposed model is a multi-stage deep convolutional encoder-decoder framework using residual connections, containing up to 160 parameterized layers. Each encoder or decoder contains a shared group of modules that consists of either pooling or upsampling layers, making the network recursive in terms of abstraction levels in representation. Results for 6 large-scale paragraph datasets are reported, in 3 languages including Arabic, Chinese and English. Analyses are conducted to study several properties of the proposed model.
Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition
Recognizing irregular text in natural scene images is challenging due to the large variance in text appearance, such as curvature, orientation and distortion. Most existing approaches rely heavily on sophisticated model designs and/or extra fine-grained annotations, which, to some extent, increase the difficulty in algorithm implementation and data collection. In this work, we propose an easy-to-implement strong baseline for irregular scene text recognition, using off-the-shelf neural network components and only word-level annotations. It is composed of a 31-layer ResNet, an LSTM-based encoder-decoder framework and a 2-dimensional attention module. Despite its simplicity, the proposed method is robust and achieves state-of-the-art performance on both regular and irregular scene text recognition benchmarks. Code is available at: https://tinyurl.com/ShowAttendRead
Character-level Convolutional Networks for Text Classification
This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.
Learn Your Tokens: Word-Pooled Tokenization for Language Modeling
Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness.
Training LLMs over Neurally Compressed Text
In this paper, we explore the idea of training large language models (LLMs) over highly compressed text. While standard subword tokenizers compress text by a small factor, neural text compressors can achieve much higher rates of compression. If it were possible to train LLMs directly over neurally compressed text, this would confer advantages in training and serving efficiency, as well as easier handling of long text spans. The main obstacle to this goal is that strong compression tends to produce opaque outputs that are not well-suited for learning. In particular, we find that text na\"ively compressed via Arithmetic Coding is not readily learnable by LLMs. To overcome this, we propose Equal-Info Windows, a novel compression technique whereby text is segmented into blocks that each compress to the same bit length. Using this method, we demonstrate effective learning over neurally compressed text that improves with scale, and outperforms byte-level baselines by a wide margin on perplexity and inference speed benchmarks. While our method delivers worse perplexity than subword tokenizers for models trained with the same parameter count, it has the benefit of shorter sequence lengths. Shorter sequence lengths require fewer autoregressive generation steps, and reduce latency. Finally, we provide extensive analysis of the properties that contribute to learnability, and offer concrete suggestions for how to further improve the performance of high-compression tokenizers.
Adapting a ConvNeXt model to audio classification on AudioSet
In computer vision, convolutional neural networks (CNN) such as ConvNeXt, have been able to surpass state-of-the-art transformers, partly thanks to depthwise separable convolutions (DSC). DSC, as an approximation of the regular convolution, has made CNNs more efficient in time and memory complexity without deteriorating their accuracy, and sometimes even improving it. In this paper, we first implement DSC into the Pretrained Audio Neural Networks (PANN) family for audio classification on AudioSet, to show its benefits in terms of accuracy/model size trade-off. Second, we adapt the now famous ConvNeXt model to the same task. It rapidly overfits, so we report on techniques that improve the learning process. Our best ConvNeXt model reached 0.471 mean-average precision on AudioSet, which is better than or equivalent to recent large audio transformers, while using three times less parameters. We also achieved positive results in audio captioning and audio retrieval with this model. Our PyTorch source code and checkpoint models are available at https://github.com/topel/audioset-convnext-inf.
Empowering Backbone Models for Visual Text Generation with Input Granularity Control and Glyph-Aware Training
Diffusion-based text-to-image models have demonstrated impressive achievements in diversity and aesthetics but struggle to generate images with legible visual texts. Existing backbone models have limitations such as misspelling, failing to generate texts, and lack of support for Chinese text, but their development shows promising potential. In this paper, we propose a series of methods, aiming to empower backbone models to generate visual texts in English and Chinese. We first conduct a preliminary study revealing that Byte Pair Encoding (BPE) tokenization and the insufficient learning of cross-attention modules restrict the performance of the backbone models. Based on these observations, we make the following improvements: (1) We design a mixed granularity input strategy to provide more suitable text representations; (2) We propose to augment the conventional training objective with three glyph-aware training losses, which enhance the learning of cross-attention modules and encourage the model to focus on visual texts. Through experiments, we demonstrate that our methods can effectively empower backbone models to generate semantic relevant, aesthetically appealing, and accurate visual text images, while maintaining their fundamental image generation quality.
All you need is a second look: Towards Tighter Arbitrary shape text detection
Deep learning-based scene text detection methods have progressed substantially over the past years. However, there remain several problems to be solved. Generally, long curve text instances tend to be fragmented because of the limited receptive field size of CNN. Besides, simple representations using rectangle or quadrangle bounding boxes fall short when dealing with more challenging arbitrary-shaped texts. In addition, the scale of text instances varies greatly which leads to the difficulty of accurate prediction through a single segmentation network. To address these problems, we innovatively propose a two-stage segmentation based arbitrary text detector named NASK (Need A Second looK). Specifically, NASK consists of a Text Instance Segmentation network namely TIS (\(1^{st}\) stage), a Text RoI Pooling module and a Fiducial pOint eXpression module termed as FOX (\(2^{nd}\) stage). Firstly, TIS conducts instance segmentation to obtain rectangle text proposals with a proposed Group Spatial and Channel Attention module (GSCA) to augment the feature expression. Then, Text RoI Pooling transforms these rectangles to the fixed size. Finally, FOX is introduced to reconstruct text instances with a more tighter representation using the predicted geometrical attributes including text center line, text line orientation, character scale and character orientation. Experimental results on two public benchmarks including Total-Text and SCUT-CTW1500 have demonstrated that the proposed NASK achieves state-of-the-art results.
ChuLo: Chunk-Level Key Information Representation for Long Document Processing
Transformer-based models have achieved remarkable success in various Natural Language Processing (NLP) tasks, yet their ability to handle long documents is constrained by computational limitations. Traditional approaches, such as truncating inputs, sparse self-attention, and chunking, attempt to mitigate these issues, but they often lead to information loss and hinder the model's ability to capture long-range dependencies. In this paper, we introduce ChuLo, a novel chunk representation method for long document classification that addresses these limitations. Our ChuLo groups input tokens using unsupervised keyphrase extraction, emphasizing semantically important keyphrase based chunk to retain core document content while reducing input length. This approach minimizes information loss and improves the efficiency of Transformer-based models. Preserving all tokens in long document understanding, especially token classification tasks, is especially important to ensure that fine-grained annotations, which depend on the entire sequence context, are not lost. We evaluate our method on multiple long document classification tasks and long document token classification tasks, demonstrating its effectiveness through comprehensive qualitative and quantitative analyses.
CoNeTTE: An efficient Audio Captioning system leveraging multiple datasets with Task Embedding
Automated Audio Captioning (AAC) involves generating natural language descriptions of audio content, using encoder-decoder architectures. An audio encoder produces audio embeddings fed to a decoder, usually a Transformer decoder, for caption generation. In this work, we describe our model, which novelty, compared to existing models, lies in the use of a ConvNeXt architecture as audio encoder, adapted from the vision domain to audio classification. This model, called CNext-trans, achieved state-of-the-art scores on the AudioCaps (AC) dataset and performed competitively on Clotho (CL), while using four to forty times fewer parameters than existing models. We examine potential biases in the AC dataset due to its origin from AudioSet by investigating unbiased encoder's impact on performance. Using the well-known PANN's CNN14, for instance, as an unbiased encoder, we observed a 1.7% absolute reduction in SPIDEr score (where higher scores indicate better performance). To improve cross-dataset performance, we conducted experiments by combining multiple AAC datasets (AC, CL, MACS, WavCaps) for training. Although this strategy enhanced overall model performance across datasets, it still fell short compared to models trained specifically on a single target dataset, indicating the absence of a one-size-fits-all model. To mitigate performance gaps between datasets, we introduced a Task Embedding (TE) token, allowing the model to identify the source dataset for each input sample. We provide insights into the impact of these TEs on both the form (words) and content (sound event types) of the generated captions. The resulting model, named CoNeTTE, an unbiased CNext-trans model enriched with dataset-specific Task Embeddings, achieved SPIDEr scores of 44.1% and 30.5% on AC and CL, respectively. Code available: https://github.com/Labbeti/conette-audio-captioning.
PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling
Document understanding is a challenging task to process and comprehend large amounts of textual and visual information. Recent advances in Large Language Models (LLMs) have significantly improved the performance of this task. However, existing methods typically focus on either plain text or a limited number of document images, struggling to handle long PDF documents with interleaved text and images, especially in academic papers. In this paper, we introduce PDF-WuKong, a multimodal large language model (MLLM) which is designed to enhance multimodal question-answering (QA) for long PDF documents. PDF-WuKong incorporates a sparse sampler that operates on both text and image representations, significantly improving the efficiency and capability of the MLLM. The sparse sampler is integrated with the MLLM's image encoder and selects the paragraphs or diagrams most pertinent to user queries for processing by the language model. To effectively train and evaluate our model, we construct PaperPDF, a dataset consisting of a broad collection of academic papers sourced from arXiv, multiple strategies are proposed to generate automatically 1M QA pairs along with their corresponding evidence sources. Experimental results demonstrate the superiority and high efficiency of our approach over other models on the task of long multimodal PDF understanding, surpassing proprietary products by an average of 8.6% on F1. Our code and dataset will be released at https://github.com/yh-hust/PDF-Wukong.
FLERT: Document-Level Features for Named Entity Recognition
Current state-of-the-art approaches for named entity recognition (NER) typically consider text at the sentence-level and thus do not model information that crosses sentence boundaries. However, the use of transformer-based models for NER offers natural options for capturing document-level features. In this paper, we perform a comparative evaluation of document-level features in the two standard NER architectures commonly considered in the literature, namely "fine-tuning" and "feature-based LSTM-CRF". We evaluate different hyperparameters for document-level features such as context window size and enforcing document-locality. We present experiments from which we derive recommendations for how to model document context and present new state-of-the-art scores on several CoNLL-03 benchmark datasets. Our approach is integrated into the Flair framework to facilitate reproduction of our experiments.
Handwritten and Printed Text Segmentation: A Signature Case Study
While analyzing scanned documents, handwritten text can overlap with printed text. This overlap causes difficulties during the optical character recognition (OCR) and digitization process of documents, and subsequently, hurts downstream NLP tasks. Prior research either focuses solely on the binary classification of handwritten text or performs a three-class segmentation of the document, i.e., recognition of handwritten, printed, and background pixels. This approach results in the assignment of overlapping handwritten and printed pixels to only one of the classes, and thus, they are not accounted for in the other class. Thus, in this research, we develop novel approaches to address the challenges of handwritten and printed text segmentation. Our objective is to recover text from different classes in their entirety, especially enhancing the segmentation performance on overlapping sections. To support this task, we introduce a new dataset, SignaTR6K, collected from real legal documents, as well as a new model architecture for the handwritten and printed text segmentation task. Our best configuration outperforms prior work on two different datasets by 17.9% and 7.3% on IoU scores. The SignaTR6K dataset is accessible for download via the following link: https://forms.office.com/r/2a5RDg7cAY.
DiT: Self-supervised Pre-training for Document Image Transformer
Image Transformer has recently achieved significant progress for natural image understanding, either using supervised (ViT, DeiT, etc.) or self-supervised (BEiT, MAE, etc.) pre-training techniques. In this paper, we propose DiT, a self-supervised pre-trained Document Image Transformer model using large-scale unlabeled text images for Document AI tasks, which is essential since no supervised counterparts ever exist due to the lack of human-labeled document images. We leverage DiT as the backbone network in a variety of vision-based Document AI tasks, including document image classification, document layout analysis, table detection as well as text detection for OCR. Experiment results have illustrated that the self-supervised pre-trained DiT model achieves new state-of-the-art results on these downstream tasks, e.g. document image classification (91.11 rightarrow 92.69), document layout analysis (91.0 rightarrow 94.9), table detection (94.23 rightarrow 96.55) and text detection for OCR (93.07 rightarrow 94.29). The code and pre-trained models are publicly available at https://aka.ms/msdit.
Focus on the Whole Character: Discriminative Character Modeling for Scene Text Recognition
Recently, scene text recognition (STR) models have shown significant performance improvements. However, existing models still encounter difficulties in recognizing challenging texts that involve factors such as severely distorted and perspective characters. These challenging texts mainly cause two problems: (1) Large Intra-Class Variance. (2) Small Inter-Class Variance. An extremely distorted character may prominently differ visually from other characters within the same category, while the variance between characters from different classes is relatively small. To address the above issues, we propose a novel method that enriches the character features to enhance the discriminability of characters. Firstly, we propose the Character-Aware Constraint Encoder (CACE) with multiple blocks stacked. CACE introduces a decay matrix in each block to explicitly guide the attention region for each token. By continuously employing the decay matrix, CACE enables tokens to perceive morphological information at the character level. Secondly, an Intra-Inter Consistency Loss (I^2CL) is introduced to consider intra-class compactness and inter-class separability at feature space. I^2CL improves the discriminative capability of features by learning a long-term memory unit for each character category. Trained with synthetic data, our model achieves state-of-the-art performance on common benchmarks (94.1% accuracy) and Union14M-Benchmark (61.6% accuracy). Code is available at https://github.com/bang123-box/CFE.
Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus
Large language models have led to remarkable progress on many NLP tasks, and researchers are turning to ever-larger text corpora to train them. Some of the largest corpora available are made by scraping significant portions of the internet, and are frequently introduced with only minimal documentation. In this work we provide some of the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin by investigating where the data came from, and find a significant amount of text from unexpected sources like patents and US military websites. Then we explore the content of the text itself, and find machine-generated text (e.g., from machine translation systems) and evaluation examples from other benchmark NLP datasets. To understand the impact of the filters applied to create this dataset, we evaluate the text that was removed, and show that blocklist filtering disproportionately removes text from and about minority individuals. Finally, we conclude with some recommendations for how to created and document web-scale datasets from a scrape of the internet.
SpaText: Spatio-Textual Representation for Controllable Image Generation
Recent text-to-image diffusion models are able to generate convincing results of unprecedented quality. However, it is nearly impossible to control the shapes of different regions/objects or their layout in a fine-grained fashion. Previous attempts to provide such controls were hindered by their reliance on a fixed set of labels. To this end, we present SpaText - a new method for text-to-image generation using open-vocabulary scene control. In addition to a global text prompt that describes the entire scene, the user provides a segmentation map where each region of interest is annotated by a free-form natural language description. Due to lack of large-scale datasets that have a detailed textual description for each region in the image, we choose to leverage the current large-scale text-to-image datasets and base our approach on a novel CLIP-based spatio-textual representation, and show its effectiveness on two state-of-the-art diffusion models: pixel-based and latent-based. In addition, we show how to extend the classifier-free guidance method in diffusion models to the multi-conditional case and present an alternative accelerated inference algorithm. Finally, we offer several automatic evaluation metrics and use them, in addition to FID scores and a user study, to evaluate our method and show that it achieves state-of-the-art results on image generation with free-form textual scene control.
ProcTag: Process Tagging for Assessing the Efficacy of Document Instruction Data
Recently, large language models (LLMs) and multimodal large language models (MLLMs) have demonstrated promising results on document visual question answering (VQA) task, particularly after training on document instruction datasets. An effective evaluation method for document instruction data is crucial in constructing instruction data with high efficacy, which, in turn, facilitates the training of LLMs and MLLMs for document VQA. However, most existing evaluation methods for instruction data are limited to the textual content of the instructions themselves, thereby hindering the effective assessment of document instruction datasets and constraining their construction. In this paper, we propose ProcTag, a data-oriented method that assesses the efficacy of document instruction data. ProcTag innovatively performs tagging on the execution process of instructions rather than the instruction text itself. By leveraging the diversity and complexity of these tags to assess the efficacy of the given dataset, ProcTag enables selective sampling or filtering of document instructions. Furthermore, DocLayPrompt, a novel semi-structured layout-aware document prompting strategy, is proposed for effectively representing documents. Experiments demonstrate that sampling existing open-sourced and generated document VQA/instruction datasets with ProcTag significantly outperforms current methods for evaluating instruction data. Impressively, with ProcTag-based sampling in the generated document datasets, only 30.5\% of the document instructions are required to achieve 100\% efficacy compared to the complete dataset. The code is publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/ProcTag.
DropBlock: A regularization method for convolutional networks
Deep neural networks often work well when they are over-parameterized and trained with a massive amount of noise and regularization, such as weight decay and dropout. Although dropout is widely used as a regularization technique for fully connected layers, it is often less effective for convolutional layers. This lack of success of dropout for convolutional layers is perhaps due to the fact that activation units in convolutional layers are spatially correlated so information can still flow through convolutional networks despite dropout. Thus a structured form of dropout is needed to regularize convolutional networks. In this paper, we introduce DropBlock, a form of structured dropout, where units in a contiguous region of a feature map are dropped together. We found that applying DropbBlock in skip connections in addition to the convolution layers increases the accuracy. Also, gradually increasing number of dropped units during training leads to better accuracy and more robust to hyperparameter choices. Extensive experiments show that DropBlock works better than dropout in regularizing convolutional networks. On ImageNet classification, ResNet-50 architecture with DropBlock achieves 78.13% accuracy, which is more than 1.6% improvement on the baseline. On COCO detection, DropBlock improves Average Precision of RetinaNet from 36.8% to 38.4%.
S2 Chunking: A Hybrid Framework for Document Segmentation Through Integrated Spatial and Semantic Analysis
Document chunking is a critical task in natural language processing (NLP) that involves dividing a document into meaningful segments. Traditional methods often rely solely on semantic analysis, ignoring the spatial layout of elements, which is crucial for understanding relationships in complex documents. This paper introduces a novel hybrid approach that combines layout structure, semantic analysis, and spatial relationships to enhance the cohesion and accuracy of document chunks. By leveraging bounding box information (bbox) and text embeddings, our method constructs a weighted graph representation of document elements, which is then clustered using spectral clustering. Experimental results demonstrate that this approach outperforms traditional methods, particularly in documents with diverse layouts such as reports, articles, and multi-column designs. The proposed method also ensures that no chunk exceeds a specified token length, making it suitable for use cases where token limits are critical (e.g., language models with input size limitations)
Analysing The Impact of Sequence Composition on Language Model Pre-Training
Most language model pre-training frameworks concatenate multiple documents into fixed-length sequences and use causal masking to compute the likelihood of each token given its context; this strategy is widely adopted due to its simplicity and efficiency. However, to this day, the influence of the pre-training sequence composition strategy on the generalisation properties of the model remains under-explored. In this work, we find that applying causal masking can lead to the inclusion of distracting information from previous documents during pre-training, which negatively impacts the performance of the models on language modelling and downstream tasks. In intra-document causal masking, the likelihood of each token is only conditioned on the previous tokens in the same document, eliminating potential distracting information from previous documents and significantly improving performance. Furthermore, we find that concatenating related documents can reduce some potential distractions during pre-training, and our proposed efficient retrieval-based sequence construction method, BM25Chunk, can improve in-context learning (+11.6\%), knowledge memorisation (+9.8\%), and context utilisation (+7.2\%) abilities of language models without sacrificing efficiency.
A Simple and Effective Model for Answering Multi-span Questions
Models for reading comprehension (RC) commonly restrict their output space to the set of all single contiguous spans from the input, in order to alleviate the learning problem and avoid the need for a model that generates text explicitly. However, forcing an answer to be a single span can be restrictive, and some recent datasets also include multi-span questions, i.e., questions whose answer is a set of non-contiguous spans in the text. Naturally, models that return single spans cannot answer these questions. In this work, we propose a simple architecture for answering multi-span questions by casting the task as a sequence tagging problem, namely, predicting for each input token whether it should be part of the output or not. Our model substantially improves performance on span extraction questions from DROP and Quoref by 9.9 and 5.5 EM points respectively.
CREPE: Coordinate-Aware End-to-End Document Parser
In this study, we formulate an OCR-free sequence generation model for visual document understanding (VDU). Our model not only parses text from document images but also extracts the spatial coordinates of the text based on the multi-head architecture. Named as Coordinate-aware End-to-end Document Parser (CREPE), our method uniquely integrates these capabilities by introducing a special token for OCR text, and token-triggered coordinate decoding. We also proposed a weakly-supervised framework for cost-efficient training, requiring only parsing annotations without high-cost coordinate annotations. Our experimental evaluations demonstrate CREPE's state-of-the-art performances on document parsing tasks. Beyond that, CREPE's adaptability is further highlighted by its successful usage in other document understanding tasks such as layout analysis, document visual question answering, and so one. CREPE's abilities including OCR and semantic parsing not only mitigate error propagation issues in existing OCR-dependent methods, it also significantly enhance the functionality of sequence generation models, ushering in a new era for document understanding studies.
PubLayNet: largest dataset ever for document layout analysis
Recognizing the layout of unstructured digital documents is an important step when parsing the documents into structured machine-readable format for downstream applications. Deep neural networks that are developed for computer vision have been proven to be an effective method to analyze layout of document images. However, document layout datasets that are currently publicly available are several magnitudes smaller than established computing vision datasets. Models have to be trained by transfer learning from a base model that is pre-trained on a traditional computer vision dataset. In this paper, we develop the PubLayNet dataset for document layout analysis by automatically matching the XML representations and the content of over 1 million PDF articles that are publicly available on PubMed Central. The size of the dataset is comparable to established computer vision datasets, containing over 360 thousand document images, where typical document layout elements are annotated. The experiments demonstrate that deep neural networks trained on PubLayNet accurately recognize the layout of scientific articles. The pre-trained models are also a more effective base mode for transfer learning on a different document domain. We release the dataset (https://github.com/ibm-aur-nlp/PubLayNet) to support development and evaluation of more advanced models for document layout analysis.
