Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAI-Generated Text Detection and Classification Based on BERT Deep Learning Algorithm
AI-generated text detection plays an increasingly important role in various fields. In this study, we developed an efficient AI-generated text detection model based on the BERT algorithm, which provides new ideas and methods for solving related problems. In the data preprocessing stage, a series of steps were taken to process the text, including operations such as converting to lowercase, word splitting, removing stop words, stemming extraction, removing digits, and eliminating redundant spaces, to ensure data quality and accuracy. By dividing the dataset into a training set and a test set in the ratio of 60% and 40%, and observing the changes in the accuracy and loss values during the training process, we found that the model performed well during the training process. The accuracy increases steadily from the initial 94.78% to 99.72%, while the loss value decreases from 0.261 to 0.021 and converges gradually, which indicates that the BERT model is able to detect AI-generated text with high accuracy and the prediction results are gradually approaching the real classification results. Further analysis of the results of the training and test sets reveals that in terms of loss value, the average loss of the training set is 0.0565, while the average loss of the test set is 0.0917, showing a slightly higher loss value. As for the accuracy, the average accuracy of the training set reaches 98.1%, while the average accuracy of the test set is 97.71%, which is not much different from each other, indicating that the model has good generalisation ability. In conclusion, the AI-generated text detection model based on the BERT algorithm proposed in this study shows high accuracy and stability in experiments, providing an effective solution for related fields.
AI-generated text boundary detection with RoFT
Due to the rapid development of large language models, people increasingly often encounter texts that may start as written by a human but continue as machine-generated. Detecting the boundary between human-written and machine-generated parts of such texts is a challenging problem that has not received much attention in literature. We attempt to bridge this gap and examine several ways to adapt state of the art artificial text detection classifiers to the boundary detection setting. We push all detectors to their limits, using the Real or Fake text benchmark that contains short texts on several topics and includes generations of various language models. We use this diversity to deeply examine the robustness of all detectors in cross-domain and cross-model settings to provide baselines and insights for future research. In particular, we find that perplexity-based approaches to boundary detection tend to be more robust to peculiarities of domain-specific data than supervised fine-tuning of the RoBERTa model; we also find which features of the text confuse boundary detection algorithms and negatively influence their performance in cross-domain settings.
Robust AI-Generated Text Detection by Restricted Embeddings
Growing amount and quality of AI-generated texts makes detecting such content more difficult. In most real-world scenarios, the domain (style and topic) of generated data and the generator model are not known in advance. In this work, we focus on the robustness of classifier-based detectors of AI-generated text, namely their ability to transfer to unseen generators or semantic domains. We investigate the geometry of the embedding space of Transformer-based text encoders and show that clearing out harmful linear subspaces helps to train a robust classifier, ignoring domain-specific spurious features. We investigate several subspace decomposition and feature selection strategies and achieve significant improvements over state of the art methods in cross-domain and cross-generator transfer. Our best approaches for head-wise and coordinate-based subspace removal increase the mean out-of-distribution (OOD) classification score by up to 9% and 14% in particular setups for RoBERTa and BERT embeddings respectively. We release our code and data: https://github.com/SilverSolver/RobustATD
Vietnamese AI Generated Text Detection
In recent years, Large Language Models (LLMs) have become integrated into our daily lives, serving as invaluable assistants in completing tasks. Widely embraced by users, the abuse of LLMs is inevitable, particularly in using them to generate text content for various purposes, leading to difficulties in distinguishing between text generated by LLMs and that written by humans. In this study, we present a dataset named ViDetect, comprising 6.800 samples of Vietnamese essay, with 3.400 samples authored by humans and the remainder generated by LLMs, serving the purpose of detecting text generated by AI. We conducted evaluations using state-of-the-art methods, including ViT5, BartPho, PhoBERT, mDeberta V3, and mBERT. These results contribute not only to the growing body of research on detecting text generated by AI but also demonstrate the adaptability and effectiveness of different methods in the Vietnamese language context. This research lays the foundation for future advancements in AI-generated text detection and provides valuable insights for researchers in the field of natural language processing.
LLM-Detector: Improving AI-Generated Chinese Text Detection with Open-Source LLM Instruction Tuning
ChatGPT and other general large language models (LLMs) have achieved remarkable success, but they have also raised concerns about the misuse of AI-generated texts. Existing AI-generated text detection models, such as based on BERT and RoBERTa, are prone to in-domain over-fitting, leading to poor out-of-domain (OOD) detection performance. In this paper, we first collected Chinese text responses generated by human experts and 9 types of LLMs, for which to multiple domains questions, and further created a dataset that mixed human-written sentences and sentences polished by LLMs. We then proposed LLM-Detector, a novel method for both document-level and sentence-level text detection through Instruction Tuning of LLMs. Our method leverages the wealth of knowledge LLMs acquire during pre-training, enabling them to detect the text they generate. Instruction tuning aligns the model's responses with the user's expected text detection tasks. Experimental results show that previous methods struggle with sentence-level AI-generated text detection and OOD detection. In contrast, our proposed method not only significantly outperforms baseline methods in both sentence-level and document-level text detection but also demonstrates strong generalization capabilities. Furthermore, since LLM-Detector is trained based on open-source LLMs, it is easy to customize for deployment.
Group-Adaptive Threshold Optimization for Robust AI-Generated Text Detection
The advancement of large language models (LLMs) has made it difficult to differentiate human-written text from AI-generated text. Several AI-text detectors have been developed in response, which typically utilize a fixed global threshold (e.g., {\theta} = 0.5) to classify machine-generated text. However, we find that one universal threshold can fail to account for subgroup-specific distributional variations. For example, when using a fixed threshold, detectors make more false positive errors on shorter human-written text than longer, and more positive classifications on neurotic writing styles than open among long text. These discrepancies can lead to misclassification that disproportionately affects certain groups. We address this critical limitation by introducing FairOPT, an algorithm for group-specific threshold optimization in AI-generated content classifiers. Our approach partitions data into subgroups based on attributes (e.g., text length and writing style) and learns decision thresholds for each group, which enables careful balancing of performance and fairness metrics within each subgroup. In experiments with four AI text classifiers on three datasets, FairOPT enhances overall F1 score and decreases balanced error rate (BER) discrepancy across subgroups. Our framework paves the way for more robust and fair classification criteria in AI-generated output detection.
SeqXGPT: Sentence-Level AI-Generated Text Detection
Widely applied large language models (LLMs) can generate human-like content, raising concerns about the abuse of LLMs. Therefore, it is important to build strong AI-generated text (AIGT) detectors. Current works only consider document-level AIGT detection, therefore, in this paper, we first introduce a sentence-level detection challenge by synthesizing a dataset that contains documents that are polished with LLMs, that is, the documents contain sentences written by humans and sentences modified by LLMs. Then we propose Sequence X (Check) GPT, a novel method that utilizes log probability lists from white-box LLMs as features for sentence-level AIGT detection. These features are composed like waves in speech processing and cannot be studied by LLMs. Therefore, we build SeqXGPT based on convolution and self-attention networks. We test it in both sentence and document-level detection challenges. Experimental results show that previous methods struggle in solving sentence-level AIGT detection, while our method not only significantly surpasses baseline methods in both sentence and document-level detection challenges but also exhibits strong generalization capabilities.
