1 RED-ACE: Robust Error Detection for ASR using Confidence Embeddings ASR Error Detection (AED) models aim to post-process the output of Automatic Speech Recognition (ASR) systems, in order to detect transcription errors. Modern approaches usually use text-based input, comprised solely of the ASR transcription hypothesis, disregarding additional signals from the ASR model. Instead, we propose to utilize the ASR system's word-level confidence scores for improving AED performance. Specifically, we add an ASR Confidence Embedding (ACE) layer to the AED model's encoder, allowing us to jointly encode the confidence scores and the transcribed text into a contextualized representation. Our experiments show the benefits of ASR confidence scores for AED, their complementary effect over the textual signal, as well as the effectiveness and robustness of ACE for combining these signals. To foster further research, we publish a novel AED dataset consisting of ASR outputs on the LibriSpeech corpus with annotated transcription errors. 4 authors · Mar 14, 2022
- ASR Benchmarking: Need for a More Representative Conversational Dataset Automatic Speech Recognition (ASR) systems have achieved remarkable performance on widely used benchmarks such as LibriSpeech and Fleurs. However, these benchmarks do not adequately reflect the complexities of real-world conversational environments, where speech is often unstructured and contains disfluencies such as pauses, interruptions, and diverse accents. In this study, we introduce a multilingual conversational dataset, derived from TalkBank, consisting of unstructured phone conversation between adults. Our results show a significant performance drop across various state-of-the-art ASR models when tested in conversational settings. Furthermore, we observe a correlation between Word Error Rate and the presence of speech disfluencies, highlighting the critical need for more realistic, conversational ASR benchmarks. 4 authors · Sep 18, 2024
- ASR advancements for indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana Indigenous languages are a fundamental legacy in the development of human communication, embodying the unique identity and culture of local communities of America. The Second AmericasNLP Competition Track 1 of NeurIPS 2022 proposed developing automatic speech recognition (ASR) systems for five indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana. In this paper, we propose a reliable ASR model for each target language by crawling speech corpora spanning diverse sources and applying data augmentation methods that resulted in the winning approach in this competition. To achieve this, we systematically investigated the impact of different hyperparameters by a Bayesian search on the performance of the language models, specifically focusing on the variants of the Wav2vec2.0 XLS-R model: 300M and 1B parameters. Moreover, we performed a global sensitivity analysis to assess the contribution of various hyperparametric configurations to the performances of our best models. Importantly, our results show that freeze fine-tuning updates and dropout rate are more vital parameters than the total number of epochs of lr. Additionally, we liberate our best models -- with no other ASR model reported until now for two Wa'ikhana and Kotiria -- and the many experiments performed to pave the way to other researchers to continue improving ASR in minority languages. This insight opens up interesting avenues for future work, allowing for the advancement of ASR techniques in the preservation of minority indigenous and acknowledging the complexities involved in this important endeavour. 3 authors · Apr 12, 2024
- Speech Diarization and ASR with GMM In this research paper, we delve into the topics of Speech Diarization and Automatic Speech Recognition (ASR). Speech diarization involves the separation of individual speakers within an audio stream. By employing the ASR transcript, the diarization process aims to segregate each speaker's utterances, grouping them based on their unique audio characteristics. On the other hand, Automatic Speech Recognition refers to the capability of a machine or program to identify and convert spoken words and phrases into a machine-readable format. In our speech diarization approach, we utilize the Gaussian Mixer Model (GMM) to represent speech segments. The inter-cluster distance is computed based on the GMM parameters, and the distance threshold serves as the stopping criterion. ASR entails the conversion of an unknown speech waveform into a corresponding written transcription. The speech signal is analyzed using synchronized algorithms, taking into account the pitch frequency. Our primary objective typically revolves around developing a model that minimizes the Word Error Rate (WER) metric during speech transcription. 6 authors · Jul 11, 2023
- ASR data augmentation using cross-lingual multi-speaker TTS and cross-lingual voice conversion We explore cross-lingual multi-speaker speech synthesis and cross-lingual voice conversion applied to data augmentation for automatic speech recognition (ASR) systems. Through extensive experiments, we show that our approach permits the application of speech synthesis and voice conversion to improve ASR systems on a target language using only one target-language speaker during model training. We managed to close the gap between ASR models trained with synthesized versus human speech compared to other works that use many speakers. Finally, we show that it is possible to obtain promising ASR training results with our data augmentation method using only a single real speaker in a target language. 7 authors · Mar 29, 2022
- ASR is all you need: cross-modal distillation for lip reading The goal of this work is to train strong models for visual speech recognition without requiring human annotated ground truth data. We achieve this by distilling from an Automatic Speech Recognition (ASR) model that has been trained on a large-scale audio-only corpus. We use a cross-modal distillation method that combines Connectionist Temporal Classification (CTC) with a frame-wise cross-entropy loss. Our contributions are fourfold: (i) we show that ground truth transcriptions are not necessary to train a lip reading system; (ii) we show how arbitrary amounts of unlabelled video data can be leveraged to improve performance; (iii) we demonstrate that distillation significantly speeds up training; and, (iv) we obtain state-of-the-art results on the challenging LRS2 and LRS3 datasets for training only on publicly available data. 3 authors · Nov 28, 2019
1 ASRank: Zero-Shot Re-Ranking with Answer Scent for Document Retrieval Retrieval-Augmented Generation (RAG) models have drawn considerable attention in modern open-domain question answering. The effectiveness of RAG depends on the quality of the top retrieved documents. However, conventional retrieval methods sometimes fail to rank the most relevant documents at the top. In this paper, we introduce ASRank, a new re-ranking method based on scoring retrieved documents using zero-shot answer scent which relies on a pre-trained large language model to compute the likelihood of the document-derived answers aligning with the answer scent. Our approach demonstrates marked improvements across several datasets, including NQ, TriviaQA, WebQA, ArchivalQA, HotpotQA, and Entity Questions. Notably, ASRank increases Top-1 retrieval accuracy on NQ from 19.2% to 46.5% for MSS and 22.1% to 47.3% for BM25. It also shows strong retrieval performance on several datasets compared to state-of-the-art methods (47.3 Top-1 by ASRank vs 35.4 by UPR by BM25). 4 authors · Jan 25
9 Samba-asr state-of-the-art speech recognition leveraging structured state-space models We propose Samba ASR, the first state-of-the-art Automatic Speech Recognition (ASR) model leveraging the novel Mamba architecture as both encoder and decoder, built on the foundation of state-space models (SSMs). Unlike transformer-based ASR models, which rely on self-attention mechanisms to capture dependencies, Samba ASR effectively models both local and global temporal dependencies using efficient state-space dynamics, achieving remarkable performance gains. By addressing the limitations of transformers, such as quadratic scaling with input length and difficulty in handling long-range dependencies, Samba ASR achieves superior accuracy and efficiency. Experimental results demonstrate that Samba ASR surpasses existing open-source transformer-based ASR models across various standard benchmarks, establishing it as the new state of the art in ASR. Extensive evaluations on benchmark datasets show significant improvements in Word Error Rate (WER), with competitive performance even in low-resource scenarios. Furthermore, the computational efficiency and parameter optimization of the Mamba architecture make Samba ASR a scalable and robust solution for diverse ASR tasks. Our contributions include: A new Samba ASR architecture demonstrating the superiority of SSMs over transformer-based models for speech sequence processing. A comprehensive evaluation on public benchmarks showcasing state-of-the-art performance. An analysis of computational efficiency, robustness to noise, and sequence generalization. This work highlights the viability of Mamba SSMs as a transformer-free alternative for efficient and accurate ASR. By leveraging state-space modeling advancements, Samba ASR sets a new benchmark for ASR performance and future research. 3 authors · Jan 6 3
9 Dynamic ASR Pathways: An Adaptive Masking Approach Towards Efficient Pruning of A Multilingual ASR Model Neural network pruning offers an effective method for compressing a multilingual automatic speech recognition (ASR) model with minimal performance loss. However, it entails several rounds of pruning and re-training needed to be run for each language. In this work, we propose the use of an adaptive masking approach in two scenarios for pruning a multilingual ASR model efficiently, each resulting in sparse monolingual models or a sparse multilingual model (named as Dynamic ASR Pathways). Our approach dynamically adapts the sub-network, avoiding premature decisions about a fixed sub-network structure. We show that our approach outperforms existing pruning methods when targeting sparse monolingual models. Further, we illustrate that Dynamic ASR Pathways jointly discovers and trains better sub-networks (pathways) of a single multilingual model by adapting from different sub-network initializations, thereby reducing the need for language-specific pruning. 10 authors · Sep 22, 2023 1
1 Master-ASR: Achieving Multilingual Scalability and Low-Resource Adaptation in ASR with Modular Learning Despite the impressive performance recently achieved by automatic speech recognition (ASR), we observe two primary challenges that hinder its broader applications: (1) The difficulty of introducing scalability into the model to support more languages with limited training, inference, and storage overhead; (2) The low-resource adaptation ability that enables effective low-resource adaptation while avoiding over-fitting and catastrophic forgetting issues. Inspired by recent findings, we hypothesize that we can address the above challenges with modules widely shared across languages. To this end, we propose an ASR framework, dubbed \METHODNS, that, for the first time, simultaneously achieves strong multilingual scalability and low-resource adaptation ability thanks to its modularize-then-assemble strategy. Specifically, \METHOD learns a small set of generalizable sub-modules and adaptively assembles them for different languages to reduce the multilingual overhead and enable effective knowledge transfer for low-resource adaptation. Extensive experiments and visualizations demonstrate that \METHOD can effectively discover language similarity and improve multilingual and low-resource ASR performance over state-of-the-art (SOTA) methods, e.g., under multilingual-ASR, our framework achieves a 0.13sim2.41 lower character error rate (CER) with 30\% smaller inference overhead over SOTA solutions on multilingual ASR and a comparable CER, with nearly 50 times fewer trainable parameters over SOTA solutions on low-resource tuning, respectively. 5 authors · Jun 23, 2023
- MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models Speaker-attributed automatic speech recognition (SA-ASR) aims to transcribe speech while assigning transcripts to the corresponding speakers accurately. Existing methods often rely on complex modular systems or require extensive fine-tuning of joint modules, limiting their adaptability and general efficiency. This paper introduces a novel approach, leveraging a frozen multilingual ASR model to incorporate speaker attribution into the transcriptions, using only standard monolingual ASR datasets. Our method involves training a speaker module to predict speaker embeddings based on weak labels without requiring additional ASR model modifications. Despite being trained exclusively with non-overlapping monolingual data, our approach effectively extracts speaker attributes across diverse multilingual datasets, including those with overlapping speech. Experimental results demonstrate competitive performance compared to strong baselines, highlighting the model's robustness and potential for practical applications. 2 authors · Nov 27, 2024