Block-Skim: Efficient Question Answering for Transformer
Transformer models have achieved promising results on natural language processing (NLP) tasks including extractive question answering (QA). Common Transformer encoders used in NLP tasks process the hidden states of all input tokens in the context paragraph throughout all layers. However, different from other tasks such as sequence classification, answering the raised question does not necessarily need all the tokens in the context paragraph. Following this motivation, we propose Block-skim, which learns to skim unnecessary context in higher hidden layers to improve and accelerate the Transformer performance. The key idea of Block-Skim is to identify the context that must be further processed and those that could be safely discarded early on during inference. Critically, we find that such information could be sufficiently derived from the self-attention weights inside the Transformer model. We further prune the hidden states corresponding to the unnecessary positions early in lower layers, achieving significant inference-time speedup. To our surprise, we observe that models pruned in this way outperform their full-size counterparts. Block-Skim improves QA models' accuracy on different datasets and achieves 3 times speedup on BERT-base model.
Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering
Layout-aware pre-trained models has achieved significant progress on document image question answering. They introduce extra learnable modules into existing language models to capture layout information within document images from text bounding box coordinates obtained by OCR tools. However, extra modules necessitate pre-training on extensive document images. This prevents these methods from directly utilizing off-the-shelf instruction-tuning language foundation models, which have recently shown promising potential in zero-shot learning. Instead, in this paper, we find that instruction-tuning language models like Claude and ChatGPT can understand layout by spaces and line breaks. Based on this observation, we propose the LAyout and Task aware Instruction Prompt (LATIN-Prompt), which consists of layout-aware document content and task-aware instruction. Specifically, the former uses appropriate spaces and line breaks to recover the layout information among text segments obtained by OCR tools, and the latter ensures that generated answers adhere to formatting requirements. Moreover, we propose the LAyout and Task aware Instruction Tuning (LATIN-Tuning) to improve the performance of small instruction-tuning models like Alpaca. Experimental results show that LATIN-Prompt enables zero-shot performance of Claude and ChatGPT to be comparable to the fine-tuning performance of SOTAs on document image question answering, and LATIN-Tuning enhances the zero-shot performance of Alpaca significantly. For example, LATIN-Prompt improves the performance of Claude and ChatGPT on DocVQA by 263% and 20% respectively. LATIN-Tuning improves the performance of Alpaca on DocVQA by 87.7%. Quantitative and qualitative analyses demonstrate the effectiveness of LATIN-Prompt and LATIN-Tuning. We provide the code in supplementary and will release it to facilitate future research.
Efficient Purely Convolutional Text Encoding
In this work, we focus on a lightweight convolutional architecture that creates fixed-size vector embeddings of sentences. Such representations are useful for building NLP systems, including conversational agents. Our work derives from a recently proposed recursive convolutional architecture for auto-encoding text paragraphs at byte level. We propose alternations that significantly reduce training time, the number of parameters, and improve auto-encoding accuracy. Finally, we evaluate the representations created by our model on tasks from SentEval benchmark suite, and show that it can serve as a better, yet fairly low-resource alternative to popular bag-of-words embeddings.
mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding
Multimodel Large Language Models(MLLMs) have achieved promising OCR-free Document Understanding performance by increasing the supported resolution of document images. However, this comes at the cost of generating thousands of visual tokens for a single document image, leading to excessive GPU memory and slower inference times, particularly in multi-page document comprehension. In this work, to address these challenges, we propose a High-resolution DocCompressor module to compress each high-resolution document image into 324 tokens, guided by low-resolution global visual features. With this compression module, to strengthen multi-page document comprehension ability and balance both token efficiency and question-answering performance, we develop the DocOwl2 under a three-stage training framework: Single-image Pretraining, Multi-image Continue-pretraining, and Multi-task Finetuning. DocOwl2 sets a new state-of-the-art across multi-page document understanding benchmarks and reduces first token latency by more than 50%, demonstrating advanced capabilities in multi-page questioning answering, explanation with evidence pages, and cross-page structure understanding. Additionally, compared to single-image MLLMs trained on similar data, our DocOwl2 achieves comparable single-page understanding performance with less than 20% of the visual tokens. Our codes, models, and data are publicly available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/DocOwl2.
Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.
Towards JointUD: Part-of-speech Tagging and Lemmatization using Recurrent Neural Networks
This paper describes our submission to CoNLL 2018 UD Shared Task. We have extended an LSTM-based neural network designed for sequence tagging to additionally generate character-level sequences. The network was jointly trained to produce lemmas, part-of-speech tags and morphological features. Sentence segmentation, tokenization and dependency parsing were handled by UDPipe 1.2 baseline. The results demonstrate the viability of the proposed multitask architecture, although its performance still remains far from state-of-the-art.
Deconvolutional Paragraph Representation Learning
Learning latent representations from long text sequences is an important first step in many natural language processing applications. Recurrent Neural Networks (RNNs) have become a cornerstone for this challenging task. However, the quality of sentences during RNN-based decoding (reconstruction) decreases with the length of the text. We propose a sequence-to-sequence, purely convolutional and deconvolutional autoencoding framework that is free of the above issue, while also being computationally efficient. The proposed method is simple, easy to implement and can be leveraged as a building block for many applications. We show empirically that compared to RNNs, our framework is better at reconstructing and correcting long paragraphs. Quantitative evaluation on semi-supervised text classification and summarization tasks demonstrate the potential for better utilization of long unlabeled text data.
Late Chunking: Contextual Chunk Embeddings Using Long-Context Embedding Models
Many use cases require retrieving smaller portions of text, and dense vector-based retrieval systems often perform better with shorter text segments, as the semantics are less likely to be "over-compressed" in the embeddings. Consequently, practitioners often split text documents into smaller chunks and encode them separately. However, chunk embeddings created in this way can lose contextual information from surrounding chunks, resulting in suboptimal representations. In this paper, we introduce a novel method called "late chunking," which leverages long context embedding models to first embed all tokens of the long text, with chunking applied after the transformer model and just before mean pooling. The resulting chunk embeddings capture the full contextual information, leading to superior results across various retrieval tasks without the need for additional training. Moreover, our method is generic enough to be applied to any long-context embedding model.
Decoupled Attention Network for Text Recognition
Text recognition has attracted considerable research interests because of its various applications. The cutting-edge text recognition methods are based on attention mechanisms. However, most of attention methods usually suffer from serious alignment problem due to its recurrency alignment operation, where the alignment relies on historical decoding results. To remedy this issue, we propose a decoupled attention network (DAN), which decouples the alignment operation from using historical decoding results. DAN is an effective, flexible and robust end-to-end text recognizer, which consists of three components: 1) a feature encoder that extracts visual features from the input image; 2) a convolutional alignment module that performs the alignment operation based on visual features from the encoder; and 3) a decoupled text decoder that makes final prediction by jointly using the feature map and attention maps. Experimental results show that DAN achieves state-of-the-art performance on multiple text recognition tasks, including offline handwritten text recognition and regular/irregular scene text recognition.
Mask-ControlNet: Higher-Quality Image Generation with An Additional Mask Prompt
Text-to-image generation has witnessed great progress, especially with the recent advancements in diffusion models. Since texts cannot provide detailed conditions like object appearance, reference images are usually leveraged for the control of objects in the generated images. However, existing methods still suffer limited accuracy when the relationship between the foreground and background is complicated. To address this issue, we develop a framework termed Mask-ControlNet by introducing an additional mask prompt. Specifically, we first employ large vision models to obtain masks to segment the objects of interest in the reference image. Then, the object images are employed as additional prompts to facilitate the diffusion model to better understand the relationship between foreground and background regions during image generation. Experiments show that the mask prompts enhance the controllability of the diffusion model to maintain higher fidelity to the reference image while achieving better image quality. Comparison with previous text-to-image generation methods demonstrates our method's superior quantitative and qualitative performance on the benchmark datasets.
Landmark Attention: Random-Access Infinite Context Length for Transformers
While transformers have shown remarkable success in natural language processing, their attention mechanism's large memory requirements have limited their ability to handle longer contexts. Prior approaches, such as recurrent memory or retrieval-based augmentation, have either compromised the random-access flexibility of attention (i.e., the capability to select any token in the entire context) or relied on separate mechanisms for relevant context retrieval, which may not be compatible with the model's attention. In this paper, we present a novel approach that allows access to the complete context while retaining random-access flexibility, closely resembling running attention on the entire context. Our method uses a landmark token to represent each block of the input and trains the attention to use it for selecting relevant blocks, enabling retrieval of blocks directly through the attention mechanism instead of by relying on a separate mechanism. Our approach seamlessly integrates with specialized data structures and the system's memory hierarchy, enabling processing of arbitrarily long context lengths. We demonstrate that our method can obtain comparable performance with Transformer-XL while significantly reducing the number of retrieved tokens in each step. Finally, we show that fine-tuning LLaMA 7B with our method successfully extends its context length capacity up to 32k tokens, allowing for inference at the context lengths of GPT-4.
A-SDM: Accelerating Stable Diffusion through Redundancy Removal and Performance Optimization
The Stable Diffusion Model (SDM) is a popular and efficient text-to-image (t2i) generation and image-to-image (i2i) generation model. Although there have been some attempts to reduce sampling steps, model distillation, and network quantization, these previous methods generally retain the original network architecture. Billion scale parameters and high computing requirements make the research of model architecture adjustment scarce. In this work, we first explore the computational redundancy part of the network, and then prune the redundancy blocks of the model and maintain the network performance through a progressive incubation strategy. Secondly, in order to maintaining the model performance, we add cross-layer multi-expert conditional convolution (CLME-Condconv) to the block pruning part to inherit the original convolution parameters. Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part. Finally, we use semantic-aware supervision (SAS) to align the outputs of the teacher model and student model at the semantic level. Experiments show that this method can effectively train a lightweight model close to the performance of the original SD model, and effectively improve the model speed under limited resources. Experiments show that the proposed method can effectively train a light-weight model close to the performance of the original SD model, and effectively improve the model speed under limited resources. After acceleration, the UNet part of the model is 22% faster and the overall speed is 19% faster.
Recurrent Attention Networks for Long-text Modeling
Self-attention-based models have achieved remarkable progress in short-text mining. However, the quadratic computational complexities restrict their application in long text processing. Prior works have adopted the chunking strategy to divide long documents into chunks and stack a self-attention backbone with the recurrent structure to extract semantic representation. Such an approach disables parallelization of the attention mechanism, significantly increasing the training cost and raising hardware requirements. Revisiting the self-attention mechanism and the recurrent structure, this paper proposes a novel long-document encoding model, Recurrent Attention Network (RAN), to enable the recurrent operation of self-attention. Combining the advantages from both sides, the well-designed RAN is capable of extracting global semantics in both token-level and document-level representations, making it inherently compatible with both sequential and classification tasks, respectively. Furthermore, RAN is computationally scalable as it supports parallelization on long document processing. Extensive experiments demonstrate the long-text encoding ability of the proposed RAN model on both classification and sequential tasks, showing its potential for a wide range of applications.
Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents
Text embedding models have emerged as powerful tools for transforming sentences into fixed-sized feature vectors that encapsulate semantic information. While these models are essential for tasks like information retrieval, semantic clustering, and text re-ranking, most existing open-source models, especially those built on architectures like BERT, struggle to represent lengthy documents and often resort to truncation. One common approach to mitigate this challenge involves splitting documents into smaller paragraphs for embedding. However, this strategy results in a much larger set of vectors, consequently leading to increased memory consumption and computationally intensive vector searches with elevated latency. To address these challenges, we introduce Jina Embeddings 2, an open-source text embedding model capable of accommodating up to 8192 tokens. This model is designed to transcend the conventional 512-token limit and adeptly process long documents. Jina Embeddings 2 not only achieves state-of-the-art performance on a range of embedding-related tasks in the MTEB benchmark but also matches the performance of OpenAI's proprietary ada-002 model. Additionally, our experiments indicate that an extended context can enhance performance in tasks such as NarrativeQA.
TextCaps: a Dataset for Image Captioning with Reading Comprehension
Image descriptions can help visually impaired people to quickly understand the image content. While we made significant progress in automatically describing images and optical character recognition, current approaches are unable to include written text in their descriptions, although text is omnipresent in human environments and frequently critical to understand our surroundings. To study how to comprehend text in the context of an image we collect a novel dataset, TextCaps, with 145k captions for 28k images. Our dataset challenges a model to recognize text, relate it to its visual context, and decide what part of the text to copy or paraphrase, requiring spatial, semantic, and visual reasoning between multiple text tokens and visual entities, such as objects. We study baselines and adapt existing approaches to this new task, which we refer to as image captioning with reading comprehension. Our analysis with automatic and human studies shows that our new TextCaps dataset provides many new technical challenges over previous datasets.
Training-Free Long-Context Scaling of Large Language Models
The ability of Large Language Models (LLMs) to process and generate coherent text is markedly weakened when the number of input tokens exceeds their pretraining length. Given the expensive overhead of finetuning large-scale models with longer sequences, we propose Dual Chunk Attention (DCA), which enables Llama2 70B to support context windows of more than 100k tokens without continual training. By decomposing the attention computation for long sequences into chunk-based modules, DCA manages to effectively capture the relative positional information of tokens within the same chunk (Intra-Chunk) and across distinct chunks (Inter-Chunk), as well as integrates seamlessly with Flash Attention. In addition to its impressive extrapolation capability, DCA achieves performance on practical long-context tasks that is comparable to or even better than that of finetuned models. When compared with proprietary models, our training-free 70B model attains 94% of the performance of gpt-3.5-16k, indicating it is a viable open-source alternative. All code and data used in this work are released at https://github.com/HKUNLP/ChunkLlama.
Which Encoding is the Best for Text Classification in Chinese, English, Japanese and Korean?
This article offers an empirical study on the different ways of encoding Chinese, Japanese, Korean (CJK) and English languages for text classification. Different encoding levels are studied, including UTF-8 bytes, characters, words, romanized characters and romanized words. For all encoding levels, whenever applicable, we provide comparisons with linear models, fastText and convolutional networks. For convolutional networks, we compare between encoding mechanisms using character glyph images, one-hot (or one-of-n) encoding, and embedding. In total there are 473 models, using 14 large-scale text classification datasets in 4 languages including Chinese, English, Japanese and Korean. Some conclusions from these results include that byte-level one-hot encoding based on UTF-8 consistently produces competitive results for convolutional networks, that word-level n-grams linear models are competitive even without perfect word segmentation, and that fastText provides the best result using character-level n-gram encoding but can overfit when the features are overly rich.
SelfCP: Compressing Long Prompt to 1/12 Using the Frozen Large Language Model Itself
Long prompt leads to huge hardware costs when using Large Language Models (LLMs). Unfortunately, many tasks, such as summarization, inevitably introduce long task-inputs, and the wide application of in-context learning easily makes the prompt length explode. Inspired by the language understanding ability of LLMs, this paper proposes SelfCP, which uses the LLM itself to Compress long Prompt into compact virtual tokens. SelfCP applies a general frozen LLM twice, first as an encoder to compress the prompt and then as a decoder to generate responses. Specifically, given a long prompt, we place special tokens within the lengthy segment for compression and signal the LLM to generate k virtual tokens. Afterward, the virtual tokens concatenate with the uncompressed prompt and are fed into the same LLM to generate the response. In general, SelfCP facilitates the unconditional and conditional compression of prompts, fitting both standard tasks and those with specific objectives. Since the encoder and decoder are frozen, SelfCP only contains 17M trainable parameters and allows for convenient adaptation across various backbones. We implement SelfCP with two LLM backbones and evaluate it in both in- and out-domain tasks. Results show that the compressed virtual tokens can substitute 12 times larger original prompts effectively
Efficient ConvBN Blocks for Transfer Learning and Beyond
Convolution-BatchNorm (ConvBN) blocks are integral components in various computer vision tasks and other domains. A ConvBN block can operate in three modes: Train, Eval, and Deploy. While the Train mode is indispensable for training models from scratch, the Eval mode is suitable for transfer learning and beyond, and the Deploy mode is designed for the deployment of models. This paper focuses on the trade-off between stability and efficiency in ConvBN blocks: Deploy mode is efficient but suffers from training instability; Eval mode is widely used in transfer learning but lacks efficiency. To solve the dilemma, we theoretically reveal the reason behind the diminished training stability observed in the Deploy mode. Subsequently, we propose a novel Tune mode to bridge the gap between Eval mode and Deploy mode. The proposed Tune mode is as stable as Eval mode for transfer learning, and its computational efficiency closely matches that of the Deploy mode. Through extensive experiments in object detection, classification, and adversarial example generation across 5 datasets and 12 model architectures, we demonstrate that the proposed Tune mode retains the performance while significantly reducing GPU memory footprint and training time, thereby contributing efficient ConvBN blocks for transfer learning and beyond. Our method has been integrated into both PyTorch (general machine learning framework) and MMCV/MMEngine (computer vision framework). Practitioners just need one line of code to enjoy our efficient ConvBN blocks thanks to PyTorch's builtin machine learning compilers.
TidalDecode: Fast and Accurate LLM Decoding with Position Persistent Sparse Attention
Large language models (LLMs) have driven significant advancements across diverse NLP tasks, with long-context models gaining prominence for handling extended inputs. However, the expanding key-value (KV) cache size required by Transformer architectures intensifies the memory constraints, particularly during the decoding phase, creating a significant bottleneck. Existing sparse attention mechanisms designed to address this bottleneck have two limitations: (1) they often fail to reliably identify the most relevant tokens for attention, and (2) they overlook the spatial coherence of token selection across consecutive Transformer layers, which can lead to performance degradation and substantial overhead in token selection. This paper introduces TidalDecode, a simple yet effective algorithm and system for fast and accurate LLM decoding through position persistent sparse attention. TidalDecode leverages the spatial coherence of tokens selected by existing sparse attention methods and introduces a few token selection layers that perform full attention to identify the tokens with the highest attention scores, while all other layers perform sparse attention with the pre-selected tokens. This design enables TidalDecode to substantially reduce the overhead of token selection for sparse attention without sacrificing the quality of the generated results. Evaluation on a diverse set of LLMs and tasks shows that TidalDecode closely matches the generative performance of full attention methods while reducing the LLM decoding latency by up to 2.1x.
Fewer Truncations Improve Language Modeling
In large language model training, input documents are typically concatenated together and then split into sequences of equal length to avoid padding tokens. Despite its efficiency, the concatenation approach compromises data integrity -- it inevitably breaks many documents into incomplete pieces, leading to excessive truncations that hinder the model from learning to compose logically coherent and factually consistent content that is grounded on the complete context. To address the issue, we propose Best-fit Packing, a scalable and efficient method that packs documents into training sequences through length-aware combinatorial optimization. Our method completely eliminates unnecessary truncations while retaining the same training efficiency as concatenation. Empirical results from both text and code pre-training show that our method achieves superior performance (e.g., relatively +4.7% on reading comprehension; +16.8% in context following; and +9.2% on program synthesis), and reduces closed-domain hallucination effectively by up to 58.3%.
SelfDocSeg: A Self-Supervised vision-based Approach towards Document Segmentation
Document layout analysis is a known problem to the documents research community and has been vastly explored yielding a multitude of solutions ranging from text mining, and recognition to graph-based representation, visual feature extraction, etc. However, most of the existing works have ignored the crucial fact regarding the scarcity of labeled data. With growing internet connectivity to personal life, an enormous amount of documents had been available in the public domain and thus making data annotation a tedious task. We address this challenge using self-supervision and unlike, the few existing self-supervised document segmentation approaches which use text mining and textual labels, we use a complete vision-based approach in pre-training without any ground-truth label or its derivative. Instead, we generate pseudo-layouts from the document images to pre-train an image encoder to learn the document object representation and localization in a self-supervised framework before fine-tuning it with an object detection model. We show that our pipeline sets a new benchmark in this context and performs at par with the existing methods and the supervised counterparts, if not outperforms. The code is made publicly available at: https://github.com/MaitySubhajit/SelfDocSeg
An Evaluation of DNN Architectures for Page Segmentation of Historical Newspapers
One important and particularly challenging step in the optical character recognition (OCR) of historical documents with complex layouts, such as newspapers, is the separation of text from non-text content (e.g. page borders or illustrations). This step is commonly referred to as page segmentation. While various rule-based algorithms have been proposed, the applicability of Deep Neural Networks (DNNs) for this task recently has gained a lot of attention. In this paper, we perform a systematic evaluation of 11 different published DNN backbone architectures and 9 different tiling and scaling configurations for separating text, tables or table column lines. We also show the influence of the number of labels and the number of training pages on the segmentation quality, which we measure using the Matthews Correlation Coefficient. Our results show that (depending on the task) Inception-ResNet-v2 and EfficientNet backbones work best, vertical tiling is generally preferable to other tiling approaches, and training data that comprises 30 to 40 pages will be sufficient most of the time.