Ten Words Only Still Help: Improving Black-Box AI-Generated Text Detection via Proxy-Guided Efficient Re-Sampling
With the rapidly increasing application of large language models (LLMs), their abuse has caused many undesirable societal problems such as fake news, academic dishonesty, and information pollution. This makes AI-generated text (AIGT) detection of great importance. Among existing methods, white-box methods are generally superior to black-box methods in terms of performance and generalizability, but they require access to LLMs' internal states and are not applicable to black-box settings. In this paper, we propose to estimate word generation probabilities as pseudo white-box features via multiple re-sampling to help improve AIGT detection under the black-box setting. Specifically, we design POGER, a proxy-guided efficient re-sampling method, which selects a small subset of representative words (e.g., 10 words) for performing multiple re-sampling in black-box AIGT detection. Experiments on datasets containing texts from humans and seven LLMs show that POGER outperforms all baselines in macro F1 under black-box, partial white-box, and out-of-distribution settings and maintains lower re-sampling costs than its existing counterparts.
Counter Turing Test CT^2: AI-Generated Text Detection is Not as Easy as You May Think -- Introducing AI Detectability Index
With the rise of prolific ChatGPT, the risk and consequences of AI-generated text has increased alarmingly. To address the inevitable question of ownership attribution for AI-generated artifacts, the US Copyright Office released a statement stating that 'If a work's traditional elements of authorship were produced by a machine, the work lacks human authorship and the Office will not register it'. Furthermore, both the US and the EU governments have recently drafted their initial proposals regarding the regulatory framework for AI. Given this cynosural spotlight on generative AI, AI-generated text detection (AGTD) has emerged as a topic that has already received immediate attention in research, with some initial methods having been proposed, soon followed by emergence of techniques to bypass detection. This paper introduces the Counter Turing Test (CT^2), a benchmark consisting of techniques aiming to offer a comprehensive evaluation of the robustness of existing AGTD techniques. Our empirical findings unequivocally highlight the fragility of the proposed AGTD methods under scrutiny. Amidst the extensive deliberations on policy-making for regulating AI development, it is of utmost importance to assess the detectability of content generated by LLMs. Thus, to establish a quantifiable spectrum facilitating the evaluation and ranking of LLMs according to their detectability levels, we propose the AI Detectability Index (ADI). We conduct a thorough examination of 15 contemporary LLMs, empirically demonstrating that larger LLMs tend to have a higher ADI, indicating they are less detectable compared to smaller LLMs. We firmly believe that ADI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making.
An Empirical Study of AI Generated Text Detection Tools
Since ChatGPT has emerged as a major AIGC model, providing high-quality responses across a wide range of applications (including software development and maintenance), it has attracted much interest from many individuals. ChatGPT has great promise, but there are serious problems that might arise from its misuse, especially in the realms of education and public safety. Several AIGC detectors are available, and they have all been tested on genuine text. However, more study is needed to see how effective they are for multi-domain ChatGPT material. This study aims to fill this need by creating a multi-domain dataset for testing the state-of-the-art APIs and tools for detecting artificially generated information used by universities and other research institutions. A large dataset consisting of articles, abstracts, stories, news, and product reviews was created for this study. The second step is to use the newly created dataset to put six tools through their paces. Six different artificial intelligence (AI) text identification systems, including "GPTkit," "GPTZero," "Originality," "Sapling," "Writer," and "Zylalab," have accuracy rates between 55.29 and 97.0%. Although all the tools fared well in the evaluations, originality was particularly effective across the board.
EAGLE: A Domain Generalization Framework for AI-generated Text Detection
With the advancement in capabilities of Large Language Models (LLMs), one major step in the responsible and safe use of such LLMs is to be able to detect text generated by these models. While supervised AI-generated text detectors perform well on text generated by older LLMs, with the frequent release of new LLMs, building supervised detectors for identifying text from such new models would require new labeled training data, which is infeasible in practice. In this work, we tackle this problem and propose a domain generalization framework for the detection of AI-generated text from unseen target generators. Our proposed framework, EAGLE, leverages the labeled data that is available so far from older language models and learns features invariant across these generators, in order to detect text generated by an unknown target generator. EAGLE learns such domain-invariant features by combining the representational power of self-supervised contrastive learning with domain adversarial training. Through our experiments we demonstrate how EAGLE effectively achieves impressive performance in detecting text generated by unseen target generators, including recent state-of-the-art ones such as GPT-4 and Claude, reaching detection scores of within 4.7% of a fully supervised detector.
ConDA: Contrastive Domain Adaptation for AI-generated Text Detection
Large language models (LLMs) are increasingly being used for generating text in a variety of use cases, including journalistic news articles. Given the potential malicious nature in which these LLMs can be used to generate disinformation at scale, it is important to build effective detectors for such AI-generated text. Given the surge in development of new LLMs, acquiring labeled training data for supervised detectors is a bottleneck. However, there might be plenty of unlabeled text data available, without information on which generator it came from. In this work we tackle this data problem, in detecting AI-generated news text, and frame the problem as an unsupervised domain adaptation task. Here the domains are the different text generators, i.e. LLMs, and we assume we have access to only the labeled source data and unlabeled target data. We develop a Contrastive Domain Adaptation framework, called ConDA, that blends standard domain adaptation techniques with the representation power of contrastive learning to learn domain invariant representations that are effective for the final unsupervised detection task. Our experiments demonstrate the effectiveness of our framework, resulting in average performance gains of 31.7% from the best performing baselines, and within 0.8% margin of a fully supervised detector. All our code and data is available at https://github.com/AmritaBh/ConDA-gen-text-detection.
Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection
The rapid advancement in large language models (LLMs) has significantly enhanced their ability to generate coherent and contextually relevant text, raising concerns about the misuse of AI-generated content and making it critical to detect it. However, the task remains challenging, particularly in unseen domains or with unfamiliar LLMs. Leveraging LLM next-token distribution outputs offers a theoretically appealing approach for detection, as they encapsulate insights from the models' extensive pre-training on diverse corpora. Despite its promise, zero-shot methods that attempt to operationalize these outputs have met with limited success. We hypothesize that one of the problems is that they use the mean to aggregate next-token distribution metrics across tokens, when some tokens are naturally easier or harder to predict and should be weighted differently. Based on this idea, we propose the Perplexity Attention Weighted Network (PAWN), which uses the last hidden states of the LLM and positions to weight the sum of a series of features based on metrics from the next-token distribution across the sequence length. Although not zero-shot, our method allows us to cache the last hidden states and next-token distribution metrics on disk, greatly reducing the training resource requirements. PAWN shows competitive and even better performance in-distribution than the strongest baselines (fine-tuned LMs) with a fraction of their trainable parameters. Our model also generalizes better to unseen domains and source models, with smaller variability in the decision boundary across distribution shifts. It is also more robust to adversarial attacks, and if the backbone has multilingual capabilities, it presents decent generalization to languages not seen during supervised training, with LLaMA3-1B reaching a mean macro-averaged F1 score of 81.46% in cross-validation with nine languages.
Fighting Fire with Fire: Can ChatGPT Detect AI-generated Text?