- Just ASR + LLM? A Study on Speech Large Language Models' Ability to Identify and Understand Speaker in Spoken Dialogue In recent years, we have observed a rapid advancement in speech language models (SpeechLLMs), catching up with humans' listening and reasoning abilities. SpeechLLMs have demonstrated impressive spoken dialog question-answering (SQA) performance in benchmarks like Gaokao, the English listening test of the college entrance exam in China, which seemingly requires understanding both the spoken content and voice characteristics of speakers in a conversation. However, after carefully examining Gaokao's questions, we find the correct answers to many questions can be inferred from the conversation transcript alone, i.e.\ without speaker segmentation and identification. Our evaluation of state-of-the-art models Qwen-Audio and WavLLM on both Gaokao and our proposed "What Do You Like?" dataset shows a significantly higher accuracy in these context-based questions than in identity-critical questions, which can only be answered reliably with correct speaker identification. The results and analysis suggest that when solving SQA, the current SpeechLLMs exhibit limited speaker awareness from the audio and behave similarly to an LLM reasoning from the conversation transcription without sound. We propose that tasks focused on identity-critical questions could offer a more accurate evaluation framework of SpeechLLMs in SQA. 7 authors · Sep 7, 2024
- Codec-ASR: Training Performant Automatic Speech Recognition Systems with Discrete Speech Representations Discrete speech representations have garnered recent attention for their efficacy in training transformer-based models for various speech-related tasks such as automatic speech recognition (ASR), translation, speaker verification, and joint speech-text foundational models. In this work, we present a comprehensive analysis on building ASR systems with discrete codes. We investigate different methods for codec training such as quantization schemes and time-domain vs spectral feature encodings. We further explore ASR training techniques aimed at enhancing performance, training efficiency, and noise robustness. Drawing upon our findings, we introduce a codec ASR pipeline that outperforms Encodec at similar bit-rate. Remarkably, it also surpasses the state-of-the-art results achieved by strong self-supervised models on the 143 languages ML-SUPERB benchmark despite being smaller in size and pretrained on significantly less data. 6 authors · Jul 3, 2024
- Vakyansh: ASR Toolkit for Low Resource Indic languages We present Vakyansh, an end to end toolkit for Speech Recognition in Indic languages. India is home to almost 121 languages and around 125 crore speakers. Yet most of the languages are low resource in terms of data and pretrained models. Through Vakyansh, we introduce automatic data pipelines for data creation, model training, model evaluation and deployment. We create 14,000 hours of speech data in 23 Indic languages and train wav2vec 2.0 based pretrained models. These pretrained models are then finetuned to create state of the art speech recognition models for 18 Indic languages which are followed by language models and punctuation restoration models. We open source all these resources with a mission that this will inspire the speech community to develop speech first applications using our ASR models in Indic languages. 7 authors · Mar 30, 2022
- An ASR Guided Speech Intelligibility Measure for TTS Model Selection The perceptual quality of neural text-to-speech (TTS) is highly dependent on the choice of the model during training. Selecting the model using a training-objective metric such as the least mean squared error does not always correlate with human perception. In this paper, we propose an objective metric based on the phone error rate (PER) to select the TTS model with the best speech intelligibility. The PER is computed between the input text to the TTS model, and the text decoded from the synthesized speech using an automatic speech recognition (ASR) model, which is trained on the same data as the TTS model. With the help of subjective studies, we show that the TTS model chosen with the least PER on validation split has significantly higher speech intelligibility compared to the model with the least training-objective metric loss. Finally, using the proposed PER and subjective evaluation, we show that the choice of best TTS model depends on the genre of the target domain text. All our experiments are conducted on a Hindi language dataset. However, the proposed model selection method is language independent. 7 authors · Jun 2, 2020
- Learning ASR-Robust Contextualized Embeddings for Spoken Language Understanding Employing pre-trained language models (LM) to extract contextualized word representations has achieved state-of-the-art performance on various NLP tasks. However, applying this technique to noisy transcripts generated by automatic speech recognizer (ASR) is concerned. Therefore, this paper focuses on making contextualized representations more ASR-robust. We propose a novel confusion-aware fine-tuning method to mitigate the impact of ASR errors to pre-trained LMs. Specifically, we fine-tune LMs to produce similar representations for acoustically confusable words that are obtained from word confusion networks (WCNs) produced by ASR. Experiments on the benchmark ATIS dataset show that the proposed method significantly improves the performance of spoken language understanding when performing on ASR transcripts. Our source code is available at https://github.com/MiuLab/SpokenVec 2 authors · Sep 24, 2019
3 AfriSpeech-200: Pan-African Accented Speech Dataset for Clinical and General Domain ASR Africa has a very low doctor-to-patient ratio. At very busy clinics, doctors could see 30+ patients per day -- a heavy patient burden compared with developed countries -- but productivity tools such as clinical automatic speech recognition (ASR) are lacking for these overworked clinicians. However, clinical ASR is mature, even ubiquitous, in developed nations, and clinician-reported performance of commercial clinical ASR systems is generally satisfactory. Furthermore, the recent performance of general domain ASR is approaching human accuracy. However, several gaps exist. Several publications have highlighted racial bias with speech-to-text algorithms and performance on minority accents lags significantly. To our knowledge, there is no publicly available research or benchmark on accented African clinical ASR, and speech data is non-existent for the majority of African accents. We release AfriSpeech, 200hrs of Pan-African English speech, 67,577 clips from 2,463 unique speakers across 120 indigenous accents from 13 countries for clinical and general domain ASR, a benchmark test set, with publicly available pre-trained models with SOTA performance on the AfriSpeech benchmark. 11 authors · Sep 30, 2023
2 Corpus Synthesis for Zero-shot ASR domain Adaptation using Large Language Models While Automatic Speech Recognition (ASR) systems are widely used in many real-world applications, they often do not generalize well to new domains and need to be finetuned on data from these domains. However, target-domain data usually are not readily available in many scenarios. In this paper, we propose a new strategy for adapting ASR models to new target domains without any text or speech from those domains. To accomplish this, we propose a novel data synthesis pipeline that uses a Large Language Model (LLM) to generate a target domain text corpus, and a state-of-the-art controllable speech synthesis model to generate the corresponding speech. We propose a simple yet effective in-context instruction finetuning strategy to increase the effectiveness of LLM in generating text corpora for new domains. Experiments on the SLURP dataset show that the proposed method achieves an average relative word error rate improvement of 28% on unseen target domains without any performance drop in source domains. 8 authors · Sep 18, 2023
2 Streaming Transformer ASR with Blockwise Synchronous Beam Search The Transformer self-attention network has shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire input sequence is required to compute both self-attention and source--target attention. In this paper, we propose a novel blockwise synchronous beam search algorithm based on blockwise processing of encoder to perform streaming E2E Transformer ASR. In the beam search, encoded feature blocks are synchronously aligned using a block boundary detection technique, where a reliability score of each predicted hypothesis is evaluated based on the end-of-sequence and repeated tokens in the hypothesis. Evaluations of the HKUST and AISHELL-1 Mandarin, LibriSpeech English, and CSJ Japanese tasks show that the proposed streaming Transformer algorithm outperforms conventional online approaches, including monotonic chunkwise attention (MoChA), especially when using the knowledge distillation technique. An ablation study indicates that our streaming approach contributes to reducing the response time, and the repetition criterion contributes significantly in certain tasks. Our streaming ASR models achieve comparable or superior performance to batch models and other streaming-based Transformer methods in all tasks considered. 3 authors · Jun 25, 2020
1 An Embarrassingly Simple Approach for LLM with Strong ASR Capacity In this paper, we focus on solving one of the most important tasks in the field of speech processing, i.e., automatic speech recognition (ASR), with speech foundation encoders and large language models (LLM). Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM. We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task. To be more specific, we benchmark and explore various combinations of LLMs and speech encoders, leading to the optimal LLM-based ASR system, which we call SLAM-ASR. The proposed SLAM-ASR provides a clean setup and little task-specific design, where only the linear projector is trained. To the best of our knowledge, SLAM-ASR achieves the best performance on the Librispeech benchmark among LLM-based ASR models and even outperforms the latest LLM-based audio-universal model trained on massive pair data. Finally, we explore the capability emergence of LLM-based ASR in the process of modal alignment. We hope that our study can facilitate the research on extending LLM with cross-modality capacity and shed light on the LLM-based ASR community. 11 authors · Feb 13, 2024
1 Semi-Autoregressive Streaming ASR With Label Context Non-autoregressive (NAR) modeling has gained significant interest in speech processing since these models achieve dramatically lower inference time than autoregressive (AR) models while also achieving good transcription accuracy. Since NAR automatic speech recognition (ASR) models must wait for the completion of the entire utterance before processing, some works explore streaming NAR models based on blockwise attention for low-latency applications. However, streaming NAR models significantly lag in accuracy compared to streaming AR and non-streaming NAR models. To address this, we propose a streaming "semi-autoregressive" ASR model that incorporates the labels emitted in previous blocks as additional context using a Language Model (LM) subnetwork. We also introduce a novel greedy decoding algorithm that addresses insertion and deletion errors near block boundaries while not significantly increasing the inference time. Experiments show that our method outperforms the existing streaming NAR model by 19% relative on Tedlium2, 16%/8% on Librispeech-100 clean/other test sets, and 19%/8% on the Switchboard(SWB) / Callhome(CH) test sets. It also reduced the accuracy gap with streaming AR and non-streaming NAR models while achieving 2.5x lower latency. We also demonstrate that our approach can effectively utilize external text data to pre-train the LM subnetwork to further improve streaming ASR accuracy. 4 authors · Sep 19, 2023
1 TODM: Train Once Deploy Many Efficient Supernet-Based RNN-T Compression For On-device ASR Models Automatic Speech Recognition (ASR) models need to be optimized for specific hardware before they can be deployed on devices. This can be done by tuning the model's hyperparameters or exploring variations in its architecture. Re-training and re-validating models after making these changes can be a resource-intensive task. This paper presents TODM (Train Once Deploy Many), a new approach to efficiently train many sizes of hardware-friendly on-device ASR models with comparable GPU-hours to that of a single training job. TODM leverages insights from prior work on Supernet, where Recurrent Neural Network Transducer (RNN-T) models share weights within a Supernet. It reduces layer sizes and widths of the Supernet to obtain subnetworks, making them smaller models suitable for all hardware types. We introduce a novel combination of three techniques to improve the outcomes of the TODM Supernet: adaptive dropouts, an in-place Alpha-divergence knowledge distillation, and the use of ScaledAdam optimizer. We validate our approach by comparing Supernet-trained versus individually tuned Multi-Head State Space Model (MH-SSM) RNN-T using LibriSpeech. Results demonstrate that our TODM Supernet either matches or surpasses the performance of manually tuned models by up to a relative of 3% better in word error rate (WER), while efficiently keeping the cost of training many models at a small constant. 14 authors · Sep 5, 2023