Confidence-aware Non-repetitive Multimodal Transformers for TextCaps
When describing an image, reading text in the visual scene is crucial to understand the key information. Recent work explores the TextCaps task, i.e. image captioning with reading Optical Character Recognition (OCR) tokens, which requires models to read text and cover them in generated captions. Existing approaches fail to generate accurate descriptions because of their (1) poor reading ability; (2) inability to choose the crucial words among all extracted OCR tokens; (3) repetition of words in predicted captions. To this end, we propose a Confidence-aware Non-repetitive Multimodal Transformers (CNMT) to tackle the above challenges. Our CNMT consists of a reading, a reasoning and a generation modules, in which Reading Module employs better OCR systems to enhance text reading ability and a confidence embedding to select the most noteworthy tokens. To address the issue of word redundancy in captions, our Generation Module includes a repetition mask to avoid predicting repeated word in captions. Our model outperforms state-of-the-art models on TextCaps dataset, improving from 81.0 to 93.0 in CIDEr. Our source code is publicly available.
Leveraging Visual Tokens for Extended Text Contexts in Multi-Modal Learning
Training models with longer in-context lengths is a significant challenge for multimodal model due to substantial GPU memory and computational costs. This exploratory study does not present state-of-the-art models; rather, it introduces an innovative method designed to increase in-context text length in multi-modality large language models (MLLMs) efficiently. We present Visualized In-Context Text Processing (VisInContext), which processes long in-context text using visual tokens. This technique significantly reduces GPU memory usage and floating point operations (FLOPs) for both training and inferenceing stage. For instance, our method expands the pre-training in-context text length from 256 to 2048 tokens with nearly same FLOPs for a 56 billion parameter MOE model. Experimental results demonstrate that model trained with VisInContext delivers superior performance on common downstream benchmarks for in-context few-shot evaluation. Additionally, VisInContext is complementary to existing methods for increasing in-context text length and enhances document understanding capabilities, showing great potential in document QA tasks and sequential document retrieval.
Easter2.0: Improving convolutional models for handwritten text recognition
Convolutional Neural Networks (CNN) have shown promising results for the task of Handwritten Text Recognition (HTR) but they still fall behind Recurrent Neural Networks (RNNs)/Transformer based models in terms of performance. In this paper, we propose a CNN based architecture that bridges this gap. Our work, Easter2.0, is composed of multiple layers of 1D Convolution, Batch Normalization, ReLU, Dropout, Dense Residual connection, Squeeze-and-Excitation module and make use of Connectionist Temporal Classification (CTC) loss. In addition to the Easter2.0 architecture, we propose a simple and effective data augmentation technique 'Tiling and Corruption (TACO)' relevant for the task of HTR/OCR. Our work achieves state-of-the-art results on IAM handwriting database when trained using only publicly available training data. In our experiments, we also present the impact of TACO augmentations and Squeeze-and-Excitation (SE) on text recognition accuracy. We further show that Easter2.0 is suitable for few-shot learning tasks and outperforms current best methods including Transformers when trained on limited amount of annotated data. Code and model is available at: https://github.com/kartikgill/Easter2
DANIEL: A fast Document Attention Network for Information Extraction and Labelling of handwritten documents
Information extraction from handwritten documents involves traditionally three distinct steps: Document Layout Analysis, Handwritten Text Recognition, and Named Entity Recognition. Recent approaches have attempted to integrate these steps into a single process using fully end-to-end architectures. Despite this, these integrated approaches have not yet matched the performance of language models, when applied to information extraction in plain text. In this paper, we introduce DANIEL (Document Attention Network for Information Extraction and Labelling), a fully end-to-end architecture integrating a language model and designed for comprehensive handwritten document understanding. DANIEL performs layout recognition, handwriting recognition, and named entity recognition on full-page documents. Moreover, it can simultaneously learn across multiple languages, layouts, and tasks. For named entity recognition, the ontology to be applied can be specified via the input prompt. The architecture employs a convolutional encoder capable of processing images of any size without resizing, paired with an autoregressive decoder based on a transformer-based language model. DANIEL achieves competitive results on four datasets, including a new state-of-the-art performance on RIMES 2009 and M-POPP for Handwriting Text Recognition, and IAM NER for Named Entity Recognition. Furthermore, DANIEL is much faster than existing approaches. We provide the source code and the weights of the trained models at https://github.com/Shulk97/daniel.
Long-range Language Modeling with Self-retrieval
Retrieval-augmented language models (LMs) have received much attention recently. However, typically the retriever is not trained jointly as a native component of the LM, but added to an already-pretrained LM, which limits the ability of the LM and the retriever to adapt to one another. In this work, we propose the Retrieval-Pretrained Transformer (RPT), an architecture and training procedure for jointly training a retrieval-augmented LM from scratch for the task of modeling long texts. Given a recently generated text chunk in a long document, the LM computes query representations, which are then used to retrieve earlier chunks in the document, located potentially tens of thousands of tokens before. Information from retrieved chunks is fused into the LM representations to predict the next target chunk. We train the retriever component with a semantic objective, where the goal is to retrieve chunks that increase the probability of the next chunk, according to a reference LM. We evaluate RPT on four long-range language modeling tasks, spanning books, code, and mathematical writing, and demonstrate that RPT improves retrieval quality and subsequently perplexity across the board compared to strong baselines.
A ConvNet for the 2020s
The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.
LongHeads: Multi-Head Attention is Secretly a Long Context Processor
Large language models (LLMs) have achieved impressive performance in numerous domains but often struggle to process lengthy inputs effectively and efficiently due to limited length generalization and attention's quadratic computational demands. Many sought to mitigate this by restricting the attention window within the pre-trained length. However, these methods introduce new issues such as ignoring the middle context and requiring additional training. To address these problems, we propose LongHeads, a training-free framework that enhances LLM's long context ability by unlocking multi-head attention's untapped potential. Instead of allowing each head to attend to the full sentence, which struggles with generalizing to longer sequences due to out-of-distribution (OOD) issues, we allow each head to process in-distribution length by selecting and attending to important context chunks. To this end, we propose a chunk selection strategy that relies on the inherent correlation between the query and the key representations, efficiently distributing context chunks to different heads. In this way, each head ensures it can effectively process attended tokens within the trained length, while different heads in different layers can collectively process longer contexts. LongHeads works efficiently in linear time, fits seamlessly with many LLMs that use relative positional encoding. Our extensive empirical analyses verify LongHeads's efficacy in extending the usable context window for existing models, showcasing its promise for enhancing long text understanding.
Self-supervised Character-to-Character Distillation for Text Recognition
When handling complicated text images (e.g., irregular structures, low resolution, heavy occlusion, and uneven illumination), existing supervised text recognition methods are data-hungry. Although these methods employ large-scale synthetic text images to reduce the dependence on annotated real images, the domain gap still limits the recognition performance. Therefore, exploring the robust text feature representations on unlabeled real images by self-supervised learning is a good solution. However, existing self-supervised text recognition methods conduct sequence-to-sequence representation learning by roughly splitting the visual features along the horizontal axis, which limits the flexibility of the augmentations, as large geometric-based augmentations may lead to sequence-to-sequence feature inconsistency. Motivated by this, we propose a novel self-supervised Character-to-Character Distillation method, CCD, which enables versatile augmentations to facilitate general text representation learning. Specifically, we delineate the character structures of unlabeled real images by designing a self-supervised character segmentation module. Following this, CCD easily enriches the diversity of local characters while keeping their pairwise alignment under flexible augmentations, using the transformation matrix between two augmented views from images. Experiments demonstrate that CCD achieves state-of-the-art results, with average performance gains of 1.38% in text recognition, 1.7% in text segmentation, 0.24 dB (PSNR) and 0.0321 (SSIM) in text super-resolution. Code is available at https://github.com/TongkunGuan/CCD.
Refining Text-to-Image Generation: Towards Accurate Training-Free Glyph-Enhanced Image Generation
Over the past few years, Text-to-Image (T2I) generation approaches based on diffusion models have gained significant attention. However, vanilla diffusion models often suffer from spelling inaccuracies in the text displayed within the generated images. The capability to generate visual text is crucial, offering both academic interest and a wide range of practical applications. To produce accurate visual text images, state-of-the-art techniques adopt a glyph-controlled image generation approach, consisting of a text layout generator followed by an image generator that is conditioned on the generated text layout. Nevertheless, our study reveals that these models still face three primary challenges, prompting us to develop a testbed to facilitate future research. We introduce a benchmark, LenCom-Eval, specifically designed for testing models' capability in generating images with Lengthy and Complex visual text. Subsequently, we introduce a training-free framework to enhance the two-stage generation approaches. We examine the effectiveness of our approach on both LenCom-Eval and MARIO-Eval benchmarks and demonstrate notable improvements across a range of evaluation metrics, including CLIPScore, OCR precision, recall, F1 score, accuracy, and edit distance scores. For instance, our proposed framework improves the backbone model, TextDiffuser, by more than 23\% and 13.5\% in terms of OCR word F1 on LenCom-Eval and MARIO-Eval, respectively. Our work makes a unique contribution to the field by focusing on generating images with long and rare text sequences, a niche previously unexplored by existing literature
PARAGRAPH2GRAPH: A GNN-based framework for layout paragraph analysis
Document layout analysis has a wide range of requirements across various domains, languages, and business scenarios. However, most current state-of-the-art algorithms are language-dependent, with architectures that rely on transformer encoders or language-specific text encoders, such as BERT, for feature extraction. These approaches are limited in their ability to handle very long documents due to input sequence length constraints and are closely tied to language-specific tokenizers. Additionally, training a cross-language text encoder can be challenging due to the lack of labeled multilingual document datasets that consider privacy. Furthermore, some layout tasks require a clean separation between different layout components without overlap, which can be difficult for image segmentation-based algorithms to achieve. In this paper, we present Paragraph2Graph, a language-independent graph neural network (GNN)-based model that achieves competitive results on common document layout datasets while being adaptable to business scenarios with strict separation. With only 19.95 million parameters, our model is suitable for industrial applications, particularly in multi-language scenarios.
LayoutReader: Pre-training of Text and Layout for Reading Order Detection
Reading order detection is the cornerstone to understanding visually-rich documents (e.g., receipts and forms). Unfortunately, no existing work took advantage of advanced deep learning models because it is too laborious to annotate a large enough dataset. We observe that the reading order of WORD documents is embedded in their XML metadata; meanwhile, it is easy to convert WORD documents to PDFs or images. Therefore, in an automated manner, we construct ReadingBank, a benchmark dataset that contains reading order, text, and layout information for 500,000 document images covering a wide spectrum of document types. This first-ever large-scale dataset unleashes the power of deep neural networks for reading order detection. Specifically, our proposed LayoutReader captures the text and layout information for reading order prediction using the seq2seq model. It performs almost perfectly in reading order detection and significantly improves both open-source and commercial OCR engines in ordering text lines in their results in our experiments. We will release the dataset and model at https://aka.ms/layoutreader.
CLIP as RNN: Segment Countless Visual Concepts without Training Endeavor
Existing open-vocabulary image segmentation methods require a fine-tuning step on mask annotations and/or image-text datasets. Mask labels are labor-intensive, which limits the number of categories in segmentation datasets. As a result, the open-vocabulary capacity of pre-trained VLMs is severely reduced after fine-tuning. However, without fine-tuning, VLMs trained under weak image-text supervision tend to make suboptimal mask predictions when there are text queries referring to non-existing concepts in the image. To alleviate these issues, we introduce a novel recurrent framework that progressively filters out irrelevant texts and enhances mask quality without training efforts. The recurrent unit is a two-stage segmenter built upon a VLM with frozen weights. Thus, our model retains the VLM's broad vocabulary space and strengthens its segmentation capability. Experimental results show that our method outperforms not only the training-free counterparts, but also those fine-tuned with millions of additional data samples, and sets new state-of-the-art records for both zero-shot semantic and referring image segmentation tasks. Specifically, we improve the current record by 28.8, 16.0, and 6.9 mIoU on Pascal VOC, COCO Object, and Pascal Context.
Harnessing the Spatial-Temporal Attention of Diffusion Models for High-Fidelity Text-to-Image Synthesis
Diffusion-based models have achieved state-of-the-art performance on text-to-image synthesis tasks. However, one critical limitation of these models is the low fidelity of generated images with respect to the text description, such as missing objects, mismatched attributes, and mislocated objects. One key reason for such inconsistencies is the inaccurate cross-attention to text in both the spatial dimension, which controls at what pixel region an object should appear, and the temporal dimension, which controls how different levels of details are added through the denoising steps. In this paper, we propose a new text-to-image algorithm that adds explicit control over spatial-temporal cross-attention in diffusion models. We first utilize a layout predictor to predict the pixel regions for objects mentioned in the text. We then impose spatial attention control by combining the attention over the entire text description and that over the local description of the particular object in the corresponding pixel region of that object. The temporal attention control is further added by allowing the combination weights to change at each denoising step, and the combination weights are optimized to ensure high fidelity between the image and the text. Experiments show that our method generates images with higher fidelity compared to diffusion-model-based baselines without fine-tuning the diffusion model. Our code is publicly available at https://github.com/UCSB-NLP-Chang/Diffusion-SpaceTime-Attn.
TEXTRON: Weakly Supervised Multilingual Text Detection through Data Programming
Several recent deep learning (DL) based techniques perform considerably well on image-based multilingual text detection. However, their performance relies heavily on the availability and quality of training data. There are numerous types of page-level document images consisting of information in several modalities, languages, fonts, and layouts. This makes text detection a challenging problem in the field of computer vision (CV), especially for low-resource or handwritten languages. Furthermore, there is a scarcity of word-level labeled data for text detection, especially for multilingual settings and Indian scripts that incorporate both printed and handwritten text. Conventionally, Indian script text detection requires training a DL model on plenty of labeled data, but to the best of our knowledge, no relevant datasets are available. Manual annotation of such data requires a lot of time, effort, and expertise. In order to solve this problem, we propose TEXTRON, a Data Programming-based approach, where users can plug various text detection methods into a weak supervision-based learning framework. One can view this approach to multilingual text detection as an ensemble of different CV-based techniques and DL approaches. TEXTRON can leverage the predictions of DL models pre-trained on a significant amount of language data in conjunction with CV-based methods to improve text detection in other languages. We demonstrate that TEXTRON can improve the detection performance for documents written in Indian languages, despite the absence of corresponding labeled data. Further, through extensive experimentation, we show improvement brought about by our approach over the current State-of-the-art (SOTA) models, especially for handwritten Devanagari text. Code and dataset has been made available at https://github.com/IITB-LEAP-OCR/TEXTRON
Recurrent Context Compression: Efficiently Expanding the Context Window of LLM
To extend the context length of Transformer-based large language models (LLMs) and improve comprehension capabilities, we often face limitations due to computational resources and bounded memory storage capacity. This work introduces a method called Recurrent Context Compression (RCC), designed to efficiently expand the context window length of LLMs within constrained storage space. We also investigate the issue of poor model responses when both instructions and context are compressed in downstream tasks, and propose an instruction reconstruction method to mitigate this problem. We validated the effectiveness of our approach on multiple tasks, achieving a compression rate of up to 32x on text reconstruction tasks with a BLEU4 score close to 0.95, and nearly 100\% accuracy on a passkey retrieval task with a sequence length of 1M. Finally, our method demonstrated competitive performance in long-text question-answering tasks compared to non-compressed methods, while significantly saving storage resources in long-text inference tasks. Our code, models, and demo are available at https://github.com/WUHU-G/RCC_Transformer
ROPE: Reading Order Equivariant Positional Encoding for Graph-based Document Information Extraction
Natural reading orders of words are crucial for information extraction from form-like documents. Despite recent advances in Graph Convolutional Networks (GCNs) on modeling spatial layout patterns of documents, they have limited ability to capture reading orders of given word-level node representations in a graph. We propose Reading Order Equivariant Positional Encoding (ROPE), a new positional encoding technique designed to apprehend the sequential presentation of words in documents. ROPE generates unique reading order codes for neighboring words relative to the target word given a word-level graph connectivity. We study two fundamental document entity extraction tasks including word labeling and word grouping on the public FUNSD dataset and a large-scale payment dataset. We show that ROPE consistently improves existing GCNs with a margin up to 8.4% F1-score.
On Web-based Visual Corpus Construction for Visual Document Understanding
In recent years, research on visual document understanding (VDU) has grown significantly, with a particular emphasis on the development of self-supervised learning methods. However, one of the significant challenges faced in this field is the limited availability of publicly accessible visual corpora or extensive collections of images with detailed text annotations, particularly for non-Latin or resource-scarce languages. To address this challenge, we propose Web-based Visual Corpus Builder (Webvicob), a dataset generator engine capable of constructing large-scale, multilingual visual corpora from raw Wikipedia HTML dumps. Our experiments demonstrate that the data generated by Webvicob can be used to train robust VDU models that perform well on various downstream tasks, such as DocVQA and post-OCR parsing. Furthermore, when using a dataset of 1 million images generated by Webvicob, we observed an improvement of over 13% on the DocVQA Task 3 compared to a dataset of 11 million images from the IIT-CDIP. The implementation of our engine is publicly available on https://github.com/clovaai/webvicob
Ltri-LLM: Streaming Long Context Inference for LLMs with Training-Free Dynamic Triangular Attention Pattern
The quadratic computational complexity of the attention mechanism in current Large Language Models (LLMs) renders inference with long contexts prohibitively expensive. To address this challenge, various approaches aim to retain critical portions of the context to optimally approximate Full Attention (FA) through Key-Value (KV) compression or Sparse Attention (SA), enabling the processing of virtually unlimited text lengths in a streaming manner. However, these methods struggle to achieve performance levels comparable to FA, particularly in retrieval tasks. In this paper, our analysis of attention head patterns reveals that LLMs' attention distributions show strong local correlations, naturally reflecting a chunking mechanism for input context. We propose Ltri-LLM framework, which divides KVs into spans, stores them in an offline index, and retrieves the relevant KVs into memory for various queries. Experimental results on popular long text benchmarks show that Ltri-LLM can achieve performance close to FA while maintaining efficient, streaming-based inference.
Vision-centric Token Compression in Large Language Model
Large Language Models (LLMs) have revolutionized natural language processing, excelling in handling longer sequences. However, the inefficiency and redundancy in processing extended in-context tokens remain a challenge. Many attempts to address this rely on compressing tokens with smaller text encoders, yet we question whether text encoders are truly indispensable. Our journey leads to an unexpected discovery-a much smaller vision encoder, applied directly to sequences of text tokens, can rival text encoders on text tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small text understanding benchmarks, VIST leads to comparable results with 16% fewer FLOPs and 50% less memory usage. We further uncover significant token redundancy and devise a frequency-based masking strategy to guide the focus of the visual encoder toward the most critical tokens. Interestingly, we observe the trained visual encoder performs like a summarizer, selectively ignoring less important words such as prepositions and conjunctions. This approach delivers remarkable results, outperforming traditional text encoder-based methods by 5.7% on average over benchmarks like TriviaQA, NQ, PopQA, TREF, SST2, and SST5, setting a new standard for token efficiency in LLMs.
Controllable Time-Delay Transformer for Real-Time Punctuation Prediction and Disfluency Detection
With the increased applications of automatic speech recognition (ASR) in recent years, it is essential to automatically insert punctuation marks and remove disfluencies in transcripts, to improve the readability of the transcripts as well as the performance of subsequent applications, such as machine translation, dialogue systems, and so forth. In this paper, we propose a Controllable Time-delay Transformer (CT-Transformer) model that jointly completes the punctuation prediction and disfluency detection tasks in real time. The CT-Transformer model facilitates freezing partial outputs with controllable time delay to fulfill the real-time constraints in partial decoding required by subsequent applications. We further propose a fast decoding strategy to minimize latency while maintaining competitive performance. Experimental results on the IWSLT2011 benchmark dataset and an in-house Chinese annotated dataset demonstrate that the proposed approach outperforms the previous state-of-the-art models on F-scores and achieves a competitive inference speed.
CoBIT: A Contrastive Bi-directional Image-Text Generation Model
The field of vision and language has witnessed a proliferation of pre-trained foundation models. Most existing methods are independently pre-trained with contrastive objective like CLIP, image-to-text generative objective like PaLI, or text-to-image generative objective like Parti. However, the three objectives can be pre-trained on the same data, image-text pairs, and intuitively they complement each other as contrasting provides global alignment capacity and generation grants fine-grained understanding. In this work, we present a Contrastive Bi-directional Image-Text generation model (CoBIT), which attempts to unify the three pre-training objectives in one framework. Specifically, CoBIT employs a novel unicoder-decoder structure, consisting of an image unicoder, a text unicoder and a cross-modal decoder. The image/text unicoders can switch between encoding and decoding in different tasks, enabling flexibility and shared knowledge that benefits both image-to-text and text-to-image generations. CoBIT achieves superior performance in image understanding, image-text understanding (Retrieval, Captioning, VQA, SNLI-VE) and text-based content creation, particularly in zero-shot scenarios. For instance, 82.7% in zero-shot ImageNet classification, 9.37 FID score in zero-shot text-to-image generation and 44.8 CIDEr in zero-shot captioning.
InstructDoc: A Dataset for Zero-Shot Generalization of Visual Document Understanding with Instructions
We study the problem of completing various visual document understanding (VDU) tasks, e.g., question answering and information extraction, on real-world documents through human-written instructions. To this end, we propose InstructDoc, the first large-scale collection of 30 publicly available VDU datasets, each with diverse instructions in a unified format, which covers a wide range of 12 tasks and includes open document types/formats. Furthermore, to enhance the generalization performance on VDU tasks, we design a new instruction-based document reading and understanding model, InstructDr, that connects document images, image encoders, and large language models (LLMs) through a trainable bridging module. Experiments demonstrate that InstructDr can effectively adapt to new VDU datasets, tasks, and domains via given instructions and outperforms existing multimodal LLMs and ChatGPT without specific training.