Large language models (LLMs) such as ChatGPT are increasingly being used for various use cases, including text content generation at scale. Although detection methods for such AI-generated text exist already, we investigate ChatGPT's performance as a detector on such AI-generated text, inspired by works that use ChatGPT as a data labeler or annotator. We evaluate the zero-shot performance of ChatGPT in the task of human-written vs. AI-generated text detection, and perform experiments on publicly available datasets. We empirically investigate if ChatGPT is symmetrically effective in detecting AI-generated or human-written text. Our findings provide insight on how ChatGPT and similar LLMs may be leveraged in automated detection pipelines by simply focusing on solving a specific aspect of the problem and deriving the rest from that solution. All code and data is available at https://github.com/AmritaBh/ChatGPT-as-Detector.
Paraphrasing evades detectors of AI-generated text, but retrieval is an effective defense
To detect the deployment of large language models for malicious use cases (e.g., fake content creation or academic plagiarism), several approaches have recently been proposed for identifying AI-generated text via watermarks or statistical irregularities. How robust are these detection algorithms to paraphrases of AI-generated text? To stress test these detectors, we first train an 11B parameter paraphrase generation model (DIPPER) that can paraphrase paragraphs, optionally leveraging surrounding text (e.g., user-written prompts) as context. DIPPER also uses scalar knobs to control the amount of lexical diversity and reordering in the paraphrases. Paraphrasing text generated by three large language models (including GPT3.5-davinci-003) with DIPPER successfully evades several detectors, including watermarking, GPTZero, DetectGPT, and OpenAI's text classifier. For example, DIPPER drops the detection accuracy of DetectGPT from 70.3% to 4.6% (at a constant false positive rate of 1%), without appreciably modifying the input semantics. To increase the robustness of AI-generated text detection to paraphrase attacks, we introduce a simple defense that relies on retrieving semantically-similar generations and must be maintained by a language model API provider. Given a candidate text, our algorithm searches a database of sequences previously generated by the API, looking for sequences that match the candidate text within a certain threshold. We empirically verify our defense using a database of 15M generations from a fine-tuned T5-XXL model and find that it can detect 80% to 97% of paraphrased generations across different settings, while only classifying 1% of human-written sequences as AI-generated. We will open source our code, model and data for future research.
DeTeCtive: Detecting AI-generated Text via Multi-Level Contrastive Learning
Current techniques for detecting AI-generated text are largely confined to manual feature crafting and supervised binary classification paradigms. These methodologies typically lead to performance bottlenecks and unsatisfactory generalizability. Consequently, these methods are often inapplicable for out-of-distribution (OOD) data and newly emerged large language models (LLMs). In this paper, we revisit the task of AI-generated text detection. We argue that the key to accomplishing this task lies in distinguishing writing styles of different authors, rather than simply classifying the text into human-written or AI-generated text. To this end, we propose DeTeCtive, a multi-task auxiliary, multi-level contrastive learning framework. DeTeCtive is designed to facilitate the learning of distinct writing styles, combined with a dense information retrieval pipeline for AI-generated text detection. Our method is compatible with a range of text encoders. Extensive experiments demonstrate that our method enhances the ability of various text encoders in detecting AI-generated text across multiple benchmarks and achieves state-of-the-art results. Notably, in OOD zero-shot evaluation, our method outperforms existing approaches by a large margin. Moreover, we find our method boasts a Training-Free Incremental Adaptation (TFIA) capability towards OOD data, further enhancing its efficacy in OOD detection scenarios. We will open-source our code and models in hopes that our work will spark new thoughts in the field of AI-generated text detection, ensuring safe application of LLMs and enhancing compliance. Our code is available at https://github.com/heyongxin233/DeTeCtive.
Detecting AI-Generated Sentences in Human-AI Collaborative Hybrid Texts: Challenges, Strategies, and Insights
This study explores the challenge of sentence-level AI-generated text detection within human-AI collaborative hybrid texts. Existing studies of AI-generated text detection for hybrid texts often rely on synthetic datasets. These typically involve hybrid texts with a limited number of boundaries. We contend that studies of detecting AI-generated content within hybrid texts should cover different types of hybrid texts generated in realistic settings to better inform real-world applications. Therefore, our study utilizes the CoAuthor dataset, which includes diverse, realistic hybrid texts generated through the collaboration between human writers and an intelligent writing system in multi-turn interactions. We adopt a two-step, segmentation-based pipeline: (i) detect segments within a given hybrid text where each segment contains sentences of consistent authorship, and (ii) classify the authorship of each identified segment. Our empirical findings highlight (1) detecting AI-generated sentences in hybrid texts is overall a challenging task because (1.1) human writers' selecting and even editing AI-generated sentences based on personal preferences adds difficulty in identifying the authorship of segments; (1.2) the frequent change of authorship between neighboring sentences within the hybrid text creates difficulties for segment detectors in identifying authorship-consistent segments; (1.3) the short length of text segments within hybrid texts provides limited stylistic cues for reliable authorship determination; (2) before embarking on the detection process, it is beneficial to assess the average length of segments within the hybrid text. This assessment aids in deciding whether (2.1) to employ a text segmentation-based strategy for hybrid texts with longer segments, or (2.2) to adopt a direct sentence-by-sentence classification strategy for those with shorter segments.
Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods
Large language models (LLMs) have advanced to a point that even humans have difficulty discerning whether a text was generated by another human, or by a computer. However, knowing whether a text was produced by human or artificial intelligence (AI) is important to determining its trustworthiness, and has applications in many domains including detecting fraud and academic dishonesty, as well as combating the spread of misinformation and political propaganda. The task of AI-generated text (AIGT) detection is therefore both very challenging, and highly critical. In this survey, we summarize state-of-the art approaches to AIGT detection, including watermarking, statistical and stylistic analysis, and machine learning classification. We also provide information about existing datasets for this task. Synthesizing the research findings, we aim to provide insight into the salient factors that combine to determine how "detectable" AIGT text is under different scenarios, and to make practical recommendations for future work towards this significant technical and societal challenge.
Which LLMs are Difficult to Detect? A Detailed Analysis of Potential Factors Contributing to Difficulties in LLM Text Detection
As LLMs increase in accessibility, LLM-generated texts have proliferated across several fields, such as scientific, academic, and creative writing. However, LLMs are not created equally; they may have different architectures and training datasets. Thus, some LLMs may be more challenging to detect than others. Using two datasets spanning four total writing domains, we train AI-generated (AIG) text classifiers using the LibAUC library - a deep learning library for training classifiers with imbalanced datasets. Our results in the Deepfake Text dataset show that AIG-text detection varies across domains, with scientific writing being relatively challenging. In the Rewritten Ivy Panda (RIP) dataset focusing on student essays, we find that the OpenAI family of LLMs was substantially difficult for our classifiers to distinguish from human texts. Additionally, we explore possible factors that could explain the difficulties in detecting OpenAI-generated texts.
Ghostbuster: Detecting Text Ghostwritten by Large Language Models
We introduce Ghostbuster, a state-of-the-art system for detecting AI-generated text. Our method works by passing documents through a series of weaker language models, running a structured search over possible combinations of their features, and then training a classifier on the selected features to predict whether documents are AI-generated. Crucially, Ghostbuster does not require access to token probabilities from the target model, making it useful for detecting text generated by black-box models or unknown model versions. In conjunction with our model, we release three new datasets of human- and AI-generated text as detection benchmarks in the domains of student essays, creative writing, and news articles. We compare Ghostbuster to a variety of existing detectors, including DetectGPT and GPTZero, as well as a new RoBERTa baseline. Ghostbuster achieves 99.0 F1 when evaluated across domains, which is 5.9 F1 higher than the best preexisting model. It also outperforms all previous approaches in generalization across writing domains (+7.5 F1), prompting strategies (+2.1 F1), and language models (+4.4 F1). We also analyze the robustness of our system to a variety of perturbations and paraphrasing attacks and evaluate its performance on documents written by non-native English speakers.