1 Token-Level Serialized Output Training for Joint Streaming ASR and ST Leveraging Textual Alignments In real-world applications, users often require both translations and transcriptions of speech to enhance their comprehension, particularly in streaming scenarios where incremental generation is necessary. This paper introduces a streaming Transformer-Transducer that jointly generates automatic speech recognition (ASR) and speech translation (ST) outputs using a single decoder. To produce ASR and ST content effectively with minimal latency, we propose a joint token-level serialized output training method that interleaves source and target words by leveraging an off-the-shelf textual aligner. Experiments in monolingual (it-en) and multilingual (\{de,es,it\}-en) settings demonstrate that our approach achieves the best quality-latency balance. With an average ASR latency of 1s and ST latency of 1.3s, our model shows no degradation or even improves output quality compared to separate ASR and ST models, yielding an average improvement of 1.1 WER and 0.4 BLEU in the multilingual case. 6 authors · Jul 6, 2023
1 Text is All You Need: Personalizing ASR Models using Controllable Speech Synthesis Adapting generic speech recognition models to specific individuals is a challenging problem due to the scarcity of personalized data. Recent works have proposed boosting the amount of training data using personalized text-to-speech synthesis. Here, we ask two fundamental questions about this strategy: when is synthetic data effective for personalization, and why is it effective in those cases? To address the first question, we adapt a state-of-the-art automatic speech recognition (ASR) model to target speakers from four benchmark datasets representative of different speaker types. We show that ASR personalization with synthetic data is effective in all cases, but particularly when (i) the target speaker is underrepresented in the global data, and (ii) the capacity of the global model is limited. To address the second question of why personalized synthetic data is effective, we use controllable speech synthesis to generate speech with varied styles and content. Surprisingly, we find that the text content of the synthetic data, rather than style, is important for speaker adaptation. These results lead us to propose a data selection strategy for ASR personalization based on speech content. 5 authors · Mar 26, 2023
- Open Universal Arabic ASR Leaderboard In recent years, the enhanced capabilities of ASR models and the emergence of multi-dialect datasets have increasingly pushed Arabic ASR model development toward an all-dialect-in-one direction. This trend highlights the need for benchmarking studies that evaluate model performance on multiple dialects, providing the community with insights into models' generalization capabilities. In this paper, we introduce Open Universal Arabic ASR Leaderboard, a continuous benchmark project for open-source general Arabic ASR models across various multi-dialect datasets. We also provide a comprehensive analysis of the model's robustness, speaker adaptation, inference efficiency, and memory consumption. This work aims to offer the Arabic ASR community a reference for models' general performance and also establish a common evaluation framework for multi-dialectal Arabic ASR models. 3 authors · Dec 18, 2024
- Performance evaluation of SLAM-ASR: The Good, the Bad, the Ugly, and the Way Forward Recent research has demonstrated that training a linear connector between speech foundation encoders and large language models (LLMs) enables this architecture to achieve strong ASR capabilities. Despite the impressive results, it remains unclear whether these simple approaches are robust enough across different scenarios and speech conditions, such as domain shifts and different speech perturbations. In this paper, we address these questions by conducting various ablation experiments using a recent and widely adopted approach called SLAM-ASR. We present novel empirical findings that offer insights on how to effectively utilize the SLAM-ASR architecture across a wide range of settings. Our main findings indicate that the SLAM-ASR exhibits poor performance in cross-domain evaluation settings. Additionally, speech perturbations within in-domain data, such as changes in speed or the presence of additive noise, can significantly impact performance. Our findings offer critical insights for fine-tuning and configuring robust LLM-based ASR models, tailored to different data characteristics and computational resources. 10 authors · Nov 6, 2024
- Reverb: Open-Source ASR and Diarization from Rev Today, we are open-sourcing our core speech recognition and diarization models for non-commercial use. We are releasing both a full production pipeline for developers as well as pared-down research models for experimentation. Rev hopes that these releases will spur research and innovation in the fast-moving domain of voice technology. The speech recognition models released today outperform all existing open source speech recognition models across a variety of long-form speech recognition domains. 13 authors · Oct 4, 2024
- Fast Streaming Transducer ASR Prototyping via Knowledge Distillation with Whisper The training of automatic speech recognition (ASR) with little to no supervised data remains an open question. In this work, we demonstrate that streaming Transformer-Transducer (TT) models can be trained from scratch in consumer and accessible GPUs in their entirety with pseudo-labeled (PL) speech from foundational speech models (FSM). This allows training a robust ASR model just in one stage and does not require large data and computational budget compared to the two-step scenario with pre-training and fine-tuning. We perform a comprehensive ablation on different aspects of PL-based streaming TT models such as the impact of (1) shallow fusion of n-gram LMs, (2) contextual biasing with named entities, (3) chunk-wise decoding for low-latency streaming applications, and (4) TT overall performance as the function of the FSM size. Our results demonstrate that TT can be trained from scratch without supervised data, even with very noisy PLs. We validate the proposed framework on 6 languages from CommonVoice and propose multiple heuristics to filter out hallucinated PLs. 9 authors · Sep 20, 2024
- Advancing Multi-talker ASR Performance with Large Language Models Recognizing overlapping speech from multiple speakers in conversational scenarios is one of the most challenging problem for automatic speech recognition (ASR). Serialized output training (SOT) is a classic method to address multi-talker ASR, with the idea of concatenating transcriptions from multiple speakers according to the emission times of their speech for training. However, SOT-style transcriptions, derived from concatenating multiple related utterances in a conversation, depend significantly on modeling long contexts. Therefore, compared to traditional methods that primarily emphasize encoder performance in attention-based encoder-decoder (AED) architectures, a novel approach utilizing large language models (LLMs) that leverages the capabilities of pre-trained decoders may be better suited for such complex and challenging scenarios. In this paper, we propose an LLM-based SOT approach for multi-talker ASR, leveraging pre-trained speech encoder and LLM, fine-tuning them on multi-talker dataset using appropriate strategies. Experimental results demonstrate that our approach surpasses traditional AED-based methods on the simulated dataset LibriMix and achieves state-of-the-art performance on the evaluation set of the real-world dataset AMI, outperforming the AED model trained with 1000 times more supervised data in previous works. 9 authors · Aug 30, 2024
- Empowering Low-Resource Language ASR via Large-Scale Pseudo Labeling In this study, we tackle the challenge of limited labeled data for low-resource languages in ASR, focusing on Hindi. Specifically, we explore pseudo-labeling, by proposing a generic framework combining multiple ideas from existing works. Our framework integrates multiple base models for transcription and evaluators for assessing audio-transcript pairs, resulting in robust pseudo-labeling for low resource languages. We validate our approach with a new benchmark, IndicYT, comprising diverse YouTube audio files from multiple content categories. Our findings show that augmenting pseudo labeled data from YouTube with existing training data leads to significant performance improvements on IndicYT, without affecting performance on out-of-domain benchmarks, demonstrating the efficacy of pseudo-labeled data in enhancing ASR capabilities for low-resource languages. The benchmark, code and models developed as a part of this work will be made publicly available. 7 authors · Aug 26, 2024
- TokenVerse: Towards Unifying Speech and NLP Tasks via Transducer-based ASR In traditional conversational intelligence from speech, a cascaded pipeline is used, involving tasks such as voice activity detection, diarization, transcription, and subsequent processing with different NLP models for tasks like semantic endpointing and named entity recognition (NER). Our paper introduces TokenVerse, a single Transducer-based model designed to handle multiple tasks. This is achieved by integrating task-specific tokens into the reference text during ASR model training, streamlining the inference and eliminating the need for separate NLP models. In addition to ASR, we conduct experiments on 3 different tasks: speaker change detection, endpointing, and NER. Our experiments on a public and a private dataset show that the proposed method improves ASR by up to 7.7% in relative WER while outperforming the cascaded pipeline approach in individual task performance. Our code is publicly available: https://github.com/idiap/tokenverse-unifying-speech-nlp 9 authors · Jul 5, 2024
- ManWav: The First Manchu ASR Model This study addresses the widening gap in Automatic Speech Recognition (ASR) research between high resource and extremely low resource languages, with a particular focus on Manchu, a critically endangered language. Manchu exemplifies the challenges faced by marginalized linguistic communities in accessing state-of-the-art technologies. In a pioneering effort, we introduce the first-ever Manchu ASR model ManWav, leveraging Wav2Vec2-XLSR-53. The results of the first Manchu ASR is promising, especially when trained with our augmented data. Wav2Vec2-XLSR-53 fine-tuned with augmented data demonstrates a 0.02 drop in CER and 0.13 drop in WER compared to the same base model fine-tuned with original data. 4 authors · Jun 19, 2024
- Transformer-based Model for ASR N-Best Rescoring and Rewriting Voice assistants increasingly use on-device Automatic Speech Recognition (ASR) to ensure speed and privacy. However, due to resource constraints on the device, queries pertaining to complex information domains often require further processing by a search engine. For such applications, we propose a novel Transformer based model capable of rescoring and rewriting, by exploring full context of the N-best hypotheses in parallel. We also propose a new discriminative sequence training objective that can work well for both rescore and rewrite tasks. We show that our Rescore+Rewrite model outperforms the Rescore-only baseline, and achieves up to an average 8.6% relative Word Error Rate (WER) reduction over the ASR system by itself. 3 authors · Jun 12, 2024
- Hypernetworks for Personalizing ASR to Atypical Speech Parameter-efficient fine-tuning (PEFT) for personalizing automatic speech recognition (ASR) has recently shown promise for adapting general population models to atypical speech. However, these approaches assume a priori knowledge of the atypical speech disorder being adapted for -- the diagnosis of which requires expert knowledge that is not always available. Even given this knowledge, data scarcity and high inter/intra-speaker variability further limit the effectiveness of traditional fine-tuning. To circumvent these challenges, we first identify the minimal set of model parameters required for ASR adaptation. Our analysis of each individual parameter's effect on adaptation performance allows us to reduce Word Error Rate (WER) by half while adapting 0.03% of all weights. Alleviating the need for cohort-specific models, we next propose the novel use of a meta-learned hypernetwork to generate highly individualized, utterance-level adaptations on-the-fly for a diverse set of atypical speech characteristics. Evaluating adaptation at the global, cohort and individual-level, we show that hypernetworks generalize better to out-of-distribution speakers, while maintaining an overall relative WER reduction of 75.2% using 0.1% of the full parameter budget. 5 authors · Jun 6, 2024
- REBORN: Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR Unsupervised automatic speech recognition (ASR) aims to learn the mapping between the speech signal and its corresponding textual transcription without the supervision of paired speech-text data. A word/phoneme in the speech signal is represented by a segment of speech signal with variable length and unknown boundary, and this segmental structure makes learning the mapping between speech and text challenging, especially without paired data. In this paper, we propose REBORN, Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR. REBORN alternates between (1) training a segmentation model that predicts the boundaries of the segmental structures in speech signals and (2) training the phoneme prediction model, whose input is a segmental structure segmented by the segmentation model, to predict a phoneme transcription. Since supervised data for training the segmentation model is not available, we use reinforcement learning to train the segmentation model to favor segmentations that yield phoneme sequence predictions with a lower perplexity. We conduct extensive experiments and find that under the same setting, REBORN outperforms all prior unsupervised ASR models on LibriSpeech, TIMIT, and five non-English languages in Multilingual LibriSpeech. We comprehensively analyze why the boundaries learned by REBORN improve the unsupervised ASR performance. 7 authors · Feb 6, 2024