Multimodal C4: An Open, Billion-scale Corpus of Images Interleaved With Text
In-context vision and language models like Flamingo support arbitrarily interleaved sequences of images and text as input. This format not only enables few-shot learning via interleaving independent supervised (image, text) examples, but also, more complex prompts involving interaction between images, e.g., "What do image A and image B have in common?" To support this interface, pretraining occurs over web corpora that similarly contain interleaved images+text. To date, however, large-scale data of this form have not been publicly available. We release Multimodal C4 (mmc4), an augmentation of the popular text-only c4 corpus with images interleaved. We use a linear assignment algorithm to place images into longer bodies of text using CLIP features, a process that we show outperforms alternatives. mmc4 spans everyday topics like cooking, travel, technology, etc. A manual inspection of a random sample of documents shows that a vast majority (90%) of images are topically relevant, and that linear assignment frequently selects individual sentences specifically well-aligned with each image (78%). After filtering NSFW images, ads, etc., the corpus contains 103M documents containing 585M images interleaved with 43B English tokens.
A Token-level Text Image Foundation Model for Document Understanding
In recent years, general visual foundation models (VFMs) have witnessed increasing adoption, particularly as image encoders for popular multi-modal large language models (MLLMs). However, without semantically fine-grained supervision, these models still encounter fundamental prediction errors in the context of downstream text-image-related tasks, i.e., perception, understanding and reasoning with images containing small and dense texts. To bridge this gap, we develop TokenOCR, the first token-level visual foundation model specifically tailored for text-image-related tasks, designed to support a variety of traditional downstream applications. To facilitate the pretraining of TokenOCR, we also devise a high-quality data production pipeline that constructs the first token-level image text dataset, TokenIT, comprising 20 million images and 1.8 billion token-mask pairs. Furthermore, leveraging this foundation with exceptional image-as-text capability, we seamlessly replace previous VFMs with TokenOCR to construct a document-level MLLM, TokenVL, for VQA-based document understanding tasks. Finally, extensive experiments demonstrate the effectiveness of TokenOCR and TokenVL. Code, datasets, and weights will be available at https://token-family.github.io/TokenOCR_project.
A-STAR: Test-time Attention Segregation and Retention for Text-to-image Synthesis
While recent developments in text-to-image generative models have led to a suite of high-performing methods capable of producing creative imagery from free-form text, there are several limitations. By analyzing the cross-attention representations of these models, we notice two key issues. First, for text prompts that contain multiple concepts, there is a significant amount of pixel-space overlap (i.e., same spatial regions) among pairs of different concepts. This eventually leads to the model being unable to distinguish between the two concepts and one of them being ignored in the final generation. Next, while these models attempt to capture all such concepts during the beginning of denoising (e.g., first few steps) as evidenced by cross-attention maps, this knowledge is not retained by the end of denoising (e.g., last few steps). Such loss of knowledge eventually leads to inaccurate generation outputs. To address these issues, our key innovations include two test-time attention-based loss functions that substantially improve the performance of pretrained baseline text-to-image diffusion models. First, our attention segregation loss reduces the cross-attention overlap between attention maps of different concepts in the text prompt, thereby reducing the confusion/conflict among various concepts and the eventual capture of all concepts in the generated output. Next, our attention retention loss explicitly forces text-to-image diffusion models to retain cross-attention information for all concepts across all denoising time steps, thereby leading to reduced information loss and the preservation of all concepts in the generated output.
Token-level Correlation-guided Compression for Efficient Multimodal Document Understanding
Cropping high-resolution document images into multiple sub-images is the most widely used approach for current Multimodal Large Language Models (MLLMs) to do document understanding. Most of current document understanding methods preserve all tokens within sub-images and treat them equally. This neglects their different informativeness and leads to a significant increase in the number of image tokens. To perform a more adaptive and efficient document understanding, we propose Token-level Correlation-guided Compression, a parameter-free and plug-and-play methodology to optimize token processing. Firstly, we propose an innovative approach for assessing the pattern repetitiveness based on the correlation between each patch tokens. This method identifies redundant tokens, allowing for the determination of the sub-image's information density. Secondly, we present a token-level sampling method that efficiently captures the most informative tokens by delving into the correlation between the [CLS] token and patch tokens. By integrating these strategies, we develop a plug-and-play adaptive compressor module that can be seamlessly incorporated into MLLMs utilizing cropping techniques. This module not only enhances the processing speed during training and inference but also maintains comparable performance. We conduct experiments with the SOTA document understanding model mPLUG-DocOwl1.5 and the effectiveness is demonstrated through extensive comparisons with other compression methods.
End-to-End Text Classification via Image-based Embedding using Character-level Networks
For analysing and/or understanding languages having no word boundaries based on morphological analysis such as Japanese, Chinese, and Thai, it is desirable to perform appropriate word segmentation before word embeddings. But it is inherently difficult in these languages. In recent years, various language models based on deep learning have made remarkable progress, and some of these methodologies utilizing character-level features have successfully avoided such a difficult problem. However, when a model is fed character-level features of the above languages, it often causes overfitting due to a large number of character types. In this paper, we propose a CE-CLCNN, character-level convolutional neural networks using a character encoder to tackle these problems. The proposed CE-CLCNN is an end-to-end learning model and has an image-based character encoder, i.e. the CE-CLCNN handles each character in the target document as an image. Through various experiments, we found and confirmed that our CE-CLCNN captured closely embedded features for visually and semantically similar characters and achieves state-of-the-art results on several open document classification tasks. In this paper we report the performance of our CE-CLCNN with the Wikipedia title estimation task and analyse the internal behaviour.
DocLLM: A layout-aware generative language model for multimodal document understanding
Enterprise documents such as forms, invoices, receipts, reports, contracts, and other similar records, often carry rich semantics at the intersection of textual and spatial modalities. The visual cues offered by their complex layouts play a crucial role in comprehending these documents effectively. In this paper, we present DocLLM, a lightweight extension to traditional large language models (LLMs) for reasoning over visual documents, taking into account both textual semantics and spatial layout. Our model differs from existing multimodal LLMs by avoiding expensive image encoders and focuses exclusively on bounding box information to incorporate the spatial layout structure. Specifically, the cross-alignment between text and spatial modalities is captured by decomposing the attention mechanism in classical transformers to a set of disentangled matrices. Furthermore, we devise a pre-training objective that learns to infill text segments. This approach allows us to address irregular layouts and heterogeneous content frequently encountered in visual documents. The pre-trained model is fine-tuned using a large-scale instruction dataset, covering four core document intelligence tasks. We demonstrate that our solution outperforms SotA LLMs on 14 out of 16 datasets across all tasks, and generalizes well to 4 out of 5 previously unseen datasets.
TextCtrl: Diffusion-based Scene Text Editing with Prior Guidance Control
Centred on content modification and style preservation, Scene Text Editing (STE) remains a challenging task despite considerable progress in text-to-image synthesis and text-driven image manipulation recently. GAN-based STE methods generally encounter a common issue of model generalization, while Diffusion-based STE methods suffer from undesired style deviations. To address these problems, we propose TextCtrl, a diffusion-based method that edits text with prior guidance control. Our method consists of two key components: (i) By constructing fine-grained text style disentanglement and robust text glyph structure representation, TextCtrl explicitly incorporates Style-Structure guidance into model design and network training, significantly improving text style consistency and rendering accuracy. (ii) To further leverage the style prior, a Glyph-adaptive Mutual Self-attention mechanism is proposed which deconstructs the implicit fine-grained features of the source image to enhance style consistency and vision quality during inference. Furthermore, to fill the vacancy of the real-world STE evaluation benchmark, we create the first real-world image-pair dataset termed ScenePair for fair comparisons. Experiments demonstrate the effectiveness of TextCtrl compared with previous methods concerning both style fidelity and text accuracy.
Discovering Failure Modes of Text-guided Diffusion Models via Adversarial Search
Text-guided diffusion models (TDMs) are widely applied but can fail unexpectedly. Common failures include: (i) natural-looking text prompts generating images with the wrong content, or (ii) different random samples of the latent variables that generate vastly different, and even unrelated, outputs despite being conditioned on the same text prompt. In this work, we aim to study and understand the failure modes of TDMs in more detail. To achieve this, we propose SAGE, the first adversarial search method on TDMs that systematically explores the discrete prompt space and the high-dimensional latent space, to automatically discover undesirable behaviors and failure cases in image generation. We use image classifiers as surrogate loss functions during searching, and employ human inspections to validate the identified failures. For the first time, our method enables efficient exploration of both the discrete and intricate human language space and the challenging latent space, overcoming the gradient vanishing problem. Then, we demonstrate the effectiveness of SAGE on five widely used generative models and reveal four typical failure modes: (1) We find a variety of natural text prompts that generate images failing to capture the semantics of input texts. We further discuss the underlying causes and potential solutions based on the results. (2) We find regions in the latent space that lead to distorted images independent of the text prompt, suggesting that parts of the latent space are not well-structured. (3) We also find latent samples that result in natural-looking images unrelated to the text prompt, implying a possible misalignment between the latent and prompt spaces. (4) By appending a single adversarial token embedding to any input prompts, we can generate a variety of specified target objects. Project page: https://sage-diffusion.github.io/
RanLayNet: A Dataset for Document Layout Detection used for Domain Adaptation and Generalization
Large ground-truth datasets and recent advances in deep learning techniques have been useful for layout detection. However, because of the restricted layout diversity of these datasets, training on them requires a sizable number of annotated instances, which is both expensive and time-consuming. As a result, differences between the source and target domains may significantly impact how well these models function. To solve this problem, domain adaptation approaches have been developed that use a small quantity of labeled data to adjust the model to the target domain. In this research, we introduced a synthetic document dataset called RanLayNet, enriched with automatically assigned labels denoting spatial positions, ranges, and types of layout elements. The primary aim of this endeavor is to develop a versatile dataset capable of training models with robustness and adaptability to diverse document formats. Through empirical experimentation, we demonstrate that a deep layout identification model trained on our dataset exhibits enhanced performance compared to a model trained solely on actual documents. Moreover, we conduct a comparative analysis by fine-tuning inference models using both PubLayNet and IIIT-AR-13K datasets on the Doclaynet dataset. Our findings emphasize that models enriched with our dataset are optimal for tasks such as achieving 0.398 and 0.588 mAP95 score in the scientific document domain for the TABLE class.
CoNT: Contrastive Neural Text Generation
Recently, contrastive learning attracts increasing interests in neural text generation as a new solution to alleviate the exposure bias problem. It introduces a sequence-level training signal which is crucial to generation tasks that always rely on auto-regressive decoding. However, previous methods using contrastive learning in neural text generation usually lead to inferior performance. In this paper, we analyse the underlying reasons and propose a new Contrastive Neural Text generation framework, CoNT. CoNT addresses bottlenecks that prevent contrastive learning from being widely adopted in generation tasks from three aspects -- the construction of contrastive examples, the choice of the contrastive loss, and the strategy in decoding. We validate CoNT on five generation tasks with ten benchmarks, including machine translation, summarization, code comment generation, data-to-text generation and commonsense generation. Experimental results show that CoNT clearly outperforms the conventional training framework on all the ten benchmarks with a convincing margin. Especially, CoNT surpasses previous the most competitive contrastive learning method for text generation, by 1.50 BLEU on machine translation and 1.77 ROUGE-1 on summarization, respectively. It achieves new state-of-the-art on summarization, code comment generation (without external data) and data-to-text generation.
Deep Learning Applied to Image and Text Matching
The ability to describe images with natural language sentences is the hallmark for image and language understanding. Such a system has wide ranging applications such as annotating images and using natural sentences to search for images.In this project we focus on the task of bidirectional image retrieval: such asystem is capable of retrieving an image based on a sentence (image search) andretrieve sentence based on an image query (image annotation). We present asystem based on a global ranking objective function which uses a combinationof convolutional neural networks (CNN) and multi layer perceptrons (MLP).It takes a pair of image and sentence and processes them in different channels,finally embedding it into a common multimodal vector space. These embeddingsencode abstract semantic information about the two inputs and can be comparedusing traditional information retrieval approaches. For each such pair, the modelreturns a score which is interpretted as a similarity metric. If this score is high,the image and sentence are likely to convey similar meaning, and if the score is low then they are likely not to. The visual input is modeled via deep convolutional neural network. On theother hand we explore three models for the textual module. The first one isbag of words with an MLP. The second one uses n-grams (bigram, trigrams,and a combination of trigram & skip-grams) with an MLP. The third is morespecialized deep network specific for modeling variable length sequences (SSE).We report comparable performance to recent work in the field, even though ouroverall model is simpler. We also show that the training time choice of how wecan generate our negative samples has a significant impact on performance, and can be used to specialize the bi-directional system in one particular task.
CDeC-Net: Composite Deformable Cascade Network for Table Detection in Document Images
Localizing page elements/objects such as tables, figures, equations, etc. is the primary step in extracting information from document images. We propose a novel end-to-end trainable deep network, (CDeC-Net) for detecting tables present in the documents. The proposed network consists of a multistage extension of Mask R-CNN with a dual backbone having deformable convolution for detecting tables varying in scale with high detection accuracy at higher IoU threshold. We empirically evaluate CDeC-Net on all the publicly available benchmark datasets - ICDAR-2013, ICDAR-2017, ICDAR-2019,UNLV, Marmot, PubLayNet, and TableBank - with extensive experiments. Our solution has three important properties: (i) a single trained model CDeC-Net{\ddag} performs well across all the popular benchmark datasets; (ii) we report excellent performances across multiple, including higher, thresholds of IoU; (iii) by following the same protocol of the recent papers for each of the benchmarks, we consistently demonstrate the superior quantitative performance. Our code and models will be publicly released for enabling the reproducibility of the results.
Evaluating Sequence-to-Sequence Models for Handwritten Text Recognition
Encoder-decoder models have become an effective approach for sequence learning tasks like machine translation, image captioning and speech recognition, but have yet to show competitive results for handwritten text recognition. To this end, we propose an attention-based sequence-to-sequence model. It combines a convolutional neural network as a generic feature extractor with a recurrent neural network to encode both the visual information, as well as the temporal context between characters in the input image, and uses a separate recurrent neural network to decode the actual character sequence. We make experimental comparisons between various attention mechanisms and positional encodings, in order to find an appropriate alignment between the input and output sequence. The model can be trained end-to-end and the optional integration of a hybrid loss allows the encoder to retain an interpretable and usable output, if desired. We achieve competitive results on the IAM and ICFHR2016 READ data sets compared to the state-of-the-art without the use of a language model, and we significantly improve over any recent sequence-to-sequence approaches.
Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens
Large language models (LLMs) have shown promising efficacy across various tasks, becoming powerful tools in numerous aspects of human life. However, Transformer-based LLMs suffer a performance degradation when modeling long-term contexts due to they discard some information to reduce computational overhead. In this work, we propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks. Specifically, we segment the text into multiple chunks and insert special token <SR> at the end of each chunk. We then modify the attention mask to integrate the chunk's information into the corresponding <SR> token. This facilitates LLMs to interpret information not only from historical individual tokens but also from the <SR> token, aggregating the chunk's semantic information. Experiments on language modeling and out-of-domain downstream tasks validate the superiority of our approach.
Dont Add, dont Miss: Effective Content Preserving Generation from Pre-Selected Text Spans
The recently introduced Controlled Text Reduction (CTR) task isolates the text generation step within typical summarization-style tasks. It does so by challenging models to generate coherent text conforming to pre-selected content within the input text (``highlights''). This framing enables increased modularity in summarization-like tasks, allowing to couple a single CTR model with various content-selection setups and modules. However, there are currently no reliable CTR models, while the performance of the existing baseline for the task is mediocre, falling short of practical utility. Here, we address this gap by introducing a high-quality, open-source CTR model that tackles two prior key limitations: inadequate enforcement of the content-preservation constraint, and suboptimal silver training data. Addressing these, we amplify the content-preservation constraint in both training, via RL, and inference, via a controlled decoding strategy. Further, we substantially improve the silver training data quality via GPT-4 distillation. Overall, pairing the distilled dataset with the highlight-adherence strategies yields marked gains over the current baseline, of up to 30 ROUGE-L points, providing a reliable CTR model for downstream use.
NExtLong: Toward Effective Long-Context Training without Long Documents
Large language models (LLMs) with extended context windows have made significant strides yet remain a challenge due to the scarcity of long documents. Existing methods tend to synthesize long-context data but lack a clear mechanism to reinforce the long-range dependency modeling. To address this limitation, we propose NExtLong, a novel framework for synthesizing long-context data through Negative document Extension. NExtLong decomposes a document into multiple meta-chunks and extends the context by interleaving hard negative distractors retrieved from pretraining corpora. This approach compels the model to discriminate long-range dependent context from distracting content, enhancing its ability to model long-range dependencies. Extensive experiments demonstrate that NExtLong achieves significant performance improvements on the HELMET and RULER benchmarks compared to existing long-context synthesis approaches and leading models, which are trained on non-synthetic long documents. These findings highlight NExtLong's ability to reduce reliance on non-synthetic long documents, making it an effective framework for developing advanced long-context LLMs.
CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching
Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. The root reason behind the misalignment has not been extensively investigated. We observe that the misalignment is caused by inadequate token attention activation. We further attribute this phenomenon to the diffusion model's insufficient condition utilization, which is caused by its training paradigm. To address the issue, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with an image-to-text concept matching mechanism. We leverage an image captioning model to measure image-to-text alignment and guide the diffusion model to revisit ignored tokens. A novel attribute concentration module is also proposed to address the attribute binding problem. Without any image or human preference data, we use only 20K text prompts to fine-tune SDXL to obtain CoMat-SDXL. Extensive experiments show that CoMat-SDXL significantly outperforms the baseline model SDXL in two text-to-image alignment benchmarks and achieves start-of-the-art performance.
Word and Document Embeddings based on Neural Network Approaches
Data representation is a fundamental task in machine learning. The representation of data affects the performance of the whole machine learning system. In a long history, the representation of data is done by feature engineering, and researchers aim at designing better features for specific tasks. Recently, the rapid development of deep learning and representation learning has brought new inspiration to various domains. In natural language processing, the most widely used feature representation is the Bag-of-Words model. This model has the data sparsity problem and cannot keep the word order information. Other features such as part-of-speech tagging or more complex syntax features can only fit for specific tasks in most cases. This thesis focuses on word representation and document representation. We compare the existing systems and present our new model. First, for generating word embeddings, we make comprehensive comparisons among existing word embedding models. In terms of theory, we figure out the relationship between the two most important models, i.e., Skip-gram and GloVe. In our experiments, we analyze three key points in generating word embeddings, including the model construction, the training corpus and parameter design. We evaluate word embeddings with three types of tasks, and we argue that they cover the existing use of word embeddings. Through theory and practical experiments, we present some guidelines for how to generate a good word embedding. Second, in Chinese character or word representation. We introduce the joint training of Chinese character and word. ... Third, for document representation, we analyze the existing document representation models, including recursive NNs, recurrent NNs and convolutional NNs. We point out the drawbacks of these models and present our new model, the recurrent convolutional neural networks. ...
LayoutLM: Pre-training of Text and Layout for Document Image Understanding
Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread use of pre-training models for NLP applications, they almost exclusively focus on text-level manipulation, while neglecting layout and style information that is vital for document image understanding. In this paper, we propose the LayoutLM to jointly model interactions between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage image features to incorporate words' visual information into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at https://aka.ms/layoutlm.
Language Modeling with Gated Convolutional Networks
The pre-dominant approach to language modeling to date is based on recurrent neural networks. Their success on this task is often linked to their ability to capture unbounded context. In this paper we develop a finite context approach through stacked convolutions, which can be more efficient since they allow parallelization over sequential tokens. We propose a novel simplified gating mechanism that outperforms Oord et al (2016) and investigate the impact of key architectural decisions. The proposed approach achieves state-of-the-art on the WikiText-103 benchmark, even though it features long-term dependencies, as well as competitive results on the Google Billion Words benchmark. Our model reduces the latency to score a sentence by an order of magnitude compared to a recurrent baseline. To our knowledge, this is the first time a non-recurrent approach is competitive with strong recurrent models on these large scale language tasks.
Equipping Transformer with Random-Access Reading for Long-Context Understanding
Long-context modeling presents a significant challenge for transformer-based large language models (LLMs) due to the quadratic complexity of the self-attention mechanism and issues with length extrapolation caused by pretraining exclusively on short inputs. Existing methods address computational complexity through techniques such as text chunking, the kernel approach, and structured attention, and tackle length extrapolation problems through positional encoding, continued pretraining, and data engineering. These approaches typically require sequential access to the document, necessitating reading from the first to the last token. We contend that for goal-oriented reading of long documents, such sequential access is not necessary, and a proficiently trained model can learn to omit hundreds of less pertinent tokens. Inspired by human reading behaviors and existing empirical observations, we propose random access, a novel reading strategy that enables transformers to efficiently process long documents without examining every token. Experimental results from pretraining, fine-tuning, and inference phases validate the efficacy of our method.