AI vs. Human -- Differentiation Analysis of Scientific Content Generation
Recent neural language models have taken a significant step forward in producing remarkably controllable, fluent, and grammatical text. Although studies have found that AI-generated text is not distinguishable from human-written text for crowd-sourcing workers, there still exist errors in AI-generated text which are even subtler and harder to spot. We primarily focus on the scenario in which scientific AI writing assistant is deeply involved. First, we construct a feature description framework to distinguish between AI-generated text and human-written text from syntax, semantics, and pragmatics based on the human evaluation. Then we utilize the features, i.e., writing style, coherence, consistency, and argument logistics, from the proposed framework to analyze two types of content. Finally, we adopt several publicly available methods to investigate the gap of between AI-generated scientific text and human-written scientific text by AI-generated scientific text detection models. The results suggest that while AI has the potential to generate scientific content that is as accurate as human-written content, there is still a gap in terms of depth and overall quality. The AI-generated scientific content is more likely to contain errors in factual issues. We find that there exists a "writing style" gap between AI-generated scientific text and human-written scientific text. Based on the analysis result, we summarize a series of model-agnostic and distribution-agnostic features for detection tasks in other domains. Findings in this paper contribute to guiding the optimization of AI models to produce high-quality content and addressing related ethical and security concerns.
A Survey of AI-generated Text Forensic Systems: Detection, Attribution, and Characterization
We have witnessed lately a rapid proliferation of advanced Large Language Models (LLMs) capable of generating high-quality text. While these LLMs have revolutionized text generation across various domains, they also pose significant risks to the information ecosystem, such as the potential for generating convincing propaganda, misinformation, and disinformation at scale. This paper offers a review of AI-generated text forensic systems, an emerging field addressing the challenges of LLM misuses. We present an overview of the existing efforts in AI-generated text forensics by introducing a detailed taxonomy, focusing on three primary pillars: detection, attribution, and characterization. These pillars enable a practical understanding of AI-generated text, from identifying AI-generated content (detection), determining the specific AI model involved (attribution), and grouping the underlying intents of the text (characterization). Furthermore, we explore available resources for AI-generated text forensics research and discuss the evolving challenges and future directions of forensic systems in an AI era.
Stylometric Detection of AI-Generated Text in Twitter Timelines
Recent advancements in pre-trained language models have enabled convenient methods for generating human-like text at a large scale. Though these generation capabilities hold great potential for breakthrough applications, it can also be a tool for an adversary to generate misinformation. In particular, social media platforms like Twitter are highly susceptible to AI-generated misinformation. A potential threat scenario is when an adversary hijacks a credible user account and incorporates a natural language generator to generate misinformation. Such threats necessitate automated detectors for AI-generated tweets in a given user's Twitter timeline. However, tweets are inherently short, thus making it difficult for current state-of-the-art pre-trained language model-based detectors to accurately detect at what point the AI starts to generate tweets in a given Twitter timeline. In this paper, we present a novel algorithm using stylometric signals to aid detecting AI-generated tweets. We propose models corresponding to quantifying stylistic changes in human and AI tweets in two related tasks: Task 1 - discriminate between human and AI-generated tweets, and Task 2 - detect if and when an AI starts to generate tweets in a given Twitter timeline. Our extensive experiments demonstrate that the stylometric features are effective in augmenting the state-of-the-art AI-generated text detectors.
GenAI Content Detection Task 1: English and Multilingual Machine-Generated Text Detection: AI vs. Human
We present the GenAI Content Detection Task~1 -- a shared task on binary machine generated text detection, conducted as a part of the GenAI workshop at COLING 2025. The task consists of two subtasks: Monolingual (English) and Multilingual. The shared task attracted many participants: 36 teams made official submissions to the Monolingual subtask during the test phase and 26 teams -- to the Multilingual. We provide a comprehensive overview of the data, a summary of the results -- including system rankings and performance scores -- detailed descriptions of the participating systems, and an in-depth analysis of submissions. https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1
Are AI-Generated Text Detectors Robust to Adversarial Perturbations?
The widespread use of large language models (LLMs) has sparked concerns about the potential misuse of AI-generated text, as these models can produce content that closely resembles human-generated text. Current detectors for AI-generated text (AIGT) lack robustness against adversarial perturbations, with even minor changes in characters or words causing a reversal in distinguishing between human-created and AI-generated text. This paper investigates the robustness of existing AIGT detection methods and introduces a novel detector, the Siamese Calibrated Reconstruction Network (SCRN). The SCRN employs a reconstruction network to add and remove noise from text, extracting a semantic representation that is robust to local perturbations. We also propose a siamese calibration technique to train the model to make equally confidence predictions under different noise, which improves the model's robustness against adversarial perturbations. Experiments on four publicly available datasets show that the SCRN outperforms all baseline methods, achieving 6.5\%-18.25\% absolute accuracy improvement over the best baseline method under adversarial attacks. Moreover, it exhibits superior generalizability in cross-domain, cross-genre, and mixed-source scenarios. The code is available at https://github.com/CarlanLark/Robust-AIGC-Detector.
DetectGPT-SC: Improving Detection of Text Generated by Large Language Models through Self-Consistency with Masked Predictions
General large language models (LLMs) such as ChatGPT have shown remarkable success, but it has also raised concerns among people about the misuse of AI-generated texts. Therefore, an important question is how to detect whether the texts are generated by ChatGPT or by humans. Existing detectors are built on the assumption that there is a distribution gap between human-generated and AI-generated texts. These gaps are typically identified using statistical information or classifiers. In contrast to prior research methods, we find that large language models such as ChatGPT exhibit strong self-consistency in text generation and continuation. Self-consistency capitalizes on the intuition that AI-generated texts can still be reasoned with by large language models using the same logical reasoning when portions of the texts are masked, which differs from human-generated texts. Using this observation, we subsequently proposed a new method for AI-generated texts detection based on self-consistency with masked predictions to determine whether a text is generated by LLMs. This method, which we call DetectGPT-SC. We conducted a series of experiments to evaluate the performance of DetectGPT-SC. In these experiments, we employed various mask scheme, zero-shot, and simple prompt for completing masked texts and self-consistency predictions. The results indicate that DetectGPT-SC outperforms the current state-of-the-art across different tasks.
J-Guard: Journalism Guided Adversarially Robust Detection of AI-generated News
The rapid proliferation of AI-generated text online is profoundly reshaping the information landscape. Among various types of AI-generated text, AI-generated news presents a significant threat as it can be a prominent source of misinformation online. While several recent efforts have focused on detecting AI-generated text in general, these methods require enhanced reliability, given concerns about their vulnerability to simple adversarial attacks. Furthermore, due to the eccentricities of news writing, applying these detection methods for AI-generated news can produce false positives, potentially damaging the reputation of news organizations. To address these challenges, we leverage the expertise of an interdisciplinary team to develop a framework, J-Guard, capable of steering existing supervised AI text detectors for detecting AI-generated news while boosting adversarial robustness. By incorporating stylistic cues inspired by the unique journalistic attributes, J-Guard effectively distinguishes between real-world journalism and AI-generated news articles. Our experiments on news articles generated by a vast array of AI models, including ChatGPT (GPT3.5), demonstrate the effectiveness of J-Guard in enhancing detection capabilities while maintaining an average performance decrease of as low as 7% when faced with adversarial attacks.
