- 3D MRI brain tumor segmentation using autoencoder regularization Automated segmentation of brain tumors from 3D magnetic resonance images (MRIs) is necessary for the diagnosis, monitoring, and treatment planning of the disease. Manual delineation practices require anatomical knowledge, are expensive, time consuming and can be inaccurate due to human error. Here, we describe a semantic segmentation network for tumor subregion segmentation from 3D MRIs based on encoder-decoder architecture. Due to a limited training dataset size, a variational auto-encoder branch is added to reconstruct the input image itself in order to regularize the shared decoder and impose additional constraints on its layers. The current approach won 1st place in the BraTS 2018 challenge. 1 authors · Oct 27, 2018
- MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network Accurate segmentation of brain tumors plays a key role in the diagnosis and treatment of brain tumor diseases. It serves as a critical technology for quantifying tumors and extracting their features. With the increasing application of deep learning methods, the computational burden has become progressively heavier. To achieve a lightweight model with good segmentation performance, this study proposes the MBDRes-U-Net model using the three-dimensional (3D) U-Net codec framework, which integrates multibranch residual blocks and fused attention into the model. The computational burden of the model is reduced by the branch strategy, which effectively uses the rich local features in multimodal images and enhances the segmentation performance of subtumor regions. Additionally, during encoding, an adaptive weighted expansion convolution layer is introduced into the multi-branch residual block, which enriches the feature expression and improves the segmentation accuracy of the model. Experiments on the Brain Tumor Segmentation (BraTS) Challenge 2018 and 2019 datasets show that the architecture could maintain a high precision of brain tumor segmentation while considerably reducing the calculation overhead.Our code is released at https://github.com/Huaibei-normal-university-cv-laboratory/mbdresunet 5 authors · Nov 4, 2024
- The Federated Tumor Segmentation (FeTS) Challenge This manuscript describes the first challenge on Federated Learning, namely the Federated Tumor Segmentation (FeTS) challenge 2021. International challenges have become the standard for validation of biomedical image analysis methods. However, the actual performance of participating (even the winning) algorithms on "real-world" clinical data often remains unclear, as the data included in challenges are usually acquired in very controlled settings at few institutions. The seemingly obvious solution of just collecting increasingly more data from more institutions in such challenges does not scale well due to privacy and ownership hurdles. Towards alleviating these concerns, we are proposing the FeTS challenge 2021 to cater towards both the development and the evaluation of models for the segmentation of intrinsically heterogeneous (in appearance, shape, and histology) brain tumors, namely gliomas. Specifically, the FeTS 2021 challenge uses clinically acquired, multi-institutional magnetic resonance imaging (MRI) scans from the BraTS 2020 challenge, as well as from various remote independent institutions included in the collaborative network of a real-world federation (https://www.fets.ai/). The goals of the FeTS challenge are directly represented by the two included tasks: 1) the identification of the optimal weight aggregation approach towards the training of a consensus model that has gained knowledge via federated learning from multiple geographically distinct institutions, while their data are always retained within each institution, and 2) the federated evaluation of the generalizability of brain tumor segmentation models "in the wild", i.e. on data from institutional distributions that were not part of the training datasets. 32 authors · May 12, 2021