MMLongBench-Doc: Benchmarking Long-context Document Understanding with Visualizations
Understanding documents with rich layouts and multi-modal components is a long-standing and practical task. Recent Large Vision-Language Models (LVLMs) have made remarkable strides in various tasks, particularly in single-page document understanding (DU). However, their abilities on long-context DU remain an open problem. This work presents MMLongBench-Doc, a long-context, multi-modal benchmark comprising 1,062 expert-annotated questions. Distinct from previous datasets, it is constructed upon 130 lengthy PDF-formatted documents with an average of 49.4 pages and 20,971 textual tokens. Towards comprehensive evaluation, answers to these questions rely on pieces of evidence from (1) different sources (text, image, chart, table, and layout structure) and (2) various locations (i.e. page number). Moreover, 33.2% of the questions are cross-page questions requiring evidence across multiple pages. 22.8% of the questions are designed to be unanswerable for detecting potential hallucinations. Experiments on 14 LVLMs demonstrate that long-context DU greatly challenges current models. Notably, the best-performing model, GPT-4o, achieves an F1 score of only 42.7%, while the second-best, GPT-4V, scores 31.4%. Furthermore, 12 LVLMs (all except GPT-4o and GPT-4V) even present worse performance than their LLM counterparts which are fed with lossy-parsed OCR documents. These results validate the necessity of future research toward more capable long-context LVLMs. Project Page: https://mayubo2333.github.io/MMLongBench-Doc
OpenSD: Unified Open-Vocabulary Segmentation and Detection
Recently, a few open-vocabulary methods have been proposed by employing a unified architecture to tackle generic segmentation and detection tasks. However, their performance still lags behind the task-specific models due to the conflict between different tasks, and their open-vocabulary capability is limited due to the inadequate use of CLIP. To address these challenges, we present a universal transformer-based framework, abbreviated as OpenSD, which utilizes the same architecture and network parameters to handle open-vocabulary segmentation and detection tasks. First, we introduce a decoder decoupled learning strategy to alleviate the semantic conflict between thing and staff categories so that each individual task can be learned more effectively under the same framework. Second, to better leverage CLIP for end-to-end segmentation and detection, we propose dual classifiers to handle the in-vocabulary domain and out-of-vocabulary domain, respectively. The text encoder is further trained to be region-aware for both thing and stuff categories through decoupled prompt learning, enabling them to filter out duplicated and low-quality predictions, which is important to end-to-end segmentation and detection. Extensive experiments are conducted on multiple datasets under various circumstances. The results demonstrate that OpenSD outperforms state-of-the-art open-vocabulary segmentation and detection methods in both closed- and open-vocabulary settings. Code is available at https://github.com/strongwolf/OpenSD
Image-based table recognition: data, model, and evaluation
Important information that relates to a specific topic in a document is often organized in tabular format to assist readers with information retrieval and comparison, which may be difficult to provide in natural language. However, tabular data in unstructured digital documents, e.g., Portable Document Format (PDF) and images, are difficult to parse into structured machine-readable format, due to complexity and diversity in their structure and style. To facilitate image-based table recognition with deep learning, we develop the largest publicly available table recognition dataset PubTabNet (https://github.com/ibm-aur-nlp/PubTabNet), containing 568k table images with corresponding structured HTML representation. PubTabNet is automatically generated by matching the XML and PDF representations of the scientific articles in PubMed Central Open Access Subset (PMCOA). We also propose a novel attention-based encoder-dual-decoder (EDD) architecture that converts images of tables into HTML code. The model has a structure decoder which reconstructs the table structure and helps the cell decoder to recognize cell content. In addition, we propose a new Tree-Edit-Distance-based Similarity (TEDS) metric for table recognition, which more appropriately captures multi-hop cell misalignment and OCR errors than the pre-established metric. The experiments demonstrate that the EDD model can accurately recognize complex tables solely relying on the image representation, outperforming the state-of-the-art by 9.7% absolute TEDS score.
Vision Grid Transformer for Document Layout Analysis
Document pre-trained models and grid-based models have proven to be very effective on various tasks in Document AI. However, for the document layout analysis (DLA) task, existing document pre-trained models, even those pre-trained in a multi-modal fashion, usually rely on either textual features or visual features. Grid-based models for DLA are multi-modality but largely neglect the effect of pre-training. To fully leverage multi-modal information and exploit pre-training techniques to learn better representation for DLA, in this paper, we present VGT, a two-stream Vision Grid Transformer, in which Grid Transformer (GiT) is proposed and pre-trained for 2D token-level and segment-level semantic understanding. Furthermore, a new dataset named D^4LA, which is so far the most diverse and detailed manually-annotated benchmark for document layout analysis, is curated and released. Experiment results have illustrated that the proposed VGT model achieves new state-of-the-art results on DLA tasks, e.g. PubLayNet (95.7%rightarrow96.2%), DocBank (79.6%rightarrow84.1%), and D^4LA (67.7%rightarrow68.8%). The code and models as well as the D^4LA dataset will be made publicly available ~https://github.com/AlibabaResearch/AdvancedLiterateMachinery.
Generating Images with Multimodal Language Models
We propose a method to fuse frozen text-only large language models (LLMs) with pre-trained image encoder and decoder models, by mapping between their embedding spaces. Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue. Ours is the first approach capable of conditioning on arbitrarily interleaved image and text inputs to generate coherent image (and text) outputs. To achieve strong performance on image generation, we propose an efficient mapping network to ground the LLM to an off-the-shelf text-to-image generation model. This mapping network translates hidden representations of text into the embedding space of the visual models, enabling us to leverage the strong text representations of the LLM for visual outputs. Our approach outperforms baseline generation models on tasks with longer and more complex language. In addition to novel image generation, our model is also capable of image retrieval from a prespecified dataset, and decides whether to retrieve or generate at inference time. This is done with a learnt decision module which conditions on the hidden representations of the LLM. Our model exhibits a wider range of capabilities compared to prior multimodal language models. It can process image-and-text inputs, and produce retrieved images, generated images, and generated text -- outperforming non-LLM based generation models across several text-to-image tasks that measure context dependence.
Grounded Text-to-Image Synthesis with Attention Refocusing
Driven by scalable diffusion models trained on large-scale paired text-image datasets, text-to-image synthesis methods have shown compelling results. However, these models still fail to precisely follow the text prompt when multiple objects, attributes, and spatial compositions are involved in the prompt. In this paper, we identify the potential reasons in both the cross-attention and self-attention layers of the diffusion model. We propose two novel losses to refocus the attention maps according to a given layout during the sampling process. We perform comprehensive experiments on the DrawBench and HRS benchmarks using layouts synthesized by Large Language Models, showing that our proposed losses can be integrated easily and effectively into existing text-to-image methods and consistently improve their alignment between the generated images and the text prompts.
Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness
We introduce "pointer-guided segment ordering" (SO), a novel pre-training technique aimed at enhancing the contextual understanding of paragraph-level text representations in large language models. Our methodology leverages a self-attention-driven pointer network to restore the original sequence of shuffled text segments, addressing the challenge of capturing the structural coherence and contextual dependencies within documents. This pre-training approach is complemented by a fine-tuning methodology that incorporates dynamic sampling, augmenting the diversity of training instances and improving sample efficiency for various downstream applications. We evaluate our method on a diverse set of datasets, demonstrating its efficacy in tasks requiring sequential text classification across scientific literature and financial reporting domains. Our experiments show that pointer-guided pre-training significantly enhances the model's ability to understand complex document structures, leading to state-of-the-art performance in downstream classification tasks.
DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
We present DINO (DETR with Improved deNoising anchOr boxes), a state-of-the-art end-to-end object detector. % in this paper. DINO improves over previous DETR-like models in performance and efficiency by using a contrastive way for denoising training, a mixed query selection method for anchor initialization, and a look forward twice scheme for box prediction. DINO achieves 49.4AP in 12 epochs and 51.3AP in 24 epochs on COCO with a ResNet-50 backbone and multi-scale features, yielding a significant improvement of +6.0AP and +2.7AP, respectively, compared to DN-DETR, the previous best DETR-like model. DINO scales well in both model size and data size. Without bells and whistles, after pre-training on the Objects365 dataset with a SwinL backbone, DINO obtains the best results on both COCO val2017 (63.2AP) and test-dev (textbf{63.3AP}). Compared to other models on the leaderboard, DINO significantly reduces its model size and pre-training data size while achieving better results. Our code will be available at https://github.com/IDEACVR/DINO.
One Model To Learn Them All
Deep learning yields great results across many fields, from speech recognition, image classification, to translation. But for each problem, getting a deep model to work well involves research into the architecture and a long period of tuning. We present a single model that yields good results on a number of problems spanning multiple domains. In particular, this single model is trained concurrently on ImageNet, multiple translation tasks, image captioning (COCO dataset), a speech recognition corpus, and an English parsing task. Our model architecture incorporates building blocks from multiple domains. It contains convolutional layers, an attention mechanism, and sparsely-gated layers. Each of these computational blocks is crucial for a subset of the tasks we train on. Interestingly, even if a block is not crucial for a task, we observe that adding it never hurts performance and in most cases improves it on all tasks. We also show that tasks with less data benefit largely from joint training with other tasks, while performance on large tasks degrades only slightly if at all.
Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models
Text-to-image models encounter safety issues, including concerns related to copyright and Not-Safe-For-Work (NSFW) content. Despite several methods have been proposed for erasing inappropriate concepts from diffusion models, they often exhibit incomplete erasure, consume a lot of computing resources, and inadvertently damage generation ability. In this work, we introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning. Specifically, RECE efficiently leverages a closed-form solution to derive new target embeddings, which are capable of regenerating erased concepts within the unlearned model. To mitigate inappropriate content potentially represented by derived embeddings, RECE further aligns them with harmless concepts in cross-attention layers. The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts. Besides, to preserve the model's generation ability, RECE introduces an additional regularization term during the derivation process, resulting in minimizing the impact on unrelated concepts during the erasure process. All the processes above are in closed-form, guaranteeing extremely efficient erasure in only 3 seconds. Benchmarking against previous approaches, our method achieves more efficient and thorough erasure with minor damage to original generation ability and demonstrates enhanced robustness against red-teaming tools. Code is available at https://github.com/CharlesGong12/RECE.
CiT: Curation in Training for Effective Vision-Language Data
Large vision-language models are generally applicable to many downstream tasks, but come at an exorbitant training cost that only large institutions can afford. This paper trades generality for efficiency and presents Curation in Training (CiT), a simple and efficient vision-text learning algorithm that couples a data objective into training. CiT automatically yields quality data to speed-up contrastive image-text training and alleviates the need for an offline data filtering pipeline, allowing broad data sources (including raw image-text pairs from the web). CiT contains two loops: an outer loop curating the training data and an inner loop consuming the curated training data. The text encoder connects the two loops. Given metadata for tasks of interest, e.g., class names, and a large pool of image-text pairs, CiT alternatively selects relevant training data from the pool by measuring the similarity of their text embeddings and embeddings of the metadata. In our experiments, we observe that CiT can speed up training by over an order of magnitude, especially if the raw data size is large.
Convolutions Die Hard: Open-Vocabulary Segmentation with Single Frozen Convolutional CLIP
Open-vocabulary segmentation is a challenging task requiring segmenting and recognizing objects from an open set of categories. One way to address this challenge is to leverage multi-modal models, such as CLIP, to provide image and text features in a shared embedding space, which bridges the gap between closed-vocabulary and open-vocabulary recognition. Hence, existing methods often adopt a two-stage framework to tackle the problem, where the inputs first go through a mask generator and then through the CLIP model along with the predicted masks. This process involves extracting features from images multiple times, which can be ineffective and inefficient. By contrast, we propose to build everything into a single-stage framework using a shared Frozen Convolutional CLIP backbone, which not only significantly simplifies the current two-stage pipeline, but also remarkably yields a better accuracy-cost trade-off. The proposed FC-CLIP, benefits from the following observations: the frozen CLIP backbone maintains the ability of open-vocabulary classification and can also serve as a strong mask generator, and the convolutional CLIP generalizes well to a larger input resolution than the one used during contrastive image-text pretraining. When training on COCO panoptic data only and testing in a zero-shot manner, FC-CLIP achieve 26.8 PQ, 16.8 AP, and 34.1 mIoU on ADE20K, 18.2 PQ, 27.9 mIoU on Mapillary Vistas, 44.0 PQ, 26.8 AP, 56.2 mIoU on Cityscapes, outperforming the prior art by +4.2 PQ, +2.4 AP, +4.2 mIoU on ADE20K, +4.0 PQ on Mapillary Vistas and +20.1 PQ on Cityscapes, respectively. Additionally, the training and testing time of FC-CLIP is 7.5x and 6.6x significantly faster than the same prior art, while using 5.9x fewer parameters. FC-CLIP also sets a new state-of-the-art performance across various open-vocabulary semantic segmentation datasets. Code at https://github.com/bytedance/fc-clip
Length-Induced Embedding Collapse in Transformer-based Models
Text embeddings enable various applications, but their performance deteriorates on longer texts. In this paper, we find that the performance degradation is due to a phenomenon called Length Collapse, where longer text embeddings collapse into a narrow space. This collapse results in a distributional inconsistency between embeddings of different text lengths, ultimately hurting the performance of downstream tasks. Theoretically, by considering the self-attention mechanism inherently functions as a low-pass filter, we prove that long sequences increase the attenuation rate of the low-pass filter effect of the self-attention mechanism. With layers going deeper, excessive low-pass filtering causes the token signals to retain only their Direct-Current (DC) component, which means the input token feature maps will collapse into a narrow space, especially in long texts. Based on the above analysis, we propose to mitigate the undesirable length collapse limitation by introducing a temperature in softmax(), which achieves a higher low-filter attenuation rate. The tuning-free method, called TempScale, can be plugged into multiple transformer-based embedding models. Empirically, we demonstrate that TempScale can improve existing embedding models, especially on long text inputs, bringing up to 0.53% performance gains on 40 datasets from Massive Text Embedding Benchmark (MTEB) and 0.82% performance gains on 4 datasets from LongEmbed, which specifically focuses on long context retrieval.
American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers
Existing full text datasets of U.S. public domain newspapers do not recognize the often complex layouts of newspaper scans, and as a result the digitized content scrambles texts from articles, headlines, captions, advertisements, and other layout regions. OCR quality can also be low. This study develops a novel, deep learning pipeline for extracting full article texts from newspaper images and applies it to the nearly 20 million scans in Library of Congress's public domain Chronicling America collection. The pipeline includes layout detection, legibility classification, custom OCR, and association of article texts spanning multiple bounding boxes. To achieve high scalability, it is built with efficient architectures designed for mobile phones. The resulting American Stories dataset provides high quality data that could be used for pre-training a large language model to achieve better understanding of historical English and historical world knowledge. The dataset could also be added to the external database of a retrieval-augmented language model to make historical information - ranging from interpretations of political events to minutiae about the lives of people's ancestors - more widely accessible. Furthermore, structured article texts facilitate using transformer-based methods for popular social science applications like topic classification, detection of reproduced content, and news story clustering. Finally, American Stories provides a massive silver quality dataset for innovating multimodal layout analysis models and other multimodal applications.
Precise Zero-Shot Dense Retrieval without Relevance Labels
While dense retrieval has been shown effective and efficient across tasks and languages, it remains difficult to create effective fully zero-shot dense retrieval systems when no relevance label is available. In this paper, we recognize the difficulty of zero-shot learning and encoding relevance. Instead, we propose to pivot through Hypothetical Document Embeddings~(HyDE). Given a query, HyDE first zero-shot instructs an instruction-following language model (e.g. InstructGPT) to generate a hypothetical document. The document captures relevance patterns but is unreal and may contain false details. Then, an unsupervised contrastively learned encoder~(e.g. Contriever) encodes the document into an embedding vector. This vector identifies a neighborhood in the corpus embedding space, where similar real documents are retrieved based on vector similarity. This second step ground the generated document to the actual corpus, with the encoder's dense bottleneck filtering out the incorrect details. Our experiments show that HyDE significantly outperforms the state-of-the-art unsupervised dense retriever Contriever and shows strong performance comparable to fine-tuned retrievers, across various tasks (e.g. web search, QA, fact verification) and languages~(e.g. sw, ko, ja).
Faster Learned Sparse Retrieval with Block-Max Pruning
Learned sparse retrieval systems aim to combine the effectiveness of contextualized language models with the scalability of conventional data structures such as inverted indexes. Nevertheless, the indexes generated by these systems exhibit significant deviations from the ones that use traditional retrieval models, leading to a discrepancy in the performance of existing query optimizations that were specifically developed for traditional structures. These disparities arise from structural variations in query and document statistics, including sub-word tokenization, leading to longer queries, smaller vocabularies, and different score distributions within posting lists. This paper introduces Block-Max Pruning (BMP), an innovative dynamic pruning strategy tailored for indexes arising in learned sparse retrieval environments. BMP employs a block filtering mechanism to divide the document space into small, consecutive document ranges, which are then aggregated and sorted on the fly, and fully processed only as necessary, guided by a defined safe early termination criterion or based on approximate retrieval requirements. Through rigorous experimentation, we show that BMP substantially outperforms existing dynamic pruning strategies, offering unparalleled efficiency in safe retrieval contexts and improved tradeoffs between precision and efficiency in approximate retrieval tasks.
DocBank: A Benchmark Dataset for Document Layout Analysis
Document layout analysis usually relies on computer vision models to understand documents while ignoring textual information that is vital to capture. Meanwhile, high quality labeled datasets with both visual and textual information are still insufficient. In this paper, we present DocBank, a benchmark dataset that contains 500K document pages with fine-grained token-level annotations for document layout analysis. DocBank is constructed using a simple yet effective way with weak supervision from the documents available on the arXiv.com. With DocBank, models from different modalities can be compared fairly and multi-modal approaches will be further investigated and boost the performance of document layout analysis. We build several strong baselines and manually split train/dev/test sets for evaluation. Experiment results show that models trained on DocBank accurately recognize the layout information for a variety of documents. The DocBank dataset is publicly available at https://github.com/doc-analysis/DocBank.
Exploring the Role of Large Language Models in Prompt Encoding for Diffusion Models
Large language models (LLMs) based on decoder-only transformers have demonstrated superior text understanding capabilities compared to CLIP and T5-series models. However, the paradigm for utilizing current advanced LLMs in text-to-image diffusion models remains to be explored. We observed an unusual phenomenon: directly using a large language model as the prompt encoder significantly degrades the prompt-following ability in image generation. We identified two main obstacles behind this issue. One is the misalignment between the next token prediction training in LLM and the requirement for discriminative prompt features in diffusion models. The other is the intrinsic positional bias introduced by the decoder-only architecture. To deal with this issue, we propose a novel framework to fully harness the capabilities of LLMs. Through the carefully designed usage guidance, we effectively enhance the text representation capability for prompt encoding and eliminate its inherent positional bias. This allows us to integrate state-of-the-art LLMs into the text-to-image generation model flexibly. Furthermore, we also provide an effective manner to fuse multiple LLMs into our framework. Considering the excellent performance and scaling capabilities demonstrated by the transformer architecture, we further design an LLM-Infused Diffusion Transformer (LI-DiT) based on the framework. We conduct extensive experiments to validate LI-DiT across model size and data size. Benefiting from the inherent ability of the LLMs and our innovative designs, the prompt understanding performance of LI-DiT easily surpasses state-of-the-art open-source models as well as mainstream closed-source commercial models including Stable Diffusion 3, DALL-E 3, and Midjourney V6. The powerful LI-DiT-10B will be available after further optimization and security checks.
MASTER: Multi-Aspect Non-local Network for Scene Text Recognition
Attention-based scene text recognizers have gained huge success, which leverages a more compact intermediate representation to learn 1d- or 2d- attention by a RNN-based encoder-decoder architecture. However, such methods suffer from attention-drift problem because high similarity among encoded features leads to attention confusion under the RNN-based local attention mechanism. Moreover, RNN-based methods have low efficiency due to poor parallelization. To overcome these problems, we propose the MASTER, a self-attention based scene text recognizer that (1) not only encodes the input-output attention but also learns self-attention which encodes feature-feature and target-target relationships inside the encoder and decoder and (2) learns a more powerful and robust intermediate representation to spatial distortion, and (3) owns a great training efficiency because of high training parallelization and a high-speed inference because of an efficient memory-cache mechanism. Extensive experiments on various benchmarks demonstrate the superior performance of our MASTER on both regular and irregular scene text. Pytorch code can be found at https://github.com/wenwenyu/MASTER-pytorch, and Tensorflow code can be found at https://github.com/jiangxiluning/MASTER-TF.
Teaching Machines to Read and Comprehend
Teaching machines to read natural language documents remains an elusive challenge. Machine reading systems can be tested on their ability to answer questions posed on the contents of documents that they have seen, but until now large scale training and test datasets have been missing for this type of evaluation. In this work we define a new methodology that resolves this bottleneck and provides large scale supervised reading comprehension data. This allows us to develop a class of attention based deep neural networks that learn to read real documents and answer complex questions with minimal prior knowledge of language structure.
Where's the Point? Self-Supervised Multilingual Punctuation-Agnostic Sentence Segmentation
Many NLP pipelines split text into sentences as one of the crucial preprocessing steps. Prior sentence segmentation tools either rely on punctuation or require a considerable amount of sentence-segmented training data: both central assumptions might fail when porting sentence segmenters to diverse languages on a massive scale. In this work, we thus introduce a multilingual punctuation-agnostic sentence segmentation method, currently covering 85 languages, trained in a self-supervised fashion on unsegmented text, by making use of newline characters which implicitly perform segmentation into paragraphs. We further propose an approach that adapts our method to the segmentation in a given corpus by using only a small number (64-256) of sentence-segmented examples. The main results indicate that our method outperforms all the prior best sentence-segmentation tools by an average of 6.1% F1 points. Furthermore, we demonstrate that proper sentence segmentation has a point: the use of a (powerful) sentence segmenter makes a considerable difference for a downstream application such as machine translation (MT). By using our method to match sentence segmentation to the segmentation used during training of MT models, we achieve an average improvement of 2.3 BLEU points over the best prior segmentation tool, as well as massive gains over a trivial segmenter that splits text into equally sized blocks.