Provable Robust Watermarking for AI-Generated Text
We study the problem of watermarking large language models (LLMs) generated text -- one of the most promising approaches for addressing the safety challenges of LLM usage. In this paper, we propose a rigorous theoretical framework to quantify the effectiveness and robustness of LLM watermarks. We propose a robust and high-quality watermark method, Unigram-Watermark, by extending an existing approach with a simplified fixed grouping strategy. We prove that our watermark method enjoys guaranteed generation quality, correctness in watermark detection, and is robust against text editing and paraphrasing. Experiments on three varying LLMs and two datasets verify that our Unigram-Watermark achieves superior detection accuracy and comparable generation quality in perplexity, thus promoting the responsible use of LLMs. Code is available at https://github.com/XuandongZhao/Unigram-Watermark.
Multiscale Positive-Unlabeled Detection of AI-Generated Texts
Recent releases of Large Language Models (LLMs), e.g. ChatGPT, are astonishing at generating human-like texts, but they may impact the authenticity of texts. Previous works proposed methods to detect these AI-generated texts, including simple ML classifiers, pretrained-model-based zero-shot methods, and finetuned language classification models. However, mainstream detectors always fail on short texts, like SMSes, Tweets, and reviews. In this paper, a Multiscale Positive-Unlabeled (MPU) training framework is proposed to address the difficulty of short-text detection without sacrificing long-texts. Firstly, we acknowledge the human-resemblance property of short machine texts, and rephrase AI text detection as a partial Positive-Unlabeled (PU) problem by regarding these short machine texts as partially "unlabeled". Then in this PU context, we propose the length-sensitive Multiscale PU Loss, where a recurrent model in abstraction is used to estimate positive priors of scale-variant corpora. Additionally, we introduce a Text Multiscaling module to enrich training corpora. Experiments show that our MPU method augments detection performance on long AI-generated texts, and significantly improves short-text detection of language model detectors. Language Models trained with MPU could outcompete existing detectors on various short-text and long-text detection benchmarks. The codes are available at https://github.com/mindspore-lab/mindone/tree/master/examples/detect_chatgpt and https://github.com/YuchuanTian/AIGC_text_detector.
A Survey on LLM-generated Text Detection: Necessity, Methods, and Future Directions
The powerful ability to understand, follow, and generate complex language emerging from large language models (LLMs) makes LLM-generated text flood many areas of our daily lives at an incredible speed and is widely accepted by humans. As LLMs continue to expand, there is an imperative need to develop detectors that can detect LLM-generated text. This is crucial to mitigate potential misuse of LLMs and safeguard realms like artistic expression and social networks from harmful influence of LLM-generated content. The LLM-generated text detection aims to discern if a piece of text was produced by an LLM, which is essentially a binary classification task. The detector techniques have witnessed notable advancements recently, propelled by innovations in watermarking techniques, zero-shot methods, fine-turning LMs methods, adversarial learning methods, LLMs as detectors, and human-assisted methods. In this survey, we collate recent research breakthroughs in this area and underscore the pressing need to bolster detector research. We also delve into prevalent datasets, elucidating their limitations and developmental requirements. Furthermore, we analyze various LLM-generated text detection paradigms, shedding light on challenges like out-of-distribution problems, potential attacks, and data ambiguity. Conclusively, we highlight interesting directions for future research in LLM-generated text detection to advance the implementation of responsible artificial intelligence (AI). Our aim with this survey is to provide a clear and comprehensive introduction for newcomers while also offering seasoned researchers a valuable update in the field of LLM-generated text detection. The useful resources are publicly available at: https://github.com/NLP2CT/LLM-generated-Text-Detection.
A Practical Examination of AI-Generated Text Detectors for Large Language Models
The proliferation of large language models has raised growing concerns about their misuse, particularly in cases where AI-generated text is falsely attributed to human authors. Machine-generated content detectors claim to effectively identify such text under various conditions and from any language model. This paper critically evaluates these claims by assessing several popular detectors (RADAR, Wild, T5Sentinel, Fast-DetectGPT, PHD, LogRank, Binoculars) on a range of domains, datasets, and models that these detectors have not previously encountered. We employ various prompting strategies to simulate practical adversarial attacks, demonstrating that even moderate efforts can significantly evade detection. We emphasize the importance of the true positive rate at a specific false positive rate (TPR@FPR) metric and demonstrate that these detectors perform poorly in certain settings, with [email protected] as low as 0%. Our findings suggest that both trained and zero-shot detectors struggle to maintain high sensitivity while achieving a reasonable true positive rate.
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
In this paper, we study how well humans can detect text generated by commercial LLMs (GPT-4o, Claude, o1). We hire annotators to read 300 non-fiction English articles, label them as either human-written or AI-generated, and provide paragraph-length explanations for their decisions. Our experiments show that annotators who frequently use LLMs for writing tasks excel at detecting AI-generated text, even without any specialized training or feedback. In fact, the majority vote among five such "expert" annotators misclassifies only 1 of 300 articles, significantly outperforming most commercial and open-source detectors we evaluated even in the presence of evasion tactics like paraphrasing and humanization. Qualitative analysis of the experts' free-form explanations shows that while they rely heavily on specific lexical clues ('AI vocabulary'), they also pick up on more complex phenomena within the text (e.g., formality, originality, clarity) that are challenging to assess for automatic detectors. We release our annotated dataset and code to spur future research into both human and automated detection of AI-generated text.
Raidar: geneRative AI Detection viA Rewriting
We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. This tendency arises because LLMs often perceive AI-generated text as high-quality, leading to fewer modifications. We introduce a method to detect AI-generated content by prompting LLMs to rewrite text and calculating the editing distance of the output. We dubbed our geneRative AI Detection viA Rewriting method Raidar. Raidar significantly improves the F1 detection scores of existing AI content detection models -- both academic and commercial -- across various domains, including News, creative writing, student essays, code, Yelp reviews, and arXiv papers, with gains of up to 29 points. Operating solely on word symbols without high-dimensional features, our method is compatible with black box LLMs, and is inherently robust on new content. Our results illustrate the unique imprint of machine-generated text through the lens of the machines themselves.
CUDRT: Benchmarking the Detection of Human vs. Large Language Models Generated Texts
The proliferation of large language models (LLMs) has significantly enhanced text generation capabilities across various industries. However, these models' ability to generate human-like text poses substantial challenges in discerning between human and AI authorship. Despite the effectiveness of existing AI-generated text detectors, their development is hindered by the lack of comprehensive, publicly available benchmarks. Current benchmarks are limited to specific scenarios, such as question answering and text polishing, and predominantly focus on English texts, failing to capture the diverse applications and linguistic nuances of LLMs. To address these limitations, this paper constructs a comprehensive bilingual benchmark in both Chinese and English to evaluate mainstream AI-generated text detectors. We categorize LLM text generation into five distinct operations: Create, Update, Delete, Rewrite, and Translate (CUDRT), encompassing all current LLMs activities. We also establish a robust benchmark evaluation framework to support scalable and reproducible experiments. For each CUDRT category, we have developed extensive datasets to thoroughly assess detector performance. By employing the latest mainstream LLMs specific to each language, our datasets provide a thorough evaluation environment. Extensive experimental results offer critical insights for optimizing AI-generated text detectors and suggest future research directions to improve detection accuracy and generalizability across various scenarios.