- Efficient Adapter Finetuning for Tail Languages in Streaming Multilingual ASR The end-to-end ASR model is often desired in the streaming multilingual scenario since it is easier to deploy and can benefit from pre-trained speech models such as powerful foundation models. Meanwhile, the heterogeneous nature and imbalanced data abundance of different languages may cause performance degradation, leading to asynchronous peak performance for different languages during training, especially on tail ones. Sometimes even the data itself may become unavailable as a result of the enhanced privacy protection. Existing work tend to significantly increase the model size or learn language-specific decoders to accommodate each language separately. In this study, we explore simple yet effective Language-Dependent Adapter (LDA) finetuning under a cascaded Conformer transducer framework enhanced by teacher pseudo-labeling for tail languages in the streaming multilingual ASR. The adapter only accounts for 0.4% of the full model per language. It is plugged into the frozen foundation model and is the only trainable module during the finetuning process with noisy student training. The final model merges the adapter parameters from different checkpoints for different languages. The model performance is validated on a challenging multilingual dictation dataset, which includes 39 tail languages across Latin, Greek, Arabic, etc. Our proposed method brings 12.2% word error rate reduction on average and up to 37.5% on a single locale. Furthermore, we show that our parameter-efficient LDA can match the quality of the full model finetuning, thus greatly alleviating the asynchronous peak performance issue. 5 authors · Jan 17, 2024
- LibriSpeech-PC: Benchmark for Evaluation of Punctuation and Capitalization Capabilities of end-to-end ASR Models Traditional automatic speech recognition (ASR) models output lower-cased words without punctuation marks, which reduces readability and necessitates a subsequent text processing model to convert ASR transcripts into a proper format. Simultaneously, the development of end-to-end ASR models capable of predicting punctuation and capitalization presents several challenges, primarily due to limited data availability and shortcomings in the existing evaluation methods, such as inadequate assessment of punctuation prediction. In this paper, we introduce a LibriSpeech-PC benchmark designed to assess the punctuation and capitalization prediction capabilities of end-to-end ASR models. The benchmark includes a LibriSpeech-PC dataset with restored punctuation and capitalization, a novel evaluation metric called Punctuation Error Rate (PER) that focuses on punctuation marks, and initial baseline models. All code, data, and models are publicly available. 6 authors · Oct 4, 2023
- Wiki-En-ASR-Adapt: Large-scale synthetic dataset for English ASR Customization We present a first large-scale public synthetic dataset for contextual spellchecking customization of automatic speech recognition (ASR) with focus on diverse rare and out-of-vocabulary (OOV) phrases, such as proper names or terms. The proposed approach allows creating millions of realistic examples of corrupted ASR hypotheses and simulate non-trivial biasing lists for the customization task. Furthermore, we propose injecting two types of ``hard negatives" to the simulated biasing lists in training examples and describe our procedures to automatically mine them. We report experiments with training an open-source customization model on the proposed dataset and show that the injection of hard negative biasing phrases decreases WER and the number of false alarms. 1 authors · Sep 29, 2023
- PromptASR for contextualized ASR with controllable style Prompts are crucial to large language models as they provide context information such as topic or logical relationships. Inspired by this, we propose PromptASR, a framework that integrates prompts in end-to-end automatic speech recognition (E2E ASR) systems to achieve contextualized ASR with controllable style of transcriptions. Specifically, a dedicated text encoder encodes the text prompts and the encodings are injected into the speech encoder by cross-attending the features from two modalities. When using the ground truth text from preceding utterances as content prompt, the proposed system achieves 21.9% and 6.8% relative word error rate reductions on a book reading dataset and an in-house dataset compared to a baseline ASR system. The system can also take word-level biasing lists as prompt to improve recognition accuracy on rare words. An additional style prompt can be given to the text encoder and guide the ASR system to output different styles of transcriptions. The code is available at icefall. 8 authors · Sep 13, 2023
- Leveraging Pretrained ASR Encoders for Effective and Efficient End-to-End Speech Intent Classification and Slot Filling We study speech intent classification and slot filling (SICSF) by proposing to use an encoder pretrained on speech recognition (ASR) to initialize an end-to-end (E2E) Conformer-Transformer model, which achieves the new state-of-the-art results on the SLURP dataset, with 90.14% intent accuracy and 82.27% SLURP-F1. We compare our model with encoders pretrained on self-supervised learning (SSL), and show that ASR pretraining is much more effective than SSL for SICSF. To explore parameter efficiency, we freeze the encoder and add Adapter modules, and show that parameter efficiency is only achievable with an ASR-pretrained encoder, while the SSL encoder needs full finetuning to achieve comparable results. In addition, we provide an in-depth comparison on end-to-end models versus cascading models (ASR+NLU), and show that E2E models are better than cascaded models unless an oracle ASR model is provided. Last but not least, our model is the first E2E model that achieves the same performance as cascading models with oracle ASR. Code, checkpoints and configs are available. 3 authors · Jul 13, 2023
- Svarah: Evaluating English ASR Systems on Indian Accents India is the second largest English-speaking country in the world with a speaker base of roughly 130 million. Thus, it is imperative that automatic speech recognition (ASR) systems for English should be evaluated on Indian accents. Unfortunately, Indian speakers find a very poor representation in existing English ASR benchmarks such as LibriSpeech, Switchboard, Speech Accent Archive, etc. In this work, we address this gap by creating Svarah, a benchmark that contains 9.6 hours of transcribed English audio from 117 speakers across 65 geographic locations throughout India, resulting in a diverse range of accents. Svarah comprises both read speech and spontaneous conversational data, covering various domains, such as history, culture, tourism, etc., ensuring a diverse vocabulary. We evaluate 6 open source ASR models and 2 commercial ASR systems on Svarah and show that there is clear scope for improvement on Indian accents. Svarah as well as all our code will be publicly available. 9 authors · May 25, 2023
- Improving Massively Multilingual ASR With Auxiliary CTC Objectives Multilingual Automatic Speech Recognition (ASR) models have extended the usability of speech technologies to a wide variety of languages. With how many languages these models have to handle, however, a key to understanding their imbalanced performance across different languages is to examine if the model actually knows which language it should transcribe. In this paper, we introduce our work on improving performance on FLEURS, a 102-language open ASR benchmark, by conditioning the entire model on language identity (LID). We investigate techniques inspired from recent Connectionist Temporal Classification (CTC) studies to help the model handle the large number of languages, conditioning on the LID predictions of auxiliary tasks. Our experimental results demonstrate the effectiveness of our technique over standard CTC/Attention-based hybrid models. Furthermore, our state-of-the-art systems using self-supervised models with the Conformer architecture improve over the results of prior work on FLEURS by a relative 28.4% CER. Trained models and reproducible recipes are available at https://github.com/espnet/espnet/tree/master/egs2/fleurs/asr1 . 6 authors · Feb 24, 2023
- Development of Hybrid ASR Systems for Low Resource Medical Domain Conversational Telephone Speech Language barriers present a great challenge in our increasingly connected and global world. Especially within the medical domain, e.g. hospital or emergency room, communication difficulties and delays may lead to malpractice and non-optimal patient care. In the HYKIST project, we consider patient-physician communication, more specifically between a German-speaking physician and an Arabic- or Vietnamese-speaking patient. Currently, a doctor can call the Triaphon service to get assistance from an interpreter in order to help facilitate communication. The HYKIST goal is to support the usually non-professional bilingual interpreter with an automatic speech translation system to improve patient care and help overcome language barriers. In this work, we present our ASR system development efforts for this conversational telephone speech translation task in the medical domain for two languages pairs, data collection, various acoustic model architectures and dialect-induced difficulties. 9 authors · Oct 24, 2022
- Bilingual End-to-End ASR with Byte-Level Subwords In this paper, we investigate how the output representation of an end-to-end neural network affects multilingual automatic speech recognition (ASR). We study different representations including character-level, byte-level, byte pair encoding (BPE), and byte-level byte pair encoding (BBPE) representations, and analyze their strengths and weaknesses. We focus on developing a single end-to-end model to support utterance-based bilingual ASR, where speakers do not alternate between two languages in a single utterance but may change languages across utterances. We conduct our experiments on English and Mandarin dictation tasks, and we find that BBPE with penalty schemes can improve utterance-based bilingual ASR performance by 2% to 5% relative even with smaller number of outputs and fewer parameters. We conclude with analysis that indicates directions for further improving multilingual ASR. 3 authors · May 1, 2022
- Towards Building ASR Systems for the Next Billion Users Recent methods in speech and language technology pretrain very LARGE models which are fine-tuned for specific tasks. However, the benefits of such LARGE models are often limited to a few resource rich languages of the world. In this work, we make multiple contributions towards building ASR systems for low resource languages from the Indian subcontinent. First, we curate 17,000 hours of raw speech data for 40 Indian languages from a wide variety of domains including education, news, technology, and finance. Second, using this raw speech data we pretrain several variants of wav2vec style models for 40 Indian languages. Third, we analyze the pretrained models to find key features: codebook vectors of similar sounding phonemes are shared across languages, representations across layers are discriminative of the language family, and attention heads often pay attention within small local windows. Fourth, we fine-tune this model for downstream ASR for 9 languages and obtain state-of-the-art results on 3 public datasets, including on very low-resource languages such as Sinhala and Nepali. Our work establishes that multilingual pretraining is an effective strategy for building ASR systems for the linguistically diverse speakers of the Indian subcontinent. Our code, data and models are available publicly at https://indicnlp.ai4bharat.org/indicwav2vec/ and we hope they will help advance research in ASR for Indic languages. 8 authors · Nov 6, 2021
- Multilingual and code-switching ASR challenges for low resource Indian languages Recently, there is increasing interest in multilingual automatic speech recognition (ASR) where a speech recognition system caters to multiple low resource languages by taking advantage of low amounts of labeled corpora in multiple languages. With multilingualism becoming common in today's world, there has been increasing interest in code-switching ASR as well. In code-switching, multiple languages are freely interchanged within a single sentence or between sentences. The success of low-resource multilingual and code-switching ASR often depends on the variety of languages in terms of their acoustics, linguistic characteristics as well as the amount of data available and how these are carefully considered in building the ASR system. In this challenge, we would like to focus on building multilingual and code-switching ASR systems through two different subtasks related to a total of seven Indian languages, namely Hindi, Marathi, Odia, Tamil, Telugu, Gujarati and Bengali. For this purpose, we provide a total of ~600 hours of transcribed speech data, comprising train and test sets, in these languages including two code-switched language pairs, Hindi-English and Bengali-English. We also provide a baseline recipe for both the tasks with a WER of 30.73% and 32.45% on the test sets of multilingual and code-switching subtasks, respectively. 22 authors · Mar 31, 2021