BoundingDocs: a Unified Dataset for Document Question Answering with Spatial Annotations
We present a unified dataset for document Question-Answering (QA), which is obtained combining several public datasets related to Document AI and visually rich document understanding (VRDU). Our main contribution is twofold: on the one hand we reformulate existing Document AI tasks, such as Information Extraction (IE), into a Question-Answering task, making it a suitable resource for training and evaluating Large Language Models; on the other hand, we release the OCR of all the documents and include the exact position of the answer to be found in the document image as a bounding box. Using this dataset, we explore the impact of different prompting techniques (that might include bounding box information) on the performance of open-weight models, identifying the most effective approaches for document comprehension.
ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images
Visual Question Answering (VQA) is a complicated task that requires the capability of simultaneously processing natural language and images. Initially, this task was researched, focusing on methods to help machines understand objects and scene contexts in images. However, some text appearing in the image that carries explicit information about the full content of the image is not mentioned. Along with the continuous development of the AI era, there have been many studies on the reading comprehension ability of VQA models in the world. As a developing country, conditions are still limited, and this task is still open in Vietnam. Therefore, we introduce the first large-scale dataset in Vietnamese specializing in the ability to understand text appearing in images, we call it ViTextVQA (Vietnamese Text-based Visual Question Answering dataset) which contains over 16,000 images and over 50,000 questions with answers. Through meticulous experiments with various state-of-the-art models, we uncover the significance of the order in which tokens in OCR text are processed and selected to formulate answers. This finding helped us significantly improve the performance of the baseline models on the ViTextVQA dataset. Our dataset is available at this https://github.com/minhquan6203/ViTextVQA-Dataset{link} for research purposes.
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
We present Imagen, a text-to-image diffusion model with an unprecedented degree of photorealism and a deep level of language understanding. Imagen builds on the power of large transformer language models in understanding text and hinges on the strength of diffusion models in high-fidelity image generation. Our key discovery is that generic large language models (e.g. T5), pretrained on text-only corpora, are surprisingly effective at encoding text for image synthesis: increasing the size of the language model in Imagen boosts both sample fidelity and image-text alignment much more than increasing the size of the image diffusion model. Imagen achieves a new state-of-the-art FID score of 7.27 on the COCO dataset, without ever training on COCO, and human raters find Imagen samples to be on par with the COCO data itself in image-text alignment. To assess text-to-image models in greater depth, we introduce DrawBench, a comprehensive and challenging benchmark for text-to-image models. With DrawBench, we compare Imagen with recent methods including VQ-GAN+CLIP, Latent Diffusion Models, and DALL-E 2, and find that human raters prefer Imagen over other models in side-by-side comparisons, both in terms of sample quality and image-text alignment. See https://imagen.research.google/ for an overview of the results.
Evaluating Synthetic Pre-Training for Handwriting Processing Tasks
In this work, we explore massive pre-training on synthetic word images for enhancing the performance on four benchmark downstream handwriting analysis tasks. To this end, we build a large synthetic dataset of word images rendered in several handwriting fonts, which offers a complete supervision signal. We use it to train a simple convolutional neural network (ConvNet) with a fully supervised objective. The vector representations of the images obtained from the pre-trained ConvNet can then be considered as encodings of the handwriting style. We exploit such representations for Writer Retrieval, Writer Identification, Writer Verification, and Writer Classification and demonstrate that our pre-training strategy allows extracting rich representations of the writers' style that enable the aforementioned tasks with competitive results with respect to task-specific State-of-the-Art approaches.
AlignIT: Enhancing Prompt Alignment in Customization of Text-to-Image Models
We consider the problem of customizing text-to-image diffusion models with user-supplied reference images. Given new prompts, the existing methods can capture the key concept from the reference images but fail to align the generated image with the prompt. In this work, we seek to address this key issue by proposing new methods that can easily be used in conjunction with existing customization methods that optimize the embeddings/weights at various intermediate stages of the text encoding process. The first contribution of this paper is a dissection of the various stages of the text encoding process leading up to the conditioning vector for text-to-image models. We take a holistic view of existing customization methods and notice that key and value outputs from this process differs substantially from their corresponding baseline (non-customized) models (e.g., baseline stable diffusion). While this difference does not impact the concept being customized, it leads to other parts of the generated image not being aligned with the prompt. Further, we also observe that these keys and values allow independent control various aspects of the final generation, enabling semantic manipulation of the output. Taken together, the features spanning these keys and values, serve as the basis for our next contribution where we fix the aforementioned issues with existing methods. We propose a new post-processing algorithm, AlignIT, that infuses the keys and values for the concept of interest while ensuring the keys and values for all other tokens in the input prompt are unchanged. Our proposed method can be plugged in directly to existing customization methods, leading to a substantial performance improvement in the alignment of the final result with the input prompt while retaining the customization quality.
On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention
Scene text recognition (STR) is the task of recognizing character sequences in natural scenes. While there have been great advances in STR methods, current methods still fail to recognize texts in arbitrary shapes, such as heavily curved or rotated texts, which are abundant in daily life (e.g. restaurant signs, product labels, company logos, etc). This paper introduces a novel architecture to recognizing texts of arbitrary shapes, named Self-Attention Text Recognition Network (SATRN), which is inspired by the Transformer. SATRN utilizes the self-attention mechanism to describe two-dimensional (2D) spatial dependencies of characters in a scene text image. Exploiting the full-graph propagation of self-attention, SATRN can recognize texts with arbitrary arrangements and large inter-character spacing. As a result, SATRN outperforms existing STR models by a large margin of 5.7 pp on average in "irregular text" benchmarks. We provide empirical analyses that illustrate the inner mechanisms and the extent to which the model is applicable (e.g. rotated and multi-line text). We will open-source the code.
VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder
This paper introduces a pioneering 3D volumetric encoder designed for text-to-3D generation. To scale up the training data for the diffusion model, a lightweight network is developed to efficiently acquire feature volumes from multi-view images. The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net. This research further addresses the challenges of inaccurate object captions and high-dimensional feature volumes. The proposed model, trained on the public Objaverse dataset, demonstrates promising outcomes in producing diverse and recognizable samples from text prompts. Notably, it empowers finer control over object part characteristics through textual cues, fostering model creativity by seamlessly combining multiple concepts within a single object. This research significantly contributes to the progress of 3D generation by introducing an efficient, flexible, and scalable representation methodology. Code is available at https://github.com/tzco/VolumeDiffusion.
NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition
Scene text recognition has attracted a great many researches due to its importance to various applications. Existing methods mainly adopt recurrence or convolution based networks. Though have obtained good performance, these methods still suffer from two limitations: slow training speed due to the internal recurrence of RNNs, and high complexity due to stacked convolutional layers for long-term feature extraction. This paper, for the first time, proposes a no-recurrence sequence-to-sequence text recognizer, named NRTR, that dispenses with recurrences and convolutions entirely. NRTR follows the encoder-decoder paradigm, where the encoder uses stacked self-attention to extract image features, and the decoder applies stacked self-attention to recognize texts based on encoder output. NRTR relies solely on self-attention mechanism thus could be trained with more parallelization and less complexity. Considering scene image has large variation in text and background, we further design a modality-transform block to effectively transform 2D input images to 1D sequences, combined with the encoder to extract more discriminative features. NRTR achieves state-of-the-art or highly competitive performance on both regular and irregular benchmarks, while requires only a small fraction of training time compared to the best model from the literature (at least 8 times faster).
Contextual Document Embeddings
Dense document embeddings are central to neural retrieval. The dominant paradigm is to train and construct embeddings by running encoders directly on individual documents. In this work, we argue that these embeddings, while effective, are implicitly out-of-context for targeted use cases of retrieval, and that a contextualized document embedding should take into account both the document and neighboring documents in context - analogous to contextualized word embeddings. We propose two complementary methods for contextualized document embeddings: first, an alternative contrastive learning objective that explicitly incorporates the document neighbors into the intra-batch contextual loss; second, a new contextual architecture that explicitly encodes neighbor document information into the encoded representation. Results show that both methods achieve better performance than biencoders in several settings, with differences especially pronounced out-of-domain. We achieve state-of-the-art results on the MTEB benchmark with no hard negative mining, score distillation, dataset-specific instructions, intra-GPU example-sharing, or extremely large batch sizes. Our method can be applied to improve performance on any contrastive learning dataset and any biencoder.
LILA-BOTI : Leveraging Isolated Letter Accumulations By Ordering Teacher Insights for Bangla Handwriting Recognition
Word-level handwritten optical character recognition (OCR) remains a challenge for morphologically rich languages like Bangla. The complexity arises from the existence of a large number of alphabets, the presence of several diacritic forms, and the appearance of complex conjuncts. The difficulty is exacerbated by the fact that some graphemes occur infrequently but remain indispensable, so addressing the class imbalance is required for satisfactory results. This paper addresses this issue by introducing two knowledge distillation methods: Leveraging Isolated Letter Accumulations By Ordering Teacher Insights (LILA-BOTI) and Super Teacher LILA-BOTI. In both cases, a Convolutional Recurrent Neural Network (CRNN) student model is trained with the dark knowledge gained from a printed isolated character recognition teacher model. We conducted inter-dataset testing on BN-HTRd and BanglaWriting as our evaluation protocol, thus setting up a challenging problem where the results would better reflect the performance on unseen data. Our evaluations achieved up to a 3.5% increase in the F1-Macro score for the minor classes and up to 4.5% increase in our overall word recognition rate when compared with the base model (No KD) and conventional KD.
FlexiGPT: Pruning and Extending Large Language Models with Low-Rank Weight Sharing
The rapid proliferation of large language models (LLMs) in natural language processing (NLP) has created a critical need for techniques that enable efficient deployment on memory-constrained devices without compromising performance. We present a method to prune LLMs that selectively prunes model blocks based on an importance score and replaces them with a low-parameter replacement strategy. Specifically, we propose a principled metric to replace each pruned block using a weight-sharing mechanism that leverages unpruned counterparts from the model and block-specific low-rank adapters. Furthermore, we facilitate the learning of these replacement blocks with output feature normalization and an adapter initialization scheme built on low-rank SVD reconstructions. Empirical evaluations demonstrate substantial performance gains over existing methods, achieving state-of-the-art performance on 5/6 benchmarks for a compression rate of 30% and 6/6 benchmarks for a compression rate of 40%. We also demonstrate that our approach can extend smaller models, boosting performance on 6/6 benchmarks using only ~0.3% tokens of extended training with minimal additional parameter costs.
Structured Packing in LLM Training Improves Long Context Utilization
Recent developments in long-context large language models have attracted considerable attention. Yet, their real-world applications are often hindered by ineffective context information use. This work shows that structuring training data to increase semantic interdependence is an effective strategy for optimizing context utilization. To this end, we introduce Structured Packing for Long Context (SPLiCe), a method for creating training examples by using information retrieval methods to collate mutually relevant documents into a single training context. We empirically validate SPLiCe on large 3B and 7B models, showing perplexity improvements and better long-context utilization on downstream tasks. Remarkably, already relatively short fine-tuning with SPLiCe is enough to attain these benefits. Additionally, the comprehensive study of SPLiCe reveals intriguing transfer effects such as training on code data leading to perplexity improvements on text data.
Analyzing the Efficacy of an LLM-Only Approach for Image-based Document Question Answering
Recent document question answering models consist of two key components: the vision encoder, which captures layout and visual elements in images, and a Large Language Model (LLM) that helps contextualize questions to the image and supplements them with external world knowledge to generate accurate answers. However, the relative contributions of the vision encoder and the language model in these tasks remain unclear. This is especially interesting given the effectiveness of instruction-tuned LLMs, which exhibit remarkable adaptability to new tasks. To this end, we explore the following aspects in this work: (1) The efficacy of an LLM-only approach on document question answering tasks (2) strategies for serializing textual information within document images and feeding it directly to an instruction-tuned LLM, thus bypassing the need for an explicit vision encoder (3) thorough quantitative analysis on the feasibility of such an approach. Our comprehensive analysis encompasses six diverse benchmark datasets, utilizing LLMs of varying scales. Our findings reveal that a strategy exclusively reliant on the LLM yields results that are on par with or closely approach state-of-the-art performance across a range of datasets. We posit that this evaluation framework will serve as a guiding resource for selecting appropriate datasets for future research endeavors that emphasize the fundamental importance of layout and image content information.
Lost in Space: Probing Fine-grained Spatial Understanding in Vision and Language Resamplers
An effective method for combining frozen large language models (LLM) and visual encoders involves a resampler module that creates a `visual prompt' which is provided to the LLM, along with the textual prompt. While this approach has enabled impressive performance across many coarse-grained tasks like image captioning and visual question answering, more fine-grained tasks that require spatial understanding have not been thoroughly examined. In this paper, we use diagnostic classifiers to measure the extent to which the visual prompt produced by the resampler encodes spatial information. Our results show that this information is largely absent from the resampler output when kept frozen during training of the classifiers. However, when the resampler and classifier are trained jointly, we observe a significant performance boost. This shows that the compression achieved by the resamplers can in principle encode the requisite spatial information, but that more object-aware objectives are needed at the pretraining stage to facilitate this capability
EASTER: Efficient and Scalable Text Recognizer
Recent progress in deep learning has led to the development of Optical Character Recognition (OCR) systems which perform remarkably well. Most research has been around recurrent networks as well as complex gated layers which make the overall solution complex and difficult to scale. In this paper, we present an Efficient And Scalable TExt Recognizer (EASTER) to perform optical character recognition on both machine printed and handwritten text. Our model utilises 1-D convolutional layers without any recurrence which enables parallel training with considerably less volume of data. We experimented with multiple variations of our architecture and one of the smallest variant (depth and number of parameter wise) performs comparably to RNN based complex choices. Our 20-layered deepest variant outperforms RNN architectures with a good margin on benchmarking datasets like IIIT-5k and SVT. We also showcase improvements over the current best results on offline handwritten text recognition task. We also present data generation pipelines with augmentation setup to generate synthetic datasets for both handwritten and machine printed text.
Fourier Contour Embedding for Arbitrary-Shaped Text Detection
One of the main challenges for arbitrary-shaped text detection is to design a good text instance representation that allows networks to learn diverse text geometry variances. Most of existing methods model text instances in image spatial domain via masks or contour point sequences in the Cartesian or the polar coordinate system. However, the mask representation might lead to expensive post-processing, while the point sequence one may have limited capability to model texts with highly-curved shapes. To tackle these problems, we model text instances in the Fourier domain and propose one novel Fourier Contour Embedding (FCE) method to represent arbitrary shaped text contours as compact signatures. We further construct FCENet with a backbone, feature pyramid networks (FPN) and a simple post-processing with the Inverse Fourier Transformation (IFT) and Non-Maximum Suppression (NMS). Different from previous methods, FCENet first predicts compact Fourier signatures of text instances, and then reconstructs text contours via IFT and NMS during test. Extensive experiments demonstrate that FCE is accurate and robust to fit contours of scene texts even with highly-curved shapes, and also validate the effectiveness and the good generalization of FCENet for arbitrary-shaped text detection. Furthermore, experimental results show that our FCENet is superior to the state-of-the-art (SOTA) methods on CTW1500 and Total-Text, especially on challenging highly-curved text subset.
Open-Vocabulary Attention Maps with Token Optimization for Semantic Segmentation in Diffusion Models
Diffusion models represent a new paradigm in text-to-image generation. Beyond generating high-quality images from text prompts, models such as Stable Diffusion have been successfully extended to the joint generation of semantic segmentation pseudo-masks. However, current extensions primarily rely on extracting attentions linked to prompt words used for image synthesis. This approach limits the generation of segmentation masks derived from word tokens not contained in the text prompt. In this work, we introduce Open-Vocabulary Attention Maps (OVAM)-a training-free method for text-to-image diffusion models that enables the generation of attention maps for any word. In addition, we propose a lightweight optimization process based on OVAM for finding tokens that generate accurate attention maps for an object class with a single annotation. We evaluate these tokens within existing state-of-the-art Stable Diffusion extensions. The best-performing model improves its mIoU from 52.1 to 86.6 for the synthetic images' pseudo-masks, demonstrating that our optimized tokens are an efficient way to improve the performance of existing methods without architectural changes or retraining.
The ACL OCL Corpus: Advancing Open Science in Computational Linguistics
We present ACL OCL, a scholarly corpus derived from the ACL Anthology to assist Open scientific research in the Computational Linguistics domain. Integrating and enhancing the previous versions of the ACL Anthology, the ACL OCL contributes metadata, PDF files, citation graphs and additional structured full texts with sections, figures, and links to a large knowledge resource (Semantic Scholar). The ACL OCL spans seven decades, containing 73K papers, alongside 210K figures. We spotlight how ACL OCL applies to observe trends in computational linguistics. By detecting paper topics with a supervised neural model, we note that interest in "Syntax: Tagging, Chunking and Parsing" is waning and "Natural Language Generation" is resurging. Our dataset is available from HuggingFace (https://huggingface.co/datasets/WINGNUS/ACL-OCL).
Drop your Decoder: Pre-training with Bag-of-Word Prediction for Dense Passage Retrieval
Masked auto-encoder pre-training has emerged as a prevalent technique for initializing and enhancing dense retrieval systems. It generally utilizes additional Transformer decoder blocks to provide sustainable supervision signals and compress contextual information into dense representations. However, the underlying reasons for the effectiveness of such a pre-training technique remain unclear. The usage of additional Transformer-based decoders also incurs significant computational costs. In this study, we aim to shed light on this issue by revealing that masked auto-encoder (MAE) pre-training with enhanced decoding significantly improves the term coverage of input tokens in dense representations, compared to vanilla BERT checkpoints. Building upon this observation, we propose a modification to the traditional MAE by replacing the decoder of a masked auto-encoder with a completely simplified Bag-of-Word prediction task. This modification enables the efficient compression of lexical signals into dense representations through unsupervised pre-training. Remarkably, our proposed method achieves state-of-the-art retrieval performance on several large-scale retrieval benchmarks without requiring any additional parameters, which provides a 67% training speed-up compared to standard masked auto-encoder pre-training with enhanced decoding.
Prompt-Guided Mask Proposal for Two-Stage Open-Vocabulary Segmentation
We tackle the challenge of open-vocabulary segmentation, where we need to identify objects from a wide range of categories in different environments, using text prompts as our input. To overcome this challenge, existing methods often use multi-modal models like CLIP, which combine image and text features in a shared embedding space to bridge the gap between limited and extensive vocabulary recognition, resulting in a two-stage approach: In the first stage, a mask generator takes an input image to generate mask proposals, and the in the second stage the target mask is picked based on the query. However, the expected target mask may not exist in the generated mask proposals, which leads to an unexpected output mask. In our work, we propose a novel approach named Prompt-guided Mask Proposal (PMP) where the mask generator takes the input text prompts and generates masks guided by these prompts. Compared with mask proposals generated without input prompts, masks generated by PMP are better aligned with the input prompts. To realize PMP, we designed a cross-attention mechanism between text tokens and query tokens which is capable of generating prompt-guided mask proposals after each decoding. We combined our PMP with several existing works employing a query-based segmentation backbone and the experiments on five benchmark datasets demonstrate the effectiveness of this approach, showcasing significant improvements over the current two-stage models (1% ~ 3% absolute performance gain in terms of mIOU). The steady improvement in performance across these benchmarks indicates the effective generalization of our proposed lightweight prompt-aware method.
DocEdit-v2: Document Structure Editing Via Multimodal LLM Grounding
Document structure editing involves manipulating localized textual, visual, and layout components in document images based on the user's requests. Past works have shown that multimodal grounding of user requests in the document image and identifying the accurate structural components and their associated attributes remain key challenges for this task. To address these, we introduce the DocEdit-v2, a novel framework that performs end-to-end document editing by leveraging Large Multimodal Models (LMMs). It consists of three novel components: (1) Doc2Command, which simultaneously localizes edit regions of interest (RoI) and disambiguates user edit requests into edit commands; (2) LLM-based Command Reformulation prompting to tailor edit commands originally intended for specialized software into edit instructions suitable for generalist LMMs. (3) Moreover, DocEdit-v2 processes these outputs via Large Multimodal Models like GPT-4V and Gemini, to parse the document layout, execute edits on grounded Region of Interest (RoI), and generate the edited document image. Extensive experiments on the DocEdit dataset show that DocEdit-v2 significantly outperforms strong baselines on edit command generation (2-33%), RoI bounding box detection (12-31%), and overall document editing (1-12\%) tasks.
From Scarcity to Efficiency: Improving CLIP Training via Visual-enriched Captions
Web-crawled datasets are pivotal to the success of pre-training vision-language models, exemplified by CLIP. However, web-crawled AltTexts can be noisy and potentially irrelevant to images, thereby undermining the crucial image-text alignment. Existing methods for rewriting captions using large language models (LLMs) have shown promise on small, curated datasets like CC3M and CC12M. Nevertheless, their efficacy on massive web-captured captions is constrained by the inherent noise and randomness in such data. In this study, we address this limitation by focusing on two key aspects: data quality and data variety. Unlike recent LLM rewriting techniques, we emphasize exploiting visual concepts and their integration into the captions to improve data quality. For data variety, we propose a novel mixed training scheme that optimally leverages AltTexts alongside newly generated Visual-enriched Captions (VeC). We use CLIP as one example and adapt the method for CLIP training on large-scale web-crawled datasets, named VeCLIP. We conduct a comprehensive evaluation of VeCLIP across small, medium, and large scales of raw data. Our results show significant advantages in image-text alignment and overall model performance, underscoring the effectiveness of VeCLIP in improving CLIP training. For example, VeCLIP achieves a remarkable over 20% improvement in COCO and Flickr30k retrieval tasks under the 12M setting. For data efficiency, we also achieve a notable over 3% improvement while using only 14% of the data employed in the vanilla CLIP and 11% in ALIGN.