Detecting Machine-Generated Texts: Not Just "AI vs Humans" and Explainability is Complicated
As LLMs rapidly advance, increasing concerns arise regarding risks about actual authorship of texts we see online and in real world. The task of distinguishing LLM-authored texts is complicated by the nuanced and overlapping behaviors of both machines and humans. In this paper, we challenge the current practice of considering LLM-generated text detection a binary classification task of differentiating human from AI. Instead, we introduce a novel ternary text classification scheme, adding an "undecided" category for texts that could be attributed to either source, and we show that this new category is crucial to understand how to make the detection result more explainable to lay users. This research shifts the paradigm from merely classifying to explaining machine-generated texts, emphasizing need for detectors to provide clear and understandable explanations to users. Our study involves creating four new datasets comprised of texts from various LLMs and human authors. Based on new datasets, we performed binary classification tests to ascertain the most effective SOTA detection methods and identified SOTA LLMs capable of producing harder-to-detect texts. We constructed a new dataset of texts generated by two top-performing LLMs and human authors, and asked three human annotators to produce ternary labels with explanation notes. This dataset was used to investigate how three top-performing SOTA detectors behave in new ternary classification context. Our results highlight why "undecided" category is much needed from the viewpoint of explainability. Additionally, we conducted an analysis of explainability of the three best-performing detectors and the explanation notes of the human annotators, revealing insights about the complexity of explainable detection of machine-generated texts. Finally, we propose guidelines for developing future detection systems with improved explanatory power.
G3Detector: General GPT-Generated Text Detector
The burgeoning progress in the field of Large Language Models (LLMs) heralds significant benefits due to their unparalleled capacities. However, it is critical to acknowledge the potential misuse of these models, which could give rise to a spectrum of social and ethical dilemmas. Despite numerous preceding efforts centered around distinguishing synthetic text, most existing detection systems fail to identify data synthesized by the latest LLMs, such as ChatGPT and GPT-4. In response to this challenge, we introduce an unpretentious yet potent detection approach proficient in identifying synthetic text across a wide array of fields. Moreover, our detector demonstrates outstanding performance uniformly across various model architectures and decoding strategies. It also possesses the capability to identify text generated utilizing a potent detection-evasion technique. Our comprehensive research underlines our commitment to boosting the robustness and efficiency of machine-generated text detection mechanisms, particularly in the context of swiftly progressing and increasingly adaptive AI technologies.
FACTOID: FACtual enTailment fOr hallucInation Detection
The widespread adoption of Large Language Models (LLMs) has facilitated numerous benefits. However, hallucination is a significant concern. In response, Retrieval Augmented Generation (RAG) has emerged as a highly promising paradigm to improve LLM outputs by grounding them in factual information. RAG relies on textual entailment (TE) or similar methods to check if the text produced by LLMs is supported or contradicted, compared to retrieved documents. This paper argues that conventional TE methods are inadequate for spotting hallucinations in content generated by LLMs. For instance, consider a prompt about the 'USA's stance on the Ukraine war''. The AI-generated text states, ...U.S. President Barack Obama says the U.S. will not put troops in Ukraine...'' However, during the war the U.S. president is Joe Biden which contradicts factual reality. Moreover, current TE systems are unable to accurately annotate the given text and identify the exact portion that is contradicted. To address this, we introduces a new type of TE called ``Factual Entailment (FE).'', aims to detect factual inaccuracies in content generated by LLMs while also highlighting the specific text segment that contradicts reality. We present FACTOID (FACTual enTAILment for hallucInation Detection), a benchmark dataset for FE. We propose a multi-task learning (MTL) framework for FE, incorporating state-of-the-art (SoTA) long text embeddings such as e5-mistral-7b-instruct, along with GPT-3, SpanBERT, and RoFormer. The proposed MTL architecture for FE achieves an avg. 40\% improvement in accuracy on the FACTOID benchmark compared to SoTA TE methods. As FE automatically detects hallucinations, we assessed 15 modern LLMs and ranked them using our proposed Auto Hallucination Vulnerability Index (HVI_auto). This index quantifies and offers a comparative scale to evaluate and rank LLMs according to their hallucinations.
RADAR: Robust AI-Text Detection via Adversarial Learning
Recent advances in large language models (LLMs) and the intensifying popularity of ChatGPT-like applications have blurred the boundary of high-quality text generation between humans and machines. However, in addition to the anticipated revolutionary changes to our technology and society, the difficulty of distinguishing LLM-generated texts (AI-text) from human-generated texts poses new challenges of misuse and fairness, such as fake content generation, plagiarism, and false accusations of innocent writers. While existing works show that current AI-text detectors are not robust to LLM-based paraphrasing, this paper aims to bridge this gap by proposing a new framework called RADAR, which jointly trains a robust AI-text detector via adversarial learning. RADAR is based on adversarial training of a paraphraser and a detector. The paraphraser's goal is to generate realistic content to evade AI-text detection. RADAR uses the feedback from the detector to update the paraphraser, and vice versa. Evaluated with 8 different LLMs (Pythia, Dolly 2.0, Palmyra, Camel, GPT-J, Dolly 1.0, LLaMA, and Vicuna) across 4 datasets, experimental results show that RADAR significantly outperforms existing AI-text detection methods, especially when paraphrasing is in place. We also identify the strong transferability of RADAR from instruction-tuned LLMs to other LLMs, and evaluate the improved capability of RADAR via GPT-3.5-Turbo.
Towards Automatic Boundary Detection for Human-AI Collaborative Hybrid Essay in Education
The recent large language models (LLMs), e.g., ChatGPT, have been able to generate human-like and fluent responses when provided with specific instructions. While admitting the convenience brought by technological advancement, educators also have concerns that students might leverage LLMs to complete their writing assignments and pass them off as their original work. Although many AI content detection studies have been conducted as a result of such concerns, most of these prior studies modeled AI content detection as a classification problem, assuming that a text is either entirely human-written or entirely AI-generated. In this study, we investigated AI content detection in a rarely explored yet realistic setting where the text to be detected is collaboratively written by human and generative LLMs (i.e., hybrid text). We first formalized the detection task as identifying the transition points between human-written content and AI-generated content from a given hybrid text (boundary detection). Then we proposed a two-step approach where we (1) separated AI-generated content from human-written content during the encoder training process; and (2) calculated the distances between every two adjacent prototypes and assumed that the boundaries exist between the two adjacent prototypes that have the furthest distance from each other. Through extensive experiments, we observed the following main findings: (1) the proposed approach consistently outperformed the baseline methods across different experiment settings; (2) the encoder training process can significantly boost the performance of the proposed approach; (3) when detecting boundaries for single-boundary hybrid essays, the proposed approach could be enhanced by adopting a relatively large prototype size, leading to a 22% improvement in the In-Domain evaluation and an 18% improvement in the Out-of-Domain evaluation.