- MediaSpeech: Multilanguage ASR Benchmark and Dataset The performance of automated speech recognition (ASR) systems is well known to differ for varied application domains. At the same time, vendors and research groups typically report ASR quality results either for limited use simplistic domains (audiobooks, TED talks), or proprietary datasets. To fill this gap, we provide an open-source 10-hour ASR system evaluation dataset NTR MediaSpeech for 4 languages: Spanish, French, Turkish and Arabic. The dataset was collected from the official youtube channels of media in the respective languages, and manually transcribed. We estimate that the WER of the dataset is under 5%. We have benchmarked many ASR systems available both commercially and freely, and provide the benchmark results. We also open-source baseline QuartzNet models for each language. 8 authors · Mar 30, 2021
- Using multiple ASR hypotheses to boost i18n NLU performance Current voice assistants typically use the best hypothesis yielded by their Automatic Speech Recognition (ASR) module as input to their Natural Language Understanding (NLU) module, thereby losing helpful information that might be stored in lower-ranked ASR hypotheses. We explore the change in performance of NLU associated tasks when utilizing five-best ASR hypotheses when compared to status quo for two language datasets, German and Portuguese. To harvest information from the ASR five-best, we leverage extractive summarization and joint extractive-abstractive summarization models for Domain Classification (DC) experiments while using a sequence-to-sequence model with a pointer generator network for Intent Classification (IC) and Named Entity Recognition (NER) multi-task experiments. For the DC full test set, we observe significant improvements of up to 7.2% and 15.5% in micro-averaged F1 scores, for German and Portuguese, respectively. In cases where the best ASR hypothesis was not an exact match to the transcribed utterance (mismatched test set), we see improvements of up to 6.7% and 8.8% micro-averaged F1 scores, for German and Portuguese, respectively. For IC and NER multi-task experiments, when evaluating on the mismatched test set, we see improvements across all domains in German and in 17 out of 19 domains in Portuguese (improvements based on change in SeMER scores). Our results suggest that the use of multiple ASR hypotheses, as opposed to one, can lead to significant performance improvements in the DC task for these non-English datasets. In addition, it could lead to significant improvement in the performance of IC and NER tasks in cases where the ASR model makes mistakes. 6 authors · Dec 7, 2020
- Reduce and Reconstruct: ASR for Low-Resource Phonetic Languages This work presents a seemingly simple but effective technique to improve low-resource ASR systems for phonetic languages. By identifying sets of acoustically similar graphemes in these languages, we first reduce the output alphabet of the ASR system using linguistically meaningful reductions and then reconstruct the original alphabet using a standalone module. We demonstrate that this lessens the burden and improves the performance of low-resource end-to-end ASR systems (because only reduced-alphabet predictions are needed) and that it is possible to design a very simple but effective reconstruction module that recovers sequences in the original alphabet from sequences in the reduced alphabet. We present a finite state transducer-based reconstruction module that operates on the 1-best ASR hypothesis in the reduced alphabet. We demonstrate the efficacy of our proposed technique using ASR systems for two Indian languages, Gujarati and Telugu. With access to only 10 hrs of speech data, we obtain relative WER reductions of up to 7% compared to systems that do not use any reduction. 2 authors · Oct 19, 2020
- Improving Low Resource Code-switched ASR using Augmented Code-switched TTS Building Automatic Speech Recognition (ASR) systems for code-switched speech has recently gained renewed attention due to the widespread use of speech technologies in multilingual communities worldwide. End-to-end ASR systems are a natural modeling choice due to their ease of use and superior performance in monolingual settings. However, it is well known that end-to-end systems require large amounts of labeled speech. In this work, we investigate improving code-switched ASR in low resource settings via data augmentation using code-switched text-to-speech (TTS) synthesis. We propose two targeted techniques to effectively leverage TTS speech samples: 1) Mixup, an existing technique to create new training samples via linear interpolation of existing samples, applied to TTS and real speech samples, and 2) a new loss function, used in conjunction with TTS samples, to encourage code-switched predictions. We report significant improvements in ASR performance achieving absolute word error rate (WER) reductions of up to 5%, and measurable improvement in code switching using our proposed techniques on a Hindi-English code-switched ASR task. 4 authors · Oct 12, 2020
- AISHELL-2: Transforming Mandarin ASR Research Into Industrial Scale AISHELL-1 is by far the largest open-source speech corpus available for Mandarin speech recognition research. It was released with a baseline system containing solid training and testing pipelines for Mandarin ASR. In AISHELL-2, 1000 hours of clean read-speech data from iOS is published, which is free for academic usage. On top of AISHELL-2 corpus, an improved recipe is developed and released, containing key components for industrial applications, such as Chinese word segmentation, flexible vocabulary expension and phone set transformation etc. Pipelines support various state-of-the-art techniques, such as time-delayed neural networks and Lattic-Free MMI objective funciton. In addition, we also release dev and test data from other channels(Android and Mic). For research community, we hope that AISHELL-2 corpus can be a solid resource for topics like transfer learning and robust ASR. For industry, we hope AISHELL-2 recipe can be a helpful reference for building meaningful industrial systems and products. 4 authors · Aug 30, 2018
10 Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation Generative Error Correction (GEC) has emerged as a powerful post-processing method to enhance the performance of Automatic Speech Recognition (ASR) systems. However, we show that GEC models struggle to generalize beyond the specific types of errors encountered during training, limiting their ability to correct new, unseen errors at test time, particularly in out-of-domain (OOD) scenarios. This phenomenon amplifies with named entities (NEs), where, in addition to insufficient contextual information or knowledge about the NEs, novel NEs keep emerging. To address these issues, we propose DARAG (Data- and Retrieval-Augmented Generative Error Correction), a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios. We augment the GEC training dataset with synthetic data generated by prompting LLMs and text-to-speech models, thereby simulating additional errors from which the model can learn. For OOD scenarios, we simulate test-time errors from new domains similarly and in an unsupervised fashion. Additionally, to better handle named entities, we introduce retrieval-augmented correction by augmenting the input with entities retrieved from a database. Our approach is simple, scalable, and both domain- and language-agnostic. We experiment on multiple datasets and settings, showing that DARAG outperforms all our baselines, achieving 8\% -- 30\% relative WER improvements in ID and 10\% -- 33\% improvements in OOD settings. 7 authors · Oct 17, 2024 2
9 Multilingual and Fully Non-Autoregressive ASR with Large Language Model Fusion: A Comprehensive Study In the era of large models, the autoregressive nature of decoding often results in latency serving as a significant bottleneck. We propose a non-autoregressive LM-fused ASR system that effectively leverages the parallelization capabilities of accelerator hardware. Our approach combines the Universal Speech Model (USM) and the PaLM 2 language model in per-segment scoring mode, achieving an average relative WER improvement across all languages of 10.8% on FLEURS and 3.6% on YouTube captioning. Furthermore, our comprehensive ablation study analyzes key parameters such as LLM size, context length, vocabulary size, fusion methodology. For instance, we explore the impact of LLM size ranging from 128M to 340B parameters on ASR performance. This study provides valuable insights into the factors influencing the effectiveness of practical large-scale LM-fused speech recognition systems. 10 authors · Jan 23, 2024 1
2 Custom Data Augmentation for low resource ASR using Bark and Retrieval-Based Voice Conversion This paper proposes two innovative methodologies to construct customized Common Voice datasets for low-resource languages like Hindi. The first methodology leverages Bark, a transformer-based text-to-audio model developed by Suno, and incorporates Meta's enCodec and a pre-trained HuBert model to enhance Bark's performance. The second methodology employs Retrieval-Based Voice Conversion (RVC) and uses the Ozen toolkit for data preparation. Both methodologies contribute to the advancement of ASR technology and offer valuable insights into addressing the challenges of constructing customized Common Voice datasets for under-resourced languages. Furthermore, they provide a pathway to achieving high-quality, personalized voice generation for a range of applications. 5 authors · Nov 24, 2023
2 Application-Agnostic Language Modeling for On-Device ASR On-device automatic speech recognition systems face several challenges compared to server-based systems. They have to meet stricter constraints in terms of speed, disk size and memory while maintaining the same accuracy. Often they have to serve several applications with different distributions at once, such as communicating with a virtual assistant and speech-to-text. The simplest solution to serve multiple applications is to build application-specific (language) models, but this leads to an increase in memory. Therefore, we explore different data- and architecture-driven language modeling approaches to build a single application-agnostic model. We propose two novel feed-forward architectures that find an optimal trade off between different on-device constraints. In comparison to the application-specific solution, one of our novel approaches reduces the disk size by half, while maintaining speed and accuracy of the original model. 3 authors · May 16, 2023
1 FlanEC: Exploring Flan-T5 for Post-ASR Error Correction In this paper, we present an encoder-decoder model leveraging Flan-T5 for post-Automatic Speech Recognition (ASR) Generative Speech Error Correction (GenSEC), and we refer to it as FlanEC. We explore its application within the GenSEC framework to enhance ASR outputs by mapping n-best hypotheses into a single output sentence. By utilizing n-best lists from ASR models, we aim to improve the linguistic correctness, accuracy, and grammaticality of final ASR transcriptions. Specifically, we investigate whether scaling the training data and incorporating diverse datasets can lead to significant improvements in post-ASR error correction. We evaluate FlanEC using the HyPoradise dataset, providing a comprehensive analysis of the model's effectiveness in this domain. Furthermore, we assess the proposed approach under different settings to evaluate model scalability and efficiency, offering valuable insights into the potential of instruction-tuned encoder-decoder models for this task. 4 authors · Jan 22
1 Phonetic-assisted Multi-Target Units Modeling for Improving Conformer-Transducer ASR system Exploiting effective target modeling units is very important and has always been a concern in end-to-end automatic speech recognition (ASR). In this work, we propose a phonetic-assisted multi target units (PMU) modeling approach, to enhance the Conformer-Transducer ASR system in a progressive representation learning manner. Specifically, PMU first uses the pronunciation-assisted subword modeling (PASM) and byte pair encoding (BPE) to produce phonetic-induced and text-induced target units separately; Then, three new frameworks are investigated to enhance the acoustic encoder, including a basic PMU, a paraCTC and a pcaCTC, they integrate the PASM and BPE units at different levels for CTC and transducer multi-task training. Experiments on both LibriSpeech and accented ASR tasks show that, the proposed PMU significantly outperforms the conventional BPE, it reduces the WER of LibriSpeech clean, other, and six accented ASR testsets by relative 12.7%, 6.0% and 7.7%, respectively. 4 authors · Nov 2, 2022
- A Comparative Study of LLM-based ASR and Whisper in Low Resource and Code Switching Scenario Large Language Models (LLMs) have showcased exceptional performance across diverse NLP tasks, and their integration with speech encoder is rapidly emerging as a dominant trend in the Automatic Speech Recognition (ASR) field. Previous works mainly concentrated on leveraging LLMs for speech recognition in English and Chinese. However, their potential for addressing speech recognition challenges in low resource settings remains underexplored. Hence, in this work, we aim to explore the capability of LLMs in low resource ASR and Mandarin-English code switching ASR. We also evaluate and compare the recognition performance of LLM-based ASR systems against Whisper model. Extensive experiments demonstrate that LLM-based ASR yields a relative gain of 12.8\% over the Whisper model in low resource ASR while Whisper performs better in Mandarin-English code switching ASR. We hope that this study could shed light on ASR for low resource scenarios. 5 authors · Dec 1, 2024