MuLD: The Multitask Long Document Benchmark
The impressive progress in NLP techniques has been driven by the development of multi-task benchmarks such as GLUE and SuperGLUE. While these benchmarks focus on tasks for one or two input sentences, there has been exciting work in designing efficient techniques for processing much longer inputs. In this paper, we present MuLD: a new long document benchmark consisting of only documents over 10,000 tokens. By modifying existing NLP tasks, we create a diverse benchmark which requires models to successfully model long-term dependencies in the text. We evaluate how existing models perform, and find that our benchmark is much more challenging than their `short document' equivalents. Furthermore, by evaluating both regular and efficient transformers, we show that models with increased context length are better able to solve the tasks presented, suggesting that future improvements in these models are vital for solving similar long document problems. We release the data and code for baselines to encourage further research on efficient NLP models.
Neural Natural Language Processing for Long Texts: A Survey of the State-of-the-Art
The adoption of Deep Neural Networks (DNNs) has greatly benefited Natural Language Processing (NLP) during the past decade. However, the demands of long document analysis are quite different from those of shorter texts, while the ever increasing size of documents uploaded on-line renders automated understanding of lengthy texts a critical issue. Relevant applications include automated Web mining, legal document review, medical records analysis, financial reports analysis, contract management, environmental impact assessment, news aggregation, etc. Despite the relatively recent development of efficient algorithms for analyzing long documents, practical tools in this field are currently flourishing. This article serves as an entry point into this dynamic domain and aims to achieve two objectives. Firstly, it provides an overview of the relevant neural building blocks, serving as a concise tutorial for the field. Secondly, it offers a brief examination of the current state-of-the-art in long document NLP, with a primary focus on two key tasks: document classification and document summarization. Sentiment analysis for long texts is also covered, since it is typically treated as a particular case of document classification. Consequently, this article presents an introductory exploration of document-level analysis, addressing the primary challenges, concerns, and existing solutions. Finally, the article presents publicly available annotated datasets that can facilitate further research in this area.
TextMonkey: An OCR-Free Large Multimodal Model for Understanding Document
We present TextMonkey, a large multimodal model (LMM) tailored for text-centric tasks. Our approach introduces enhancement across several dimensions: By adopting Shifted Window Attention with zero-initialization, we achieve cross-window connectivity at higher input resolutions and stabilize early training; We hypothesize that images may contain redundant tokens, and by using similarity to filter out significant tokens, we can not only streamline the token length but also enhance the model's performance. Moreover, by expanding our model's capabilities to encompass text spotting and grounding, and incorporating positional information into responses, we enhance interpretability. It also learns to perform screenshot tasks through finetuning. Evaluation on 12 benchmarks shows notable improvements: 5.2% in Scene Text-Centric tasks (including STVQA, TextVQA, and OCRVQA), 6.9% in Document-Oriented tasks (such as DocVQA, InfoVQA, ChartVQA, DeepForm, Kleister Charity, and WikiTableQuestions), and 2.8% in Key Information Extraction tasks (comprising FUNSD, SROIE, and POIE). It outperforms in scene text spotting with a 10.9\% increase and sets a new standard on OCRBench, a comprehensive benchmark consisting of 29 OCR-related assessments, with a score of 561, surpassing previous open-sourced large multimodal models for document understanding. Code will be released at https://github.com/Yuliang-Liu/Monkey.
mPLUG-DocOwl 1.5: Unified Structure Learning for OCR-free Document Understanding
Structure information is critical for understanding the semantics of text-rich images, such as documents, tables, and charts. Existing Multimodal Large Language Models (MLLMs) for Visual Document Understanding are equipped with text recognition ability but lack general structure understanding abilities for text-rich document images. In this work, we emphasize the importance of structure information in Visual Document Understanding and propose the Unified Structure Learning to boost the performance of MLLMs. Our Unified Structure Learning comprises structure-aware parsing tasks and multi-grained text localization tasks across 5 domains: document, webpage, table, chart, and natural image. To better encode structure information, we design a simple and effective vision-to-text module H-Reducer, which can not only maintain the layout information but also reduce the length of visual features by merging horizontal adjacent patches through convolution, enabling the LLM to understand high-resolution images more efficiently. Furthermore, by constructing structure-aware text sequences and multi-grained pairs of texts and bounding boxes for publicly available text-rich images, we build a comprehensive training set DocStruct4M to support structure learning. Finally, we construct a small but high-quality reasoning tuning dataset DocReason25K to trigger the detailed explanation ability in the document domain. Our model DocOwl 1.5 achieves state-of-the-art performance on 10 visual document understanding benchmarks, improving the SOTA performance of MLLMs with a 7B LLM by more than 10 points in 5/10 benchmarks. Our codes, models, and datasets are publicly available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/DocOwl1.5.
An Explanation of In-context Learning as Implicit Bayesian Inference
Large language models (LMs) such as GPT-3 have the surprising ability to do in-context learning, where the model learns to do a downstream task simply by conditioning on a prompt consisting of input-output examples. The LM learns from these examples without being explicitly pretrained to learn. Thus, it is unclear what enables in-context learning. In this paper, we study how in-context learning can emerge when pretraining documents have long-range coherence. Here, the LM must infer a latent document-level concept to generate coherent next tokens during pretraining. At test time, in-context learning occurs when the LM also infers a shared latent concept between examples in a prompt. We prove when this occurs despite a distribution mismatch between prompts and pretraining data in a setting where the pretraining distribution is a mixture of HMMs. In contrast to messy large-scale datasets used to train LMs capable of in-context learning, we generate a small-scale synthetic dataset (GINC) where Transformers and LSTMs both exhibit in-context learning. Beyond the theory, experiments on GINC exhibit large-scale real-world phenomena including improved in-context performance with model scaling (despite the same pretraining loss), sensitivity to example order, and instances where zero-shot is better than few-shot in-context learning.
Vision-LSTM: xLSTM as Generic Vision Backbone
Transformers are widely used as generic backbones in computer vision, despite initially introduced for natural language processing. Recently, the Long Short-Term Memory (LSTM) has been extended to a scalable and performant architecture - the xLSTM - which overcomes long-standing LSTM limitations via exponential gating and parallelizable matrix memory structure. In this report, we introduce Vision-LSTM (ViL), an adaption of the xLSTM building blocks to computer vision. ViL comprises a stack of xLSTM blocks where odd blocks process the sequence of patch tokens from top to bottom while even blocks go from bottom to top. Experiments show that ViL holds promise to be further deployed as new generic backbone for computer vision architectures.
NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models
Decoder-only large language model (LLM)-based embedding models are beginning to outperform BERT or T5-based embedding models in general-purpose text embedding tasks, including dense vector-based retrieval. In this work, we introduce the NV-Embed model with a variety of architectural designs and training procedures to significantly enhance the performance of LLM as a versatile embedding model, while maintaining its simplicity and reproducibility. For model architecture, we propose a latent attention layer to obtain pooled embeddings, which consistently improves retrieval and downstream task accuracy compared to mean pooling or using the last <EOS> token embedding from LLMs. To enhance representation learning, we remove the causal attention mask of LLMs during contrastive training. For model training, we introduce a two-stage contrastive instruction-tuning method. It first applies contrastive training with instructions on retrieval datasets, utilizing in-batch negatives and curated hard negative examples. At stage-2, it blends various non-retrieval datasets into instruction tuning, which not only enhances non-retrieval task accuracy but also improves retrieval performance. Combining these techniques, our NV-Embed model, using only publicly available data, has achieved a record-high score of 69.32, ranking No. 1 on the Massive Text Embedding Benchmark (MTEB) (as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks. Notably, our model also attains the highest score of 59.36 on 15 retrieval tasks in the MTEB benchmark (also known as BEIR). We will open-source the model at: https://huggingface.co/nvidia/NV-Embed-v1.
Out of Length Text Recognition with Sub-String Matching
Scene Text Recognition (STR) methods have demonstrated robust performance in word-level text recognition. However, in real applications the text image is sometimes long due to detected with multiple horizontal words. It triggers the requirement to build long text recognition models from readily available short (i.e., word-level) text datasets, which has been less studied previously. In this paper, we term this task Out of Length (OOL) text recognition. We establish the first Long Text Benchmark (LTB) to facilitate the assessment of different methods in long text recognition. Meanwhile, we propose a novel method called OOL Text Recognition with sub-String Matching (SMTR). SMTR comprises two cross-attention-based modules: one encodes a sub-string containing multiple characters into next and previous queries, and the other employs the queries to attend to the image features, matching the sub-string and simultaneously recognizing its next and previous character. SMTR can recognize text of arbitrary length by iterating the process above. To avoid being trapped in recognizing highly similar sub-strings, we introduce a regularization training to compel SMTR to effectively discover subtle differences between similar sub-strings for precise matching. In addition, we propose an inference augmentation strategy to alleviate confusion caused by identical sub-strings in the same text and improve the overall recognition efficiency. Extensive experimental results reveal that SMTR, even when trained exclusively on short text, outperforms existing methods in public short text benchmarks and exhibits a clear advantage on LTB. Code: https://github.com/Topdu/OpenOCR.
Revisiting Transformer-based Models for Long Document Classification
The recent literature in text classification is biased towards short text sequences (e.g., sentences or paragraphs). In real-world applications, multi-page multi-paragraph documents are common and they cannot be efficiently encoded by vanilla Transformer-based models. We compare different Transformer-based Long Document Classification (TrLDC) approaches that aim to mitigate the computational overhead of vanilla transformers to encode much longer text, namely sparse attention and hierarchical encoding methods. We examine several aspects of sparse attention (e.g., size of local attention window, use of global attention) and hierarchical (e.g., document splitting strategy) transformers on four document classification datasets covering different domains. We observe a clear benefit from being able to process longer text, and, based on our results, we derive practical advice of applying Transformer-based models on long document classification tasks.
Learning to Generate Text-grounded Mask for Open-world Semantic Segmentation from Only Image-Text Pairs
We tackle open-world semantic segmentation, which aims at learning to segment arbitrary visual concepts in images, by using only image-text pairs without dense annotations. Existing open-world segmentation methods have shown impressive advances by employing contrastive learning (CL) to learn diverse visual concepts and transferring the learned image-level understanding to the segmentation task. However, these CL-based methods suffer from a train-test discrepancy, since it only considers image-text alignment during training, whereas segmentation requires region-text alignment during testing. In this paper, we proposed a novel Text-grounded Contrastive Learning (TCL) framework that enables a model to directly learn region-text alignment. Our method generates a segmentation mask for a given text, extracts text-grounded image embedding from the masked region, and aligns it with text embedding via TCL. By learning region-text alignment directly, our framework encourages a model to directly improve the quality of generated segmentation masks. In addition, for a rigorous and fair comparison, we present a unified evaluation protocol with widely used 8 semantic segmentation datasets. TCL achieves state-of-the-art zero-shot segmentation performances with large margins in all datasets. Code is available at https://github.com/kakaobrain/tcl.
Get What You Want, Not What You Don't: Image Content Suppression for Text-to-Image Diffusion Models
The success of recent text-to-image diffusion models is largely due to their capacity to be guided by a complex text prompt, which enables users to precisely describe the desired content. However, these models struggle to effectively suppress the generation of undesired content, which is explicitly requested to be omitted from the generated image in the prompt. In this paper, we analyze how to manipulate the text embeddings and remove unwanted content from them. We introduce two contributions, which we refer to as soft-weighted regularization and inference-time text embedding optimization. The first regularizes the text embedding matrix and effectively suppresses the undesired content. The second method aims to further suppress the unwanted content generation of the prompt, and encourages the generation of desired content. We evaluate our method quantitatively and qualitatively on extensive experiments, validating its effectiveness. Furthermore, our method is generalizability to both the pixel-space diffusion models (i.e. DeepFloyd-IF) and the latent-space diffusion models (i.e. Stable Diffusion).
PIXART-δ: Fast and Controllable Image Generation with Latent Consistency Models
This technical report introduces PIXART-{\delta}, a text-to-image synthesis framework that integrates the Latent Consistency Model (LCM) and ControlNet into the advanced PIXART-{\alpha} model. PIXART-{\alpha} is recognized for its ability to generate high-quality images of 1024px resolution through a remarkably efficient training process. The integration of LCM in PIXART-{\delta} significantly accelerates the inference speed, enabling the production of high-quality images in just 2-4 steps. Notably, PIXART-{\delta} achieves a breakthrough 0.5 seconds for generating 1024x1024 pixel images, marking a 7x improvement over the PIXART-{\alpha}. Additionally, PIXART-{\delta} is designed to be efficiently trainable on 32GB V100 GPUs within a single day. With its 8-bit inference capability (von Platen et al., 2023), PIXART-{\delta} can synthesize 1024px images within 8GB GPU memory constraints, greatly enhancing its usability and accessibility. Furthermore, incorporating a ControlNet-like module enables fine-grained control over text-to-image diffusion models. We introduce a novel ControlNet-Transformer architecture, specifically tailored for Transformers, achieving explicit controllability alongside high-quality image generation. As a state-of-the-art, open-source image generation model, PIXART-{\delta} offers a promising alternative to the Stable Diffusion family of models, contributing significantly to text-to-image synthesis.
Boosting Modern and Historical Handwritten Text Recognition with Deformable Convolutions
Handwritten Text Recognition (HTR) in free-layout pages is a challenging image understanding task that can provide a relevant boost to the digitization of handwritten documents and reuse of their content. The task becomes even more challenging when dealing with historical documents due to the variability of the writing style and degradation of the page quality. State-of-the-art HTR approaches typically couple recurrent structures for sequence modeling with Convolutional Neural Networks for visual feature extraction. Since convolutional kernels are defined on fixed grids and focus on all input pixels independently while moving over the input image, this strategy disregards the fact that handwritten characters can vary in shape, scale, and orientation even within the same document and that the ink pixels are more relevant than the background ones. To cope with these specific HTR difficulties, we propose to adopt deformable convolutions, which can deform depending on the input at hand and better adapt to the geometric variations of the text. We design two deformable architectures and conduct extensive experiments on both modern and historical datasets. Experimental results confirm the suitability of deformable convolutions for the HTR task.
Blockwise Self-Attention for Long Document Understanding
We present BlockBERT, a lightweight and efficient BERT model for better modeling long-distance dependencies. Our model extends BERT by introducing sparse block structures into the attention matrix to reduce both memory consumption and training/inference time, which also enables attention heads to capture either short- or long-range contextual information. We conduct experiments on language model pre-training and several benchmark question answering datasets with various paragraph lengths. BlockBERT uses 18.7-36.1% less memory and 12.0-25.1% less time to learn the model. During testing, BlockBERT saves 27.8% inference time, while having comparable and sometimes better prediction accuracy, compared to an advanced BERT-based model, RoBERTa.
Improving Sequence-to-Sequence Pre-training via Sequence Span Rewriting
In this paper, we generalize text infilling (e.g., masked language models) by proposing Sequence Span Rewriting (SSR) as a self-supervised sequence-to-sequence (seq2seq) pre-training objective. SSR provides more fine-grained learning signals for text representations by supervising the model to rewrite imperfect spans to ground truth, and it is more consistent than text infilling with many downstream seq2seq tasks that rewrite a source sentences into a target sentence. Our experiments with T5 models on various seq2seq tasks show that SSR can substantially improve seq2seq pre-training. Moreover, we observe SSR is especially helpful to improve pre-training a small-size seq2seq model with a powerful imperfect span generator, which indicates a new perspective of transferring knowledge from a large model to a smaller model for seq2seq pre-training.
Training-free Composite Scene Generation for Layout-to-Image Synthesis
Recent breakthroughs in text-to-image diffusion models have significantly advanced the generation of high-fidelity, photo-realistic images from textual descriptions. Yet, these models often struggle with interpreting spatial arrangements from text, hindering their ability to produce images with precise spatial configurations. To bridge this gap, layout-to-image generation has emerged as a promising direction. However, training-based approaches are limited by the need for extensively annotated datasets, leading to high data acquisition costs and a constrained conceptual scope. Conversely, training-free methods face challenges in accurately locating and generating semantically similar objects within complex compositions. This paper introduces a novel training-free approach designed to overcome adversarial semantic intersections during the diffusion conditioning phase. By refining intra-token loss with selective sampling and enhancing the diffusion process with attention redistribution, we propose two innovative constraints: 1) an inter-token constraint that resolves token conflicts to ensure accurate concept synthesis; and 2) a self-attention constraint that improves pixel-to-pixel relationships. Our evaluations confirm the effectiveness of leveraging layout information for guiding the diffusion process, generating content-rich images with enhanced fidelity and complexity. Code is available at https://github.com/Papple-F/csg.git.
LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding
Pre-training of text and layout has proved effective in a variety of visually-rich document understanding tasks due to its effective model architecture and the advantage of large-scale unlabeled scanned/digital-born documents. We propose LayoutLMv2 architecture with new pre-training tasks to model the interaction among text, layout, and image in a single multi-modal framework. Specifically, with a two-stream multi-modal Transformer encoder, LayoutLMv2 uses not only the existing masked visual-language modeling task but also the new text-image alignment and text-image matching tasks, which make it better capture the cross-modality interaction in the pre-training stage. Meanwhile, it also integrates a spatial-aware self-attention mechanism into the Transformer architecture so that the model can fully understand the relative positional relationship among different text blocks. Experiment results show that LayoutLMv2 outperforms LayoutLM by a large margin and achieves new state-of-the-art results on a wide variety of downstream visually-rich document understanding tasks, including FUNSD (0.7895 to 0.8420), CORD (0.9493 to 0.9601), SROIE (0.9524 to 0.9781), Kleister-NDA (0.8340 to 0.8520), RVL-CDIP (0.9443 to 0.9564), and DocVQA (0.7295 to 0.8672). We made our model and code publicly available at https://aka.ms/layoutlmv2.
Untie the Knots: An Efficient Data Augmentation Strategy for Long-Context Pre-Training in Language Models
Large language models (LLM) have prioritized expanding the context window from which models can incorporate more information. However, training models to handle long contexts presents significant challenges. These include the scarcity of high-quality natural long-context data, the potential for performance degradation on short-context tasks, and the reduced training efficiency associated with attention mechanisms. In this paper, we introduce Untie the Knots (UtK), a novel data augmentation strategy employed during the continue pre-training phase, designed to efficiently enable LLMs to gain long-context capabilities without the need to modify the existing data mixture. In particular, we chunk the documents, shuffle the chunks, and create a complex and knotted structure of long texts; LLMs are then trained to untie these knots and identify relevant segments within seemingly chaotic token sequences. This approach greatly improves the model's performance by accurately attending to relevant information in long context and the training efficiency is also largely increased. We conduct extensive experiments on models with 7B and 72B parameters, trained on 20 billion tokens, demonstrating that UtK achieves 75\% and 84.5\% accurracy on RULER at 128K context length, significantly outperforming other long context strategies. The trained models will open-source for further research.
Text-To-Concept (and Back) via Cross-Model Alignment
We observe that the mapping between an image's representation in one model to its representation in another can be learned surprisingly well with just a linear layer, even across diverse models. Building on this observation, we propose text-to-concept, where features from a fixed pretrained model are aligned linearly to the CLIP space, so that text embeddings from CLIP's text encoder become directly comparable to the aligned features. With text-to-concept, we convert fixed off-the-shelf vision encoders to surprisingly strong zero-shot classifiers for free, with accuracy at times even surpassing that of CLIP, despite being much smaller models and trained on a small fraction of the data compared to CLIP. We show other immediate use-cases of text-to-concept, like building concept bottleneck models with no concept supervision, diagnosing distribution shifts in terms of human concepts, and retrieving images satisfying a set of text-based constraints. Lastly, we demonstrate the feasibility of concept-to-text, where vectors in a model's feature space are decoded by first aligning to the CLIP before being fed to a GPT-based generative model. Our work suggests existing deep models, with presumably diverse architectures and training, represent input samples relatively similarly, and a two-way communication across model representation spaces and to humans (through language) is viable.
Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical Encoder for Long-Form Document Matching
Many natural language processing and information retrieval problems can be formalized as the task of semantic matching. Existing work in this area has been largely focused on matching between short texts (e.g., question answering), or between a short and a long text (e.g., ad-hoc retrieval). Semantic matching between long-form documents, which has many important applications like news recommendation, related article recommendation and document clustering, is relatively less explored and needs more research effort. In recent years, self-attention based models like Transformers and BERT have achieved state-of-the-art performance in the task of text matching. These models, however, are still limited to short text like a few sentences or one paragraph due to the quadratic computational complexity of self-attention with respect to input text length. In this paper, we address the issue by proposing the Siamese Multi-depth Transformer-based Hierarchical (SMITH) Encoder for long-form document matching. Our model contains several innovations to adapt self-attention models for longer text input. In order to better capture sentence level semantic relations within a document, we pre-train the model with a novel masked sentence block language modeling task in addition to the masked word language modeling task used by BERT. Our experimental results on several benchmark datasets for long-form document matching show that our proposed SMITH model outperforms the previous state-of-the-art models including hierarchical attention, multi-depth attention-based hierarchical recurrent neural network, and BERT. Comparing to BERT based baselines, our model is able to increase maximum input text length from 512 to 2048. We will open source a Wikipedia based benchmark dataset, code and a pre-trained checkpoint to accelerate future research on long-form document matching.