Visual Counter Turing Test (VCT^2): Discovering the Challenges for AI-Generated Image Detection and Introducing Visual AI Index (V_AI)
The proliferation of AI techniques for image generation, coupled with their increasing accessibility, has raised significant concerns about the potential misuse of these images to spread misinformation. Recent AI-generated image detection (AGID) methods include CNNDetection, NPR, DM Image Detection, Fake Image Detection, DIRE, LASTED, GAN Image Detection, AIDE, SSP, DRCT, RINE, OCC-CLIP, De-Fake, and Deep Fake Detection. However, we argue that the current state-of-the-art AGID techniques are inadequate for effectively detecting contemporary AI-generated images and advocate for a comprehensive reevaluation of these methods. We introduce the Visual Counter Turing Test (VCT^2), a benchmark comprising ~130K images generated by contemporary text-to-image models (Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and Midjourney 6). VCT^2 includes two sets of prompts sourced from tweets by the New York Times Twitter account and captions from the MS COCO dataset. We also evaluate the performance of the aforementioned AGID techniques on the VCT^2 benchmark, highlighting their ineffectiveness in detecting AI-generated images. As image-generative AI models continue to evolve, the need for a quantifiable framework to evaluate these models becomes increasingly critical. To meet this need, we propose the Visual AI Index (V_AI), which assesses generated images from various visual perspectives, including texture complexity and object coherence, setting a new standard for evaluating image-generative AI models. To foster research in this domain, we make our https://huggingface.co/datasets/anonymous1233/COCO_AI and https://huggingface.co/datasets/anonymous1233/twitter_AI datasets publicly available.
Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probability Curvature
Large language models (LLMs) have shown the ability to produce fluent and cogent content, presenting both productivity opportunities and societal risks. To build trustworthy AI systems, it is imperative to distinguish between machine-generated and human-authored content. The leading zero-shot detector, DetectGPT, showcases commendable performance but is marred by its intensive computational costs. In this paper, we introduce the concept of conditional probability curvature to elucidate discrepancies in word choices between LLMs and humans within a given context. Utilizing this curvature as a foundational metric, we present **Fast-DetectGPT**, an optimized zero-shot detector, which substitutes DetectGPT's perturbation step with a more efficient sampling step. Our evaluations on various datasets, source models, and test conditions indicate that Fast-DetectGPT not only surpasses DetectGPT by a relative around 75% in both the white-box and black-box settings but also accelerates the detection process by a factor of 340, as detailed in Table 1. See https://github.com/baoguangsheng/fast-detect-gpt for code, data, and results.
AI Content Self-Detection for Transformer-based Large Language Models
The usage of generative artificial intelligence (AI) tools based on large language models, including ChatGPT, Bard, and Claude, for text generation has many exciting applications with the potential for phenomenal productivity gains. One issue is authorship attribution when using AI tools. This is especially important in an academic setting where the inappropriate use of generative AI tools may hinder student learning or stifle research by creating a large amount of automatically generated derivative work. Existing plagiarism detection systems can trace the source of submitted text but are not yet equipped with methods to accurately detect AI-generated text. This paper introduces the idea of direct origin detection and evaluates whether generative AI systems can recognize their output and distinguish it from human-written texts. We argue why current transformer-based models may be able to self-detect their own generated text and perform a small empirical study using zero-shot learning to investigate if that is the case. Results reveal varying capabilities of AI systems to identify their generated text. Google's Bard model exhibits the largest capability of self-detection with an accuracy of 94\%, followed by OpenAI's ChatGPT with 83\%. On the other hand, Anthropic's Claude model seems to be not able to self-detect.
LLM-as-a-Coauthor: Can Mixed Human-Written and Machine-Generated Text Be Detected?
With the rapid development and widespread application of Large Language Models (LLMs), the use of Machine-Generated Text (MGT) has become increasingly common, bringing with it potential risks, especially in terms of quality and integrity in fields like news, education, and science. Current research mainly focuses on purely MGT detection without adequately addressing mixed scenarios, including AI-revised Human-Written Text (HWT) or human-revised MGT. To tackle this challenge, we define mixtext, a form of mixed text involving both AI and human-generated content. Then, we introduce MixSet, the first dataset dedicated to studying these mixtext scenarios. Leveraging MixSet, we executed comprehensive experiments to assess the efficacy of prevalent MGT detectors in handling mixtext situations, evaluating their performance in terms of effectiveness, robustness, and generalization. Our findings reveal that existing detectors struggle to identify mixtext, particularly in dealing with subtle modifications and style adaptability. This research underscores the urgent need for more fine-grain detectors tailored for mixtext, offering valuable insights for future research. Code and Models are available at https://github.com/Dongping-Chen/MixSet.
RU-AI: A Large Multimodal Dataset for Machine Generated Content Detection
The recent advancements in generative AI models, which can create realistic and human-like content, are significantly transforming how people communicate, create, and work. While the appropriate use of generative AI models can benefit the society, their misuse poses significant threats to data reliability and authentication. However, due to a lack of aligned multimodal datasets, effective and robust methods for detecting machine-generated content are still in the early stages of development. In this paper, we introduce RU-AI, a new large-scale multimodal dataset designed for the robust and efficient detection of machine-generated content in text, image, and voice. Our dataset is constructed from three large publicly available datasets: Flickr8K, COCO, and Places205, by combining the original datasets and their corresponding machine-generated pairs. Additionally, experimental results show that our proposed unified model, which incorporates a multimodal embedding module with a multilayer perceptron network, can effectively determine the origin of the data (i.e., original data samples or machine-generated ones) from RU-AI. However, future work is still required to address the remaining challenges posed by RU-AI. The source code and dataset are available at https://github.com/ZhihaoZhang97/RU-AI.
FacTool: Factuality Detection in Generative AI -- A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios
The emergence of generative pre-trained models has facilitated the synthesis of high-quality text, but it has also posed challenges in identifying factual errors in the generated text. In particular: (1) A wider range of tasks now face an increasing risk of containing factual errors when handled by generative models. (2) Generated texts tend to be lengthy and lack a clearly defined granularity for individual facts. (3) There is a scarcity of explicit evidence available during the process of fact checking. With the above challenges in mind, in this paper, we propose FacTool, a task and domain agnostic framework for detecting factual errors of texts generated by large language models (e.g., ChatGPT). Experiments on four different tasks (knowledge-based QA, code generation, mathematical reasoning, and scientific literature review) show the efficacy of the proposed method. We release the code of FacTool associated with ChatGPT plugin interface at https://github.com/GAIR-NLP/factool .
Human Action CLIPS: Detecting AI-generated Human Motion
Full-blown AI-generated video generation continues its journey through the uncanny valley to produce content that is perceptually indistinguishable from reality. Intermixed with many exciting and creative applications are malicious applications that harm individuals, organizations, and democracies. We describe an effective and robust technique for distinguishing real from AI-generated human motion. This technique leverages a multi-modal semantic embedding, making it robust to the types of laundering that typically confound more low- to mid-level approaches. This method is evaluated against a custom-built dataset of video clips with human actions generated by seven text-to-video AI models and matching real footage.
Can AI-Generated Text be Reliably Detected?