- Hard-Synth: Synthesizing Diverse Hard Samples for ASR using Zero-Shot TTS and LLM Text-to-speech (TTS) models have been widely adopted to enhance automatic speech recognition (ASR) systems using text-only corpora, thereby reducing the cost of labeling real speech data. Existing research primarily utilizes additional text data and predefined speech styles supported by TTS models. In this paper, we propose Hard-Synth, a novel ASR data augmentation method that leverages large language models (LLMs) and advanced zero-shot TTS. Our approach employs LLMs to generate diverse in-domain text through rewriting, without relying on additional text data. Rather than using predefined speech styles, we introduce a hard prompt selection method with zero-shot TTS to clone speech styles that the ASR model finds challenging to recognize. Experiments demonstrate that Hard-Synth significantly enhances the Conformer model, achieving relative word error rate (WER) reductions of 6.5\%/4.4\% on LibriSpeech dev/test-other subsets. Additionally, we show that Hard-Synth is data-efficient and capable of reducing bias in ASR. 9 authors · Nov 20, 2024
- Sortformer: Seamless Integration of Speaker Diarization and ASR by Bridging Timestamps and Tokens We propose Sortformer, a novel neural model for speaker diarization, trained with unconventional objectives compared to existing end-to-end diarization models. The permutation problem in speaker diarization has long been regarded as a critical challenge. Most prior end-to-end diarization systems employ permutation invariant loss (PIL), which optimizes for the permutation that yields the lowest error. In contrast, we introduce Sort Loss, which enables a diarization model to autonomously resolve permutation, with or without PIL. We demonstrate that combining Sort Loss and PIL achieves performance competitive with state-of-the-art end-to-end diarization models trained exclusively with PIL. Crucially, we present a streamlined multispeaker ASR architecture that leverages Sortformer as a speaker supervision model, embedding speaker label estimation within the ASR encoder state using a sinusoidal kernel function. This approach resolves the speaker permutation problem through sorted objectives, effectively bridging speaker-label timestamps and speaker tokens. In our experiments, we show that the proposed multispeaker ASR architecture, enhanced with speaker supervision, improves performance via adapter techniques. Code and trained models will be made publicly available via the NVIDIA NeMo framework 9 authors · Sep 10, 2024
- LAHAJA: A Robust Multi-accent Benchmark for Evaluating Hindi ASR Systems Hindi, one of the most spoken language of India, exhibits a diverse array of accents due to its usage among individuals from diverse linguistic origins. To enable a robust evaluation of Hindi ASR systems on multiple accents, we create a benchmark, LAHAJA, which contains read and extempore speech on a diverse set of topics and use cases, with a total of 12.5 hours of Hindi audio, sourced from 132 speakers spanning 83 districts of India. We evaluate existing open-source and commercial models on LAHAJA and find their performance to be poor. We then train models using different datasets and find that our model trained on multilingual data with good speaker diversity outperforms existing models by a significant margin. We also present a fine-grained analysis which shows that the performance declines for speakers from North-East and South India, especially with content heavy in named entities and specialized terminology. 7 authors · Aug 21, 2024
- Framework for Curating Speech Datasets and Evaluating ASR Systems: A Case Study for Polish Speech datasets available in the public domain are often underutilized because of challenges in discoverability and interoperability. A comprehensive framework has been designed to survey, catalog, and curate available speech datasets, which allows replicable evaluation of automatic speech recognition (ASR) systems. A case study focused on the Polish language was conducted; the framework was applied to curate more than 24 datasets and evaluate 25 combinations of ASR systems and models. This research constitutes the most extensive comparison to date of both commercial and free ASR systems for the Polish language. It draws insights from 600 system-model-test set evaluations, marking a significant advancement in both scale and comprehensiveness. The results of surveys and performance comparisons are available as interactive dashboards (https://huggingface.co/spaces/amu-cai/pl-asr-leaderboard) along with curated datasets (https://huggingface.co/datasets/amu-cai/pl-asr-bigos-v2, https://huggingface.co/datasets/pelcra/pl-asr-pelcra-for-bigos) and the open challenge call (https://poleval.pl/tasks/task3). Tools used for evaluation are open-sourced (https://github.com/goodmike31/pl-asr-bigos-tools), facilitating replication and adaptation for other languages, as well as continuous expansion with new datasets and systems. 1 authors · Jul 18, 2024
- Leave No Knowledge Behind During Knowledge Distillation: Towards Practical and Effective Knowledge Distillation for Code-Switching ASR Using Realistic Data Recent advances in automatic speech recognition (ASR) often rely on large speech foundation models for generating high-quality transcriptions. However, these models can be impractical due to limited computing resources. The situation is even more severe in terms of more realistic or difficult scenarios, such as code-switching ASR (CS-ASR). To address this, we present a framework for developing more efficient models for CS-ASR through knowledge distillation using realistic speech-only data. Our proposed method, Leave No Knowledge Behind During Knowledge Distillation (K^2D), leverages both the teacher model's knowledge and additional insights from a small auxiliary model. We evaluate our approach on two in-domain and two out-domain datasets, demonstrating that K^2D is effective. By conducting K^2D on the unlabeled realistic data, we have successfully obtained a 2-time smaller model with 5-time faster generation speed while outperforming the baseline methods and the teacher model on all the testing sets. We have made our model publicly available on Hugging Face (https://huggingface.co/andybi7676/k2d-whisper.zh-en). 6 authors · Jul 15, 2024
- Tradition or Innovation: A Comparison of Modern ASR Methods for Forced Alignment Forced alignment (FA) plays a key role in speech research through the automatic time alignment of speech signals with corresponding text transcriptions. Despite the move towards end-to-end architectures for speech technology, FA is still dominantly achieved through a classic GMM-HMM acoustic model. This work directly compares alignment performance from leading automatic speech recognition (ASR) methods, WhisperX and Massively Multilingual Speech Recognition (MMS), against a Kaldi-based GMM-HMM system, the Montreal Forced Aligner (MFA). Performance was assessed on the manually aligned TIMIT and Buckeye datasets, with comparisons conducted only on words correctly recognized by WhisperX and MMS. The MFA outperformed both WhisperX and MMS, revealing a shortcoming of modern ASR systems. These findings highlight the need for advancements in forced alignment and emphasize the importance of integrating traditional expertise with modern innovation to foster progress. Index Terms: forced alignment, phoneme alignment, word alignment 4 authors · Jun 27, 2024
- You don't understand me!: Comparing ASR results for L1 and L2 speakers of Swedish The performance of Automatic Speech Recognition (ASR) systems has constantly increased in state-of-the-art development. However, performance tends to decrease considerably in more challenging conditions (e.g., background noise, multiple speaker social conversations) and with more atypical speakers (e.g., children, non-native speakers or people with speech disorders), which signifies that general improvements do not necessarily transfer to applications that rely on ASR, e.g., educational software for younger students or language learners. In this study, we focus on the gap in performance between recognition results for native and non-native, read and spontaneous, Swedish utterances transcribed by different ASR services. We compare the recognition results using Word Error Rate and analyze the linguistic factors that may generate the observed transcription errors. 4 authors · May 22, 2024
- Libriheavy: a 50,000 hours ASR corpus with punctuation casing and context In this paper, we introduce Libriheavy, a large-scale ASR corpus consisting of 50,000 hours of read English speech derived from LibriVox. To the best of our knowledge, Libriheavy is the largest freely-available corpus of speech with supervisions. Different from other open-sourced datasets that only provide normalized transcriptions, Libriheavy contains richer information such as punctuation, casing and text context, which brings more flexibility for system building. Specifically, we propose a general and efficient pipeline to locate, align and segment the audios in previously published Librilight to its corresponding texts. The same as Librilight, Libriheavy also has three training subsets small, medium, large of the sizes 500h, 5000h, 50000h respectively. We also extract the dev and test evaluation sets from the aligned audios and guarantee there is no overlapping speakers and books in training sets. Baseline systems are built on the popular CTC-Attention and transducer models. Additionally, we open-source our dataset creatation pipeline which can also be used to other audio alignment tasks. 8 authors · Sep 14, 2023
- Leveraging Large Language Models for Exploiting ASR Uncertainty While large language models excel in a variety of natural language processing (NLP) tasks, to perform well on spoken language understanding (SLU) tasks, they must either rely on off-the-shelf automatic speech recognition (ASR) systems for transcription, or be equipped with an in-built speech modality. This work focuses on the former scenario, where LLM's accuracy on SLU tasks is constrained by the accuracy of a fixed ASR system on the spoken input. Specifically, we tackle speech-intent classification task, where a high word-error-rate can limit the LLM's ability to understand the spoken intent. Instead of chasing a high accuracy by designing complex or specialized architectures regardless of deployment costs, we seek to answer how far we can go without substantially changing the underlying ASR and LLM, which can potentially be shared by multiple unrelated tasks. To this end, we propose prompting the LLM with an n-best list of ASR hypotheses instead of only the error-prone 1-best hypothesis. We explore prompt-engineering to explain the concept of n-best lists to the LLM; followed by the finetuning of Low-Rank Adapters on the downstream tasks. Our approach using n-best lists proves to be effective on a device-directed speech detection task as well as on a keyword spotting task, where systems using n-best list prompts outperform those using 1-best ASR hypothesis; thus paving the way for an efficient method to exploit ASR uncertainty via LLMs for speech-based applications. 7 authors · Sep 9, 2023
- SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability Hotword customization is one of the concerned issues remained in ASR field - it is of value to enable users of ASR systems to customize names of entities, persons and other phrases to obtain better experience. The past few years have seen effective modeling strategies for ASR contextualization developed, but they still exhibit space for improvement about training stability and the invisible activation process. In this paper we propose Semantic-Augmented Contextual-Paraformer (SeACo-Paraformer) a novel NAR based ASR system with flexible and effective hotword customization ability. It possesses the advantages of AED-based model's accuracy, NAR model's efficiency, and explicit customization capacity of superior performance. Through extensive experiments with 50,000 hours of industrial big data, our proposed model outperforms strong baselines in customization. Besides, we explore an efficient way to filter large-scale incoming hotwords for further improvement. The industrial models compared, source codes and two hotword test sets are all open source. 6 authors · Aug 6, 2023
- SpellMapper: A non-autoregressive neural spellchecker for ASR customization with candidate retrieval based on n-gram mappings Contextual spelling correction models are an alternative to shallow fusion to improve automatic speech recognition (ASR) quality given user vocabulary. To deal with large user vocabularies, most of these models include candidate retrieval mechanisms, usually based on minimum edit distance between fragments of ASR hypothesis and user phrases. However, the edit-distance approach is slow, non-trainable, and may have low recall as it relies only on common letters. We propose: 1) a novel algorithm for candidate retrieval, based on misspelled n-gram mappings, which gives up to 90% recall with just the top 10 candidates on Spoken Wikipedia; 2) a non-autoregressive neural model based on BERT architecture, where the initial transcript and ten candidates are combined into one input. The experiments on Spoken Wikipedia show 21.4% word error rate improvement compared to a baseline ASR system. 3 authors · Jun 4, 2023
- Spaiche: Extending State-of-the-Art ASR Models to Swiss German Dialects Recent breakthroughs in NLP largely increased the presence of ASR systems in our daily lives. However, for many low-resource languages, ASR models still need to be improved due in part to the difficulty of acquiring pertinent data. This project aims to help advance research in ASR models for Swiss German dialects, by providing insights about the performance of state-of-the-art ASR models on recently published Swiss German speech datasets. We propose a novel loss that takes into account the semantic distance between the predicted and the ground-truth labels. We outperform current state-of-the-art results by fine-tuning OpenAI's Whisper model on Swiss-German datasets. 3 authors · Apr 20, 2023