Learning to Collocate Visual-Linguistic Neural Modules for Image Captioning
Humans tend to decompose a sentence into different parts like sth do sth at someplace and then fill each part with certain content. Inspired by this, we follow the principle of modular design to propose a novel image captioner: learning to Collocate Visual-Linguistic Neural Modules (CVLNM). Unlike the widely used neural module networks in VQA, where the language (\ie, question) is fully observable, the task of collocating visual-linguistic modules is more challenging. This is because the language is only partially observable, for which we need to dynamically collocate the modules during the process of image captioning. To sum up, we make the following technical contributions to design and train our CVLNM: 1) distinguishable module design -- four modules in the encoder including one linguistic module for function words and three visual modules for different content words (\ie, noun, adjective, and verb) and another linguistic one in the decoder for commonsense reasoning, 2) a self-attention based module controller for robustifying the visual reasoning, 3) a part-of-speech based syntax loss imposed on the module controller for further regularizing the training of our CVLNM. Extensive experiments on the MS-COCO dataset show that our CVLNM is more effective, \eg, achieving a new state-of-the-art 129.5 CIDEr-D, and more robust, \eg, being less likely to overfit to dataset bias and suffering less when fewer training samples are available. Codes are available at https://github.com/GCYZSL/CVLMN
CTRAN: CNN-Transformer-based Network for Natural Language Understanding
Intent-detection and slot-filling are the two main tasks in natural language understanding. In this study, we propose CTRAN, a novel encoder-decoder CNN-Transformer-based architecture for intent-detection and slot-filling. In the encoder, we use BERT, followed by several convolutional layers, and rearrange the output using window feature sequence. We use stacked Transformer encoders after the window feature sequence. For the intent-detection decoder, we utilize self-attention followed by a linear layer. In the slot-filling decoder, we introduce the aligned Transformer decoder, which utilizes a zero diagonal mask, aligning output tags with input tokens. We apply our network on ATIS and SNIPS, and surpass the current state-of-the-art in slot-filling on both datasets. Furthermore, we incorporate the language model as word embeddings, and show that this strategy yields a better result when compared to the language model as an encoder.
Separate Scene Text Detector for Unseen Scripts is Not All You Need
Text detection in the wild is a well-known problem that becomes more challenging while handling multiple scripts. In the last decade, some scripts have gained the attention of the research community and achieved good detection performance. However, many scripts are low-resourced for training deep learning-based scene text detectors. It raises a critical question: Is there a need for separate training for new scripts? It is an unexplored query in the field of scene text detection. This paper acknowledges this problem and proposes a solution to detect scripts not present during training. In this work, the analysis has been performed to understand cross-script text detection, i.e., trained on one and tested on another. We found that the identical nature of text annotation (word-level/line-level) is crucial for better cross-script text detection. The different nature of text annotation between scripts degrades cross-script text detection performance. Additionally, for unseen script detection, the proposed solution utilizes vector embedding to map the stroke information of text corresponding to the script category. The proposed method is validated with a well-known multi-lingual scene text dataset under a zero-shot setting. The results show the potential of the proposed method for unseen script detection in natural images.
Efficient Pruning of Text-to-Image Models: Insights from Pruning Stable Diffusion
As text-to-image models grow increasingly powerful and complex, their burgeoning size presents a significant obstacle to widespread adoption, especially on resource-constrained devices. This paper presents a pioneering study on post-training pruning of Stable Diffusion 2, addressing the critical need for model compression in text-to-image domain. Our study tackles the pruning techniques for the previously unexplored multi-modal generation models, and particularly examines the pruning impact on the textual component and the image generation component separately. We conduct a comprehensive comparison on pruning the model or the single component of the model in various sparsities. Our results yield previously undocumented findings. For example, contrary to established trends in language model pruning, we discover that simple magnitude pruning outperforms more advanced techniques in text-to-image context. Furthermore, our results show that Stable Diffusion 2 can be pruned to 38.5% sparsity with minimal quality loss, achieving a significant reduction in model size. We propose an optimal pruning configuration that prunes the text encoder to 47.5% and the diffusion generator to 35%. This configuration maintains image generation quality while substantially reducing computational requirements. In addition, our work uncovers intriguing questions about information encoding in text-to-image models: we observe that pruning beyond certain thresholds leads to sudden performance drops (unreadable images), suggesting that specific weights encode critical semantics information. This finding opens new avenues for future research in model compression, interoperability, and bias identification in text-to-image models. By providing crucial insights into the pruning behavior of text-to-image models, our study lays the groundwork for developing more efficient and accessible AI-driven image generation systems
Vector representations of text data in deep learning
In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.
A Picture is Worth a Thousand Words: Principled Recaptioning Improves Image Generation
Text-to-image diffusion models achieved a remarkable leap in capabilities over the last few years, enabling high-quality and diverse synthesis of images from a textual prompt. However, even the most advanced models often struggle to precisely follow all of the directions in their prompts. The vast majority of these models are trained on datasets consisting of (image, caption) pairs where the images often come from the web, and the captions are their HTML alternate text. A notable example is the LAION dataset, used by Stable Diffusion and other models. In this work we observe that these captions are often of low quality, and argue that this significantly affects the model's capability to understand nuanced semantics in the textual prompts. We show that by relabeling the corpus with a specialized automatic captioning model and training a text-to-image model on the recaptioned dataset, the model benefits substantially across the board. First, in overall image quality: e.g. FID 14.84 vs. the baseline of 17.87, and 64.3% improvement in faithful image generation according to human evaluation. Second, in semantic alignment, e.g. semantic object accuracy 84.34 vs. 78.90, counting alignment errors 1.32 vs. 1.44 and positional alignment 62.42 vs. 57.60. We analyze various ways to relabel the corpus and provide evidence that this technique, which we call RECAP, both reduces the train-inference discrepancy and provides the model with more information per example, increasing sample efficiency and allowing the model to better understand the relations between captions and images.
SEGMENT+: Long Text Processing with Short-Context Language Models
There is a growing interest in expanding the input capacity of language models (LMs) across various domains. However, simply increasing the context window does not guarantee robust performance across diverse long-input processing tasks, such as understanding extensive documents and extracting detailed information from lengthy and noisy data. In response, we introduce SEGMENT+, a general framework that enables LMs to handle extended inputs within limited context windows efficiently. SEGMENT+ utilizes structured notes and a filtering module to manage information flow, resulting in a system that is both controllable and interpretable. Our extensive experiments across various model sizes, focusing on long-document question-answering and Needle-in-a-Haystack tasks, demonstrate the effectiveness of SEGMENT+ in improving performance.
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents
Key information extraction (KIE) from document images requires understanding the contextual and spatial semantics of texts in two-dimensional (2D) space. Many recent studies try to solve the task by developing pre-trained language models focusing on combining visual features from document images with texts and their layout. On the other hand, this paper tackles the problem by going back to the basic: effective combination of text and layout. Specifically, we propose a pre-trained language model, named BROS (BERT Relying On Spatiality), that encodes relative positions of texts in 2D space and learns from unlabeled documents with area-masking strategy. With this optimized training scheme for understanding texts in 2D space, BROS shows comparable or better performance compared to previous methods on four KIE benchmarks (FUNSD, SROIE*, CORD, and SciTSR) without relying on visual features. This paper also reveals two real-world challenges in KIE tasks-(1) minimizing the error from incorrect text ordering and (2) efficient learning from fewer downstream examples-and demonstrates the superiority of BROS over previous methods. Code is available at https://github.com/clovaai/bros.
Context Compression for Auto-regressive Transformers with Sentinel Tokens
The quadratic complexity of the attention module makes it gradually become the bulk of compute in Transformer-based LLMs during generation. Moreover, the excessive key-value cache that arises when dealing with long inputs also brings severe issues on memory footprint and inference latency. In this work, we propose a plug-and-play approach that is able to incrementally compress the intermediate activation of a specified span of tokens into compact ones, thereby reducing both memory and computational cost when processing subsequent context. Experiments on both in-domain language modeling and zero-shot open-ended document generation demonstrate the advantage of our approach over sparse attention baselines in terms of fluency, n-gram matching, and semantic similarity. At last, we comprehensively profile the benefit of context compression on improving the system throughout. Code is available at https://github.com/DRSY/KV_Compression.
Global Context Networks
The Non-Local Network (NLNet) presents a pioneering approach for capturing long-range dependencies within an image, via aggregating query-specific global context to each query position. However, through a rigorous empirical analysis, we have found that the global contexts modeled by the non-local network are almost the same for different query positions. In this paper, we take advantage of this finding to create a simplified network based on a query-independent formulation, which maintains the accuracy of NLNet but with significantly less computation. We further replace the one-layer transformation function of the non-local block by a two-layer bottleneck, which further reduces the parameter number considerably. The resulting network element, called the global context (GC) block, effectively models global context in a lightweight manner, allowing it to be applied at multiple layers of a backbone network to form a global context network (GCNet). Experiments show that GCNet generally outperforms NLNet on major benchmarks for various recognition tasks. The code and network configurations are available at https://github.com/xvjiarui/GCNet.
Block-Recurrent Transformers
We introduce the Block-Recurrent Transformer, which applies a transformer layer in a recurrent fashion along a sequence, and has linear complexity with respect to sequence length. Our recurrent cell operates on blocks of tokens rather than single tokens during training, and leverages parallel computation within a block in order to make efficient use of accelerator hardware. The cell itself is strikingly simple. It is merely a transformer layer: it uses self-attention and cross-attention to efficiently compute a recurrent function over a large set of state vectors and tokens. Our design was inspired in part by LSTM cells, and it uses LSTM-style gates, but it scales the typical LSTM cell up by several orders of magnitude. Our implementation of recurrence has the same cost in both computation time and parameter count as a conventional transformer layer, but offers dramatically improved perplexity in language modeling tasks over very long sequences. Our model out-performs a long-range Transformer XL baseline by a wide margin, while running twice as fast. We demonstrate its effectiveness on PG19 (books), arXiv papers, and GitHub source code. Our code has been released as open source.
You Actually Look Twice At it (YALTAi): using an object detection approach instead of region segmentation within the Kraken engine
Layout Analysis (the identification of zones and their classification) is the first step along line segmentation in Optical Character Recognition and similar tasks. The ability of identifying main body of text from marginal text or running titles makes the difference between extracting the work full text of a digitized book and noisy outputs. We show that most segmenters focus on pixel classification and that polygonization of this output has not been used as a target for the latest competition on historical document (ICDAR 2017 and onwards), despite being the focus in the early 2010s. We propose to shift, for efficiency, the task from a pixel classification-based polygonization to an object detection using isothetic rectangles. We compare the output of Kraken and YOLOv5 in terms of segmentation and show that the later severely outperforms the first on small datasets (1110 samples and below). We release two datasets for training and evaluation on historical documents as well as a new package, YALTAi, which injects YOLOv5 in the segmentation pipeline of Kraken 4.1.
Future Token Prediction -- Causal Language Modelling with Per-Token Semantic State Vector for Multi-Token Prediction
Causal decoder-only transformer models used for generative language modelling, such as Generative Pre-trained Transformers (GPT), are trained to predict the next token in a sequence based only on its previous tokens. Despite this simple training objective, they have proved to be powerful AI tools. However, only predicting the next token results in top layer embedding vectors that are highly token-focused. There may be benefits in generating embedding vectors at each token position that better capture the overall meaning of longer sequences of future text. Recent studies matching brain scans with deep language models suggest that humans also predict upcoming words when listening or reading but consider multiple future tokens rather than just one. This research investigates a new pretraining method called Future Token Prediction (FTP). In FTP, a large transformer encoder generates top layer embedding vectors for each token position, which, instead of being passed to a language head, are linearly and expansively projected to a pseudo-sequence, which is cross attended to by a small transformer decoder to predict the next N tokens forward from that position in the sequence. The top layer embedding vectors from FTP models exhibit distinct properties compared to those from standard GPT models, varying smoothly along a text sequence as measured by cosine similarity between adjacent tokens. Text generated by FTP models show improved topic coherence compared to standard GPT-like models trained with the same prediction perplexity for the next single token. The vectors are shown to better represent the topic of text based on the results of text classification examples. On a toy, but complex, coding problem, FTP networks produce significantly better results than GPT networks.
Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes
In contrast to Connectionist Temporal Classification (CTC) approaches, Sequence-To-Sequence (S2S) models for Handwritten Text Recognition (HTR) suffer from errors such as skipped or repeated words which often occur at the end of a sequence. In this paper, to combine the best of both approaches, we propose to use the CTC-Prefix-Score during S2S decoding. Hereby, during beam search, paths that are invalid according to the CTC confidence matrix are penalised. Our network architecture is composed of a Convolutional Neural Network (CNN) as visual backbone, bidirectional Long-Short-Term-Memory-Cells (LSTMs) as encoder, and a decoder which is a Transformer with inserted mutual attention layers. The CTC confidences are computed on the encoder while the Transformer is only used for character-wise S2S decoding. We evaluate this setup on three HTR data sets: IAM, Rimes, and StAZH. On IAM, we achieve a competitive Character Error Rate (CER) of 2.95% when pretraining our model on synthetic data and including a character-based language model for contemporary English. Compared to other state-of-the-art approaches, our model requires about 10-20 times less parameters. Access our shared implementations via this link to GitHub: https://github.com/Planet-AI-GmbH/tfaip-hybrid-ctc-s2s.
Long-Context Language Modeling with Parallel Context Encoding
Extending large language models (LLMs) to process longer inputs is crucial for numerous applications. However, the considerable computational cost of transformers, coupled with limited generalization of positional encoding, restricts the size of their context window. We introduce Context Expansion with Parallel Encoding (CEPE), a framework that can be applied to any existing decoder-only LLMs to extend their context window. CEPE adopts a small encoder to process long inputs chunk by chunk and enables the frozen decoder to leverage additional contexts via cross-attention. CEPE is efficient, generalizable, and versatile: trained with 8K-token documents, CEPE extends the context window of LLAMA-2 to 128K tokens, offering 10x the throughput with only 1/6 of the memory. CEPE yields strong performance on language modeling and in-context learning. CEPE also excels in retrieval-augmented applications, while existing long-context models degenerate with retrieved contexts. We further introduce a CEPE variant that can extend the context window of instruction-tuned models with only unlabeled data, and showcase its effectiveness on LLAMA-2-CHAT, leading to a strong instruction-following model that can leverage very long context on downstream tasks.
TextCoT: Zoom In for Enhanced Multimodal Text-Rich Image Understanding
The advent of Large Multimodal Models (LMMs) has sparked a surge in research aimed at harnessing their remarkable reasoning abilities. However, for understanding text-rich images, challenges persist in fully leveraging the potential of LMMs, and existing methods struggle with effectively processing high-resolution images. In this work, we propose TextCoT, a novel Chain-of-Thought framework for text-rich image understanding. TextCoT utilizes the captioning ability of LMMs to grasp the global context of the image and the grounding capability to examine local textual regions. This allows for the extraction of both global and local visual information, facilitating more accurate question-answering. Technically, TextCoT consists of three stages, including image overview, coarse localization, and fine-grained observation. The image overview stage provides a comprehensive understanding of the global scene information, and the coarse localization stage approximates the image area containing the answer based on the question asked. Then, integrating the obtained global image descriptions, the final stage further examines specific regions to provide accurate answers. Our method is free of extra training, offering immediate plug-and-play functionality. Extensive experiments are conducted on a series of text-rich image question-answering benchmark datasets based on several advanced LMMs, and the results demonstrate the effectiveness and strong generalization ability of our method. Code is available at https://github.com/bzluan/TextCoT.
Pre-train a Discriminative Text Encoder for Dense Retrieval via Contrastive Span Prediction
Dense retrieval has shown promising results in many information retrieval (IR) related tasks, whose foundation is high-quality text representation learning for effective search. Some recent studies have shown that autoencoder-based language models are able to boost the dense retrieval performance using a weak decoder. However, we argue that 1) it is not discriminative to decode all the input texts and, 2) even a weak decoder has the bypass effect on the encoder. Therefore, in this work, we introduce a novel contrastive span prediction task to pre-train the encoder alone, but still retain the bottleneck ability of the autoencoder. % Therefore, in this work, we propose to drop out the decoder and introduce a novel contrastive span prediction task to pre-train the encoder alone. The key idea is to force the encoder to generate the text representation close to its own random spans while far away from others using a group-wise contrastive loss. In this way, we can 1) learn discriminative text representations efficiently with the group-wise contrastive learning over spans and, 2) avoid the bypass effect of the decoder thoroughly. Comprehensive experiments over publicly available retrieval benchmark datasets show that our approach can outperform existing pre-training methods for dense retrieval significantly.
LLM Blueprint: Enabling Text-to-Image Generation with Complex and Detailed Prompts
Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts describing complex scenes with multiple objects. While excelling in generating images from short, single-object descriptions, these models often struggle to faithfully capture all the nuanced details within longer and more elaborate textual inputs. In response, we present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts, including bounding box coordinates for foreground objects, detailed textual descriptions for individual objects, and a succinct background context. These components form the foundation of our layout-to-image generation model, which operates in two phases. The initial Global Scene Generation utilizes object layouts and background context to create an initial scene but often falls short in faithfully representing object characteristics as specified in the prompts. To address this limitation, we introduce an Iterative Refinement Scheme that iteratively evaluates and refines box-level content to align them with their textual descriptions, recomposing objects as needed to ensure consistency. Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models. This is further validated by a user study, underscoring the efficacy of our approach in generating coherent and detailed scenes from intricate textual inputs.
Chunk-Distilled Language Modeling
We introduce Chunk-Distilled Language Modeling (CD-LM), an approach to text generation that addresses two challenges in current large language models (LLMs): the inefficiency of token-level generation, and the difficulty of adapting to new data and knowledge. Our method combines deep network-based LLMs with a straightforward retrieval module, which allows the generation of multi-token text chunks at a single decoding step. Our retrieval framework enables flexible construction of model- or domain-specific datastores, either leveraging the internal knowledge of existing models, or incorporating expert insights from human-annotated corpora. This adaptability allows for enhanced control over the language model's distribution without necessitating additional training. We present the CD-LM formulation along with performance metrics demonstrating its ability to improve language model performance and efficiency across a diverse set of downstream tasks. Code and data will be made publicly available.
E2LLM: Encoder Elongated Large Language Models for Long-Context Understanding and Reasoning
In the realm of Large Language Models (LLMs), the ability to process long contexts is increasingly crucial for tasks such as multi-round dialogues, code generation, and document summarization. This paper addresses the challenges of enhancing the long-context performance, reducing computational complexity, and leveraging pretrained models collectively termed the "impossible triangle." We introduce E2LLM (Encoder Elongated Large Language Models), a novel approach that effectively navigates this paradox. The method involves splitting long contexts into chunks, compressing each into embedding vectors via a pretrained text encoder, and utilizing an adapter to align these representations with a decoder-only LLM. Two training objectives, focusing on reconstruction of the encoder output and long-context instruction fine-tuning, are employed to facilitate the understanding of soft prompts by the LLM. Experimental results demonstrate that E2LLM achieves superior performance in long-context scenarios while balancing efficiency, performance, and compatibility with pretrained models. Our framework thus represents a significant advancement in the field, contributing to effective long-text modeling.
Adapting Language Models to Compress Contexts
Transformer-based language models (LMs) are powerful and widely-applicable tools, but their usefulness is constrained by a finite context window and the expensive computational cost of processing long text documents. We propose to adapt pre-trained LMs into AutoCompressors. These models are capable of compressing long contexts into compact summary vectors, which are then accessible to the model as soft prompts. Summary vectors are trained with an unsupervised objective, whereby long documents are processed in segments and summary vectors from all previous segments are used in language modeling. We fine-tune OPT models on sequences of up to 30,720 tokens and show that AutoCompressors can utilize long contexts to improve perplexity. We evaluate AutoCompressors on in-context learning by compressing task demonstrations. We find that summary vectors are good substitutes for plain-text demonstrations, increasing accuracy while reducing inference cost. Finally, we explore the benefits of pre-computing summary vectors for large corpora by applying summary vectors to retrieval-augmented language modeling. Overall, AutoCompressors emerge as a simple and inexpensive solution for extending the context window of LMs while speeding up inference over long contexts.
ERNIE-Layout: Layout Knowledge Enhanced Pre-training for Visually-rich Document Understanding
Recent years have witnessed the rise and success of pre-training techniques in visually-rich document understanding. However, most existing methods lack the systematic mining and utilization of layout-centered knowledge, leading to sub-optimal performances. In this paper, we propose ERNIE-Layout, a novel document pre-training solution with layout knowledge enhancement in the whole workflow, to learn better representations that combine the features from text, layout, and image. Specifically, we first rearrange input sequences in the serialization stage, and then present a correlative pre-training task, reading order prediction, to learn the proper reading order of documents. To improve the layout awareness of the model, we integrate a spatial-aware disentangled attention into the multi-modal transformer and a replaced regions prediction task into the pre-training phase. Experimental results show that ERNIE-Layout achieves superior performance on various downstream tasks, setting new state-of-the-art on key information extraction, document image classification, and document question answering datasets. The code and models are publicly available at http://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-layout.