- A context-aware knowledge transferring strategy for CTC-based ASR Non-autoregressive automatic speech recognition (ASR) modeling has received increasing attention recently because of its fast decoding speed and superior performance. Among representatives, methods based on the connectionist temporal classification (CTC) are still a dominating stream. However, the theoretically inherent flaw, the assumption of independence between tokens, creates a performance barrier for the school of works. To mitigate the challenge, we propose a context-aware knowledge transferring strategy, consisting of a knowledge transferring module and a context-aware training strategy, for CTC-based ASR. The former is designed to distill linguistic information from a pre-trained language model, and the latter is framed to modulate the limitations caused by the conditional independence assumption. As a result, a knowledge-injected context-aware CTC-based ASR built upon the wav2vec2.0 is presented in this paper. A series of experiments on the AISHELL-1 and AISHELL-2 datasets demonstrate the effectiveness of the proposed method. 2 authors · Oct 12, 2022
- VAD-free Streaming Hybrid CTC/Attention ASR for Unsegmented Recording In this work, we propose novel decoding algorithms to enable streaming automatic speech recognition (ASR) on unsegmented long-form recordings without voice activity detection (VAD), based on monotonic chunkwise attention (MoChA) with an auxiliary connectionist temporal classification (CTC) objective. We propose a block-synchronous beam search decoding to take advantage of efficient batched output-synchronous and low-latency input-synchronous searches. We also propose a VAD-free inference algorithm that leverages CTC probabilities to determine a suitable timing to reset the model states to tackle the vulnerability to long-form data. Experimental evaluations demonstrate that the block-synchronous decoding achieves comparable accuracy to the label-synchronous one. Moreover, the VAD-free inference can recognize long-form speech robustly for up to a few hours. 2 authors · Jul 15, 2021
- Libri-Light: A Benchmark for ASR with Limited or No Supervision We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art. 15 authors · Dec 17, 2019
1 Optimizing Byte-level Representation for End-to-end ASR We propose a novel approach to optimizing a byte-level representation for end-to-end automatic speech recognition (ASR). Byte-level representation is often used by large scale multilingual ASR systems when the character set of the supported languages is large. The compactness and universality of byte-level representation allow the ASR models to use smaller output vocabularies and therefore, provide more flexibility. UTF-8 is a commonly used byte-level representation for multilingual ASR, but it is not designed to optimize machine learning tasks directly. By using auto-encoder and vector quantization, we show that we can optimize a byte-level representation for ASR and achieve better accuracy. Our proposed framework can incorporate information from different modalities, and provides an error correction mechanism. In an English/Mandarin dictation task, we show that a bilingual ASR model built with this approach can outperform UTF-8 representation by 5% relative in error rate. 5 authors · Jun 13, 2024
1 SYN2REAL: Leveraging Task Arithmetic for Mitigating Synthetic-Real Discrepancies in ASR Domain Adaptation Recent advancements in large language models (LLMs) have introduced the 'task vector' concept, which has significantly impacted various domains but remains underexplored in speech recognition. This paper presents a novel 'SYN2REAL' task vector for domain adaptation in automatic speech recognition (ASR), specifically targeting text-only domains. Traditional fine-tuning on synthetic speech often results in performance degradation due to acoustic mismatches. To address this issue, we propose creating a 'SYN2REAL' vector by subtracting the parameter differences between models fine-tuned on real and synthetic speech. This vector effectively bridges the gap between the two domains. Experiments on the SLURP dataset demonstrate that our approach yields an average improvement of 11.15% in word error rate for unseen target domains, highlighting the potential of task vectors in enhancing speech domain adaptation. 4 authors · Jun 5, 2024
1 How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications Recent work on self-supervised pre-training focus on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E) acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre-training and fine-tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open-source and challenging ATC databases with signal-to-noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid-based ASR baselines by only fine-tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low-resource scenario and gender bias carried by one ATC dataset. 9 authors · Mar 31, 2022
- Whisper Turns Stronger: Augmenting Wav2Vec 2.0 for Superior ASR in Low-Resource Languages Approaching Speech-to-Text and Automatic Speech Recognition problems in low-resource languages is notoriously challenging due to the scarcity of validated datasets and the diversity of dialects. Arabic, Russian, and Portuguese exemplify these difficulties, being low-resource languages due to the many dialects of these languages across different continents worldwide. Moreover, the variety of accents and pronunciations of such languages complicate ASR models' success. With the increasing popularity of Deep Learning and Transformers, acoustic models like the renowned Wav2Vec2 have achieved superior performance in the Speech Recognition field compared to state-of-the-art approaches. However, despite Wav2Vec2's improved efficiency over traditional methods, its performance significantly declines for under-represented languages, even though it requires significantly less labeled data. This paper introduces an end-to-end framework that enhances ASR systems fine-tuned on Wav2Vec2 through data augmentation techniques. To validate our framework's effectiveness, we conducted a detailed experimental evaluation using three datasets from Mozilla's Common Voice project in Arabic, Russian, and Portuguese. Additionally, the framework presented in this paper demonstrates robustness to different diacritics. Ultimately, our approach outperforms two previous baseline models, which are the pre-trained Wav2Vec2 and the well-known Whisper ASR model, resulting in an average relative improvement of 33.9\% in Word Error Rate and a 53.2\% relative improvement in Character Error Rate. 3 authors · Dec 31, 2024
- Performance Analysis of Speech Encoders for Low-Resource SLU and ASR in Tunisian Dialect Speech encoders pretrained through self-supervised learning (SSL) have demonstrated remarkable performance in various downstream tasks, including Spoken Language Understanding (SLU) and Automatic Speech Recognition (ASR). For instance, fine-tuning SSL models for such tasks has shown significant potential, leading to improvements in the SOTA performance across challenging datasets. In contrast to existing research, this paper contributes by comparing the effectiveness of SSL approaches in the context of (i) the low-resource spoken Tunisian Arabic dialect and (ii) its combination with a low-resource SLU and ASR scenario, where only a few semantic annotations are available for fine-tuning. We conduct experiments using many SSL speech encoders on the TARIC-SLU dataset. We use speech encoders that were pre-trained on either monolingual or multilingual speech data. Some of them have also been refined without in-domain nor Tunisian data through multimodal supervised teacher-student paradigm. This study yields numerous significant findings that we are discussing in this paper. 4 authors · Jul 5, 2024
- GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline uses Whisper for initial transcription and TorchAudio for forced alignment, combined with multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thus enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus's high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to the Whisper large-v3 model, with merely 10% model parameters. Furthermore, our ASR models trained on Gigaspeech 2 yield superior performance compared to commercial services. We believe that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area. 16 authors · Jun 17, 2024
- Towards Supervised Performance on Speaker Verification with Self-Supervised Learning by Leveraging Large-Scale ASR Models Recent advancements in Self-Supervised Learning (SSL) have shown promising results in Speaker Verification (SV). However, narrowing the performance gap with supervised systems remains an ongoing challenge. Several studies have observed that speech representations from large-scale ASR models contain valuable speaker information. This work explores the limitations of fine-tuning these models for SV using an SSL contrastive objective in an end-to-end approach. Then, we propose a framework to learn speaker representations in an SSL context by fine-tuning a pre-trained WavLM with a supervised loss using pseudo-labels. Initial pseudo-labels are derived from an SSL DINO-based model and are iteratively refined by clustering the model embeddings. Our method achieves 0.99% EER on VoxCeleb1-O, establishing the new state-of-the-art on self-supervised SV. As this performance is close to our supervised baseline of 0.94% EER, this contribution is a step towards supervised performance on SV with SSL. 3 authors · Jun 4, 2024
- Investigating Zero-Shot Generalizability on Mandarin-English Code-Switched ASR and Speech-to-text Translation of Recent Foundation Models with Self-Supervision and Weak Supervision This work evaluated several cutting-edge large-scale foundation models based on self-supervision or weak supervision, including SeamlessM4T, SeamlessM4T v2, and Whisper-large-v3, on three code-switched corpora. We found that self-supervised models can achieve performances close to the supervised model, indicating the effectiveness of multilingual self-supervised pre-training. We also observed that these models still have room for improvement as they kept making similar mistakes and had unsatisfactory performances on modeling intra-sentential code-switching. In addition, the validity of several variants of Whisper was explored, and we concluded that they remained effective in a code-switching scenario, and similar techniques for self-supervised models are worth studying to boost the performance of code-switched tasks. 6 authors · Dec 30, 2023
- Memory-augmented conformer for improved end-to-end long-form ASR Conformers have recently been proposed as a promising modelling approach for automatic speech recognition (ASR), outperforming recurrent neural network-based approaches and transformers. Nevertheless, in general, the performance of these end-to-end models, especially attention-based models, is particularly degraded in the case of long utterances. To address this limitation, we propose adding a fully-differentiable memory-augmented neural network between the encoder and decoder of a conformer. This external memory can enrich the generalization for longer utterances since it allows the system to store and retrieve more information recurrently. Notably, we explore the neural Turing machine (NTM) that results in our proposed Conformer-NTM model architecture for ASR. Experimental results using Librispeech train-clean-100 and train-960 sets show that the proposed system outperforms the baseline conformer without memory for long utterances. 2 authors · Sep 22, 2023
- Towards Universal Speech Discrete Tokens: A Case Study for ASR and TTS Self-supervised learning (SSL) proficiency in speech-related tasks has driven research into utilizing discrete tokens for speech tasks like recognition and translation, which offer lower storage requirements and great potential to employ natural language processing techniques. However, these studies, mainly single-task focused, faced challenges like overfitting and performance degradation in speech recognition tasks, often at the cost of sacrificing performance in multi-task scenarios. This study presents a comprehensive comparison and optimization of discrete tokens generated by various leading SSL models in speech recognition and synthesis tasks. We aim to explore the universality of speech discrete tokens across multiple speech tasks. Experimental results demonstrate that discrete tokens achieve comparable results against systems trained on FBank features in speech recognition tasks and outperform mel-spectrogram features in speech synthesis in subjective and objective metrics. These findings suggest that universal discrete tokens have enormous potential in various speech-related tasks. Our work is open-source and publicly available at https://github.com/k2-fsa/icefall. 7 authors · Sep 13, 2023
- The Edinburgh International Accents of English Corpus: Towards the Democratization of English ASR English is the most widely spoken language in the world, used daily by millions of people as a first or second language in many different contexts. As a result, there are many varieties of English. Although the great many advances in English automatic speech recognition (ASR) over the past decades, results are usually reported based on test datasets which fail to represent the diversity of English as spoken today around the globe. We present the first release of The Edinburgh International Accents of English Corpus (EdAcc). This dataset attempts to better represent the wide diversity of English, encompassing almost 40 hours of dyadic video call conversations between friends. Unlike other datasets, EdAcc includes a wide range of first and second-language varieties of English and a linguistic background profile of each speaker. Results on latest public, and commercial models show that EdAcc highlights shortcomings of current English ASR models. The best performing model, trained on 680 thousand hours of transcribed data, obtains an average of 19.7% word error rate (WER) -- in contrast to the 2.7% WER obtained when evaluated on US English clean read speech. Across all models, we observe a drop in performance on Indian, Jamaican, and Nigerian English speakers. Recordings, linguistic backgrounds, data statement, and evaluation scripts are released on our website (https://groups.inf.ed.ac.uk/edacc/) under CC-BY-SA license. 6 authors · Mar 31, 2023
- Iterative pseudo-forced alignment by acoustic CTC loss for self-supervised ASR domain adaptation High-quality data labeling from specific domains is costly and human time-consuming. In this work, we propose a self-supervised domain adaptation method, based upon an iterative pseudo-forced alignment algorithm. The produced alignments are employed to customize an end-to-end Automatic Speech Recognition (ASR) and iteratively refined. The algorithm is fed with frame-wise character posteriors produced by a seed ASR, trained with out-of-domain data, and optimized throughout a Connectionist Temporal Classification (CTC) loss. The alignments are computed iteratively upon a corpus of broadcast TV. The process is repeated by reducing the quantity of text to be aligned or expanding the alignment window until finding the best possible audio-text alignment. The starting timestamps, or temporal anchors, are produced uniquely based on the confidence score of the last aligned utterance. This score is computed with the paths of the CTC-alignment matrix. With this methodology, no human-revised text references are required. Alignments from long audio files with low-quality transcriptions, like TV captions, are filtered out by confidence score and ready for further ASR adaptation. The obtained results, on both the Spanish RTVE2022 and CommonVoice databases, underpin the feasibility of using CTC-based systems to perform: highly accurate audio-text alignments, domain adaptation and semi-supervised training of end-to-end ASR. 2 authors · Oct 27, 2022
- Context-based out-of-vocabulary word recovery for ASR systems in Indian languages Detecting and recovering out-of-vocabulary (OOV) words is always challenging for Automatic Speech Recognition (ASR) systems. Many existing methods focus on modeling OOV words by modifying acoustic and language models and integrating context words cleverly into models. To train such complex models, we need a large amount of data with context words, additional training time, and increased model size. However, after getting the ASR transcription to recover context-based OOV words, the post-processing method has not been explored much. In this work, we propose a post-processing technique to improve the performance of context-based OOV recovery. We created an acoustically boosted language model with a sub-graph made at phone level with an OOV words list. We proposed two methods to determine a suitable cost function to retrieve the OOV words based on the context. The cost function is defined based on phonetic and acoustic knowledge for matching and recovering the correct context words in the decode. The effectiveness of the proposed cost function is evaluated at both word-level and sentence-level. The evaluation results show that this approach can recover an average of 50% context-based OOV words across multiple categories. 6 authors · Jun 9, 2022
- Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data This paper studies a novel pre-training technique with unpaired speech data, Speech2C, for encoder-decoder based automatic speech recognition (ASR). Within a multi-task learning framework, we introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes, derived from an offline clustering model. One is to predict the pseudo codes via masked language modeling in encoder output, like HuBERT model, while the other lets the decoder learn to reconstruct pseudo codes autoregressively instead of generating textual scripts. In this way, the decoder learns to reconstruct original speech information with codes before learning to generate correct text. Comprehensive experiments on the LibriSpeech corpus show that the proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training, and also outperforms significantly the state-of-the-art wav2vec 2.0 and HuBERT on fine-tuning subsets of 10h and 100h. We release our code and model at https://github.com/microsoft/SpeechT5/tree/main/Speech2C. 10 authors · Mar 31, 2022
- Analysis of Data Augmentation Methods for Low-Resource Maltese ASR Recent years have seen an increased interest in the computational speech processing of Maltese, but resources remain sparse. In this paper, we consider data augmentation techniques for improving speech recognition for low-resource languages, focusing on Maltese as a test case. We consider three different types of data augmentation: unsupervised training, multilingual training and the use of synthesized speech as training data. The goal is to determine which of these techniques, or combination of them, is the most effective to improve speech recognition for languages where the starting point is a small corpus of approximately 7 hours of transcribed speech. Our results show that combining the data augmentation techniques studied here lead us to an absolute WER improvement of 15% without the use of a language model. 6 authors · Nov 15, 2021
1 Echotune: A Modular Extractor Leveraging the Variable-Length Nature of Speech in ASR Tasks The Transformer architecture has proven to be highly effective for Automatic Speech Recognition (ASR) tasks, becoming a foundational component for a plethora of research in the domain. Historically, many approaches have leaned on fixed-length attention windows, which becomes problematic for varied speech samples in duration and complexity, leading to data over-smoothing and neglect of essential long-term connectivity. Addressing this limitation, we introduce Echo-MSA, a nimble module equipped with a variable-length attention mechanism that accommodates a range of speech sample complexities and durations. This module offers the flexibility to extract speech features across various granularities, spanning from frames and phonemes to words and discourse. The proposed design captures the variable length feature of speech and addresses the limitations of fixed-length attention. Our evaluation leverages a parallel attention architecture complemented by a dynamic gating mechanism that amalgamates traditional attention with the Echo-MSA module output. Empirical evidence from our study reveals that integrating Echo-MSA into the primary model's training regime significantly enhances the word error rate (WER) performance, all while preserving the intrinsic stability of the original model. 3 authors · Sep 14, 2023
- Enhancing Child Vocalization Classification in Multi-Channel Child-Adult Conversations Through Wav2vec2 Children ASR Features Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that often emerges in early childhood. ASD assessment typically involves an observation protocol including note-taking and ratings of child's social behavior conducted by a trained clinician. A robust machine learning (ML) model that is capable of labeling adult and child audio has the potential to save significant time and labor in manual coding children's behaviors. This may assist clinicians capture events of interest, better communicate events with parents, and educate new clinicians. In this study, we leverage the self-supervised learning model, Wav2Vec 2.0 (W2V2), pretrained on 4300h of home recordings of children under 5 years old, to build a unified system that performs both speaker diarization (SD) and vocalization classification (VC) tasks. We apply this system to two-channel audio recordings of brief 3-5 minute clinician-child interactions using the Rapid-ABC corpus. We propose a novel technique by introducing auxiliary features extracted from W2V2-based automatic speech recognition (ASR) system for children under 4 years old to improve children's VC task. We test our proposed method of improving children's VC task on two corpora (Rapid-ABC and BabbleCor) and observe consistent improvements. Furthermore, we reach, or perhaps outperform, the state-of-the-art performance of BabbleCor. 3 authors · Sep 13, 2023
- Effectiveness of Mining Audio and Text Pairs from Public Data for Improving ASR Systems for Low-Resource Languages End-to-end (E2E) models have become the default choice for state-of-the-art speech recognition systems. Such models are trained on large amounts of labelled data, which are often not available for low-resource languages. Techniques such as self-supervised learning and transfer learning hold promise, but have not yet been effective in training accurate models. On the other hand, collecting labelled datasets on a diverse set of domains and speakers is very expensive. In this work, we demonstrate an inexpensive and effective alternative to these approaches by ``mining'' text and audio pairs for Indian languages from public sources, specifically from the public archives of All India Radio. As a key component, we adapt the Needleman-Wunsch algorithm to align sentences with corresponding audio segments given a long audio and a PDF of its transcript, while being robust to errors due to OCR, extraneous text, and non-transcribed speech. We thus create Shrutilipi, a dataset which contains over 6,400 hours of labelled audio across 12 Indian languages totalling to 4.95M sentences. On average, Shrutilipi results in a 2.3x increase over publicly available labelled data. We establish the quality of Shrutilipi with 21 human evaluators across the 12 languages. We also establish the diversity of Shrutilipi in terms of represented regions, speakers, and mentioned named entities. Significantly, we show that adding Shrutilipi to the training set of Wav2Vec models leads to an average decrease in WER of 5.8\% for 7 languages on the IndicSUPERB benchmark. For Hindi, which has the most benchmarks (7), the average WER falls from 18.8% to 13.5%. This improvement extends to efficient models: We show a 2.3% drop in WER for a Conformer model (10x smaller than Wav2Vec). Finally, we demonstrate the diversity of Shrutilipi by showing that the model trained with it is more robust to noisy input. 7 authors · Aug 26, 2022
- Pruned RNN-T for fast, memory-efficient ASR training The RNN-Transducer (RNN-T) framework for speech recognition has been growing in popularity, particularly for deployed real-time ASR systems, because it combines high accuracy with naturally streaming recognition. One of the drawbacks of RNN-T is that its loss function is relatively slow to compute, and can use a lot of memory. Excessive GPU memory usage can make it impractical to use RNN-T loss in cases where the vocabulary size is large: for example, for Chinese character-based ASR. We introduce a method for faster and more memory-efficient RNN-T loss computation. We first obtain pruning bounds for the RNN-T recursion using a simple joiner network that is linear in the encoder and decoder embeddings; we can evaluate this without using much memory. We then use those pruning bounds to evaluate the full, non-linear joiner network. 7 authors · Jun 23, 2022
- GigaSpeech: An Evolving, Multi-domain ASR Corpus with 10,000 Hours of Transcribed Audio This paper introduces GigaSpeech, an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science, sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable for speech recognition training, and to filter out segments with low-quality transcription. For system training, GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h. For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage, and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand, are re-processed by professional human transcribers to ensure high transcription quality. Baseline systems are provided for popular speech recognition toolkits, namely Athena, ESPnet, Kaldi and Pika. 21 authors · Jun 13, 2021
- ESPnet-se: end-to-end speech enhancement and separation toolkit designed for asr integration We present ESPnet-SE, which is designed for the quick development of speech enhancement and speech separation systems in a single framework, along with the optional downstream speech recognition module. ESPnet-SE is a new project which integrates rich automatic speech recognition related models, resources and systems to support and validate the proposed front-end implementation (i.e. speech enhancement and separation).It is capable of processing both single-channel and multi-channel data, with various functionalities including dereverberation, denoising and source separation. We provide all-in-one recipes including data pre-processing, feature extraction, training and evaluation pipelines for a wide range of benchmark datasets. This paper describes the design of the toolkit, several important functionalities, especially the speech recognition integration, which differentiates ESPnet-SE from other open source toolkits, and experimental results with major benchmark datasets. 11 authors · Nov 7, 2020