In this paper, both empirically and theoretically, we show that several AI-text detectors are not reliable in practical scenarios. Empirically, we show that paraphrasing attacks, where a light paraphraser is applied on top of a large language model (LLM), can break a whole range of detectors, including ones using watermarking schemes as well as neural network-based detectors and zero-shot classifiers. Our experiments demonstrate that retrieval-based detectors, designed to evade paraphrasing attacks, are still vulnerable to recursive paraphrasing. We then provide a theoretical impossibility result indicating that as language models become more sophisticated and better at emulating human text, the performance of even the best-possible detector decreases. For a sufficiently advanced language model seeking to imitate human text, even the best-possible detector may only perform marginally better than a random classifier. Our result is general enough to capture specific scenarios such as particular writing styles, clever prompt design, or text paraphrasing. We also extend the impossibility result to include the case where pseudorandom number generators are used for AI-text generation instead of true randomness. We show that the same result holds with a negligible correction term for all polynomial-time computable detectors. Finally, we show that even LLMs protected by watermarking schemes can be vulnerable against spoofing attacks where adversarial humans can infer hidden LLM text signatures and add them to human-generated text to be detected as text generated by the LLMs, potentially causing reputational damage to their developers. We believe these results can open an honest conversation in the community regarding the ethical and reliable use of AI-generated text.
ICLEF: In-Context Learning with Expert Feedback for Explainable Style Transfer
While state-of-the-art language models excel at the style transfer task, current work does not address explainability of style transfer systems. Explanations could be generated using large language models such as GPT-3.5 and GPT-4, but the use of such complex systems is inefficient when smaller, widely distributed, and transparent alternatives are available. We propose a framework to augment and improve a formality style transfer dataset with explanations via model distillation from ChatGPT. To further refine the generated explanations, we propose a novel way to incorporate scarce expert human feedback using in-context learning (ICLEF: In-Context Learning from Expert Feedback) by prompting ChatGPT to act as a critic to its own outputs. We use the resulting dataset of 9,960 explainable formality style transfer instances (e-GYAFC) to show that current openly distributed instruction-tuned models (and, in some settings, ChatGPT) perform poorly on the task, and that fine-tuning on our high-quality dataset leads to significant improvements as shown by automatic evaluation. In human evaluation, we show that models much smaller than ChatGPT fine-tuned on our data align better with expert preferences. Finally, we discuss two potential applications of models fine-tuned on the explainable style transfer task: interpretable authorship verification and interpretable adversarial attacks on AI-generated text detectors.
Are AI Detectors Good Enough? A Survey on Quality of Datasets With Machine-Generated Texts
The rapid development of autoregressive Large Language Models (LLMs) has significantly improved the quality of generated texts, necessitating reliable machine-generated text detectors. A huge number of detectors and collections with AI fragments have emerged, and several detection methods even showed recognition quality up to 99.9% according to the target metrics in such collections. However, the quality of such detectors tends to drop dramatically in the wild, posing a question: Are detectors actually highly trustworthy or do their high benchmark scores come from the poor quality of evaluation datasets? In this paper, we emphasise the need for robust and qualitative methods for evaluating generated data to be secure against bias and low generalising ability of future model. We present a systematic review of datasets from competitions dedicated to AI-generated content detection and propose methods for evaluating the quality of datasets containing AI-generated fragments. In addition, we discuss the possibility of using high-quality generated data to achieve two goals: improving the training of detection models and improving the training datasets themselves. Our contribution aims to facilitate a better understanding of the dynamics between human and machine text, which will ultimately support the integrity of information in an increasingly automated world.
Multi-head Span-based Detector for AI-generated Fragments in Scientific Papers
This paper describes a system designed to distinguish between AI-generated and human-written scientific excerpts in the DAGPap24 competition hosted within the Fourth Workshop on Scientific Document Processing. In this competition the task is to find artificially generated token-level text fragments in documents of a scientific domain. Our work focuses on the use of a multi-task learning architecture with two heads. The application of this approach is justified by the specificity of the task, where class spans are continuous over several hundred characters. We considered different encoder variations to obtain a state vector for each token in the sequence, as well as a variation in splitting fragments into tokens to further feed into the input of a transform-based encoder. This approach allows us to achieve a 9% quality improvement relative to the baseline solution score on the development set (from 0.86 to 0.95) using the average macro F1-score, as well as a score of 0.96 on a closed test part of the dataset from the competition.
Evading AI-Generated Content Detectors using Homoglyphs
The generation of text that is increasingly human-like has been enabled by the advent of large language models (LLMs). As the detection of AI-generated content holds significant importance in the fight against issues such as misinformation and academic cheating, numerous studies have been conducted to develop reliable LLM detectors. While promising results have been demonstrated by such detectors on test data, recent research has revealed that they can be circumvented by employing different techniques. In this article, homoglyph-based (a alpha) attacks that can be used to circumvent existing LLM detectors are presented. The efficacy of the attacks is illustrated by analizing how homoglyphs shift the tokenization of the text, and thus its token loglikelihoods. A comprehensive evaluation is conducted to assess the effectiveness of homoglyphs on state-of-the-art LLM detectors, including Binoculars, DetectGPT, OpenAI's detector, and watermarking techniques, on five different datasets. A significant reduction in the efficiency of all the studied configurations of detectors and datasets, down to an accuracy of 0.5 (random guessing), is demonstrated by the proposed approach. The results show that homoglyph-based attacks can effectively evade existing LLM detectors, and the implications of these findings are discussed along with possible defenses against such attacks.
Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors
Text-to-image diffusion models have impactful applications in art, design, and entertainment, yet these technologies also pose significant risks by enabling the creation and dissemination of misinformation. Although recent advancements have produced AI-generated image detectors that claim robustness against various augmentations, their true effectiveness remains uncertain. Do these detectors reliably identify images with different levels of augmentation? Are they biased toward specific scenes or data distributions? To investigate, we introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images that feature targeted and localized perturbations produced using diverse augmentation techniques, diffusion models, and data distributions. Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness. Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used, offering new insights into their performance and limitations. The code for the augmentation and evaluation pipeline is available at https://github.com/J-Kruk/SemiTruths.
RKadiyala at SemEval-2024 Task 8: Black-Box Word-Level Text Boundary Detection in Partially Machine Generated Texts
With increasing usage of generative models for text generation and widespread use of machine generated texts in various domains, being able to distinguish between human written and machine generated texts is a significant challenge. While existing models and proprietary systems focus on identifying whether given text is entirely human written or entirely machine generated, only a few systems provide insights at sentence or paragraph level at likelihood of being machine generated at a non reliable accuracy level, working well only for a set of domains and generators. This paper introduces few reliable approaches for the novel task of identifying which part of a given text is machine generated at a word level while comparing results from different approaches and methods. We present a comparison with proprietary systems , performance of our model on unseen domains' and generators' texts. The findings reveal significant improvements in detection accuracy along with comparison on other aspects of detection capabilities. Finally we discuss potential avenues for improvement and implications of our work. The proposed model is also well suited for detecting which parts of a text are machine generated in outputs of Instruct variants of many LLMs.
Paraphrase Detection: Human vs. Machine Content
The growing prominence of large language models, such as GPT-4 and ChatGPT, has led to increased concerns over academic integrity due to the potential for machine-generated content and paraphrasing. Although studies have explored the detection of human- and machine-paraphrased content, the comparison between these types of content remains underexplored. In this paper, we conduct a comprehensive analysis of various datasets commonly employed for paraphrase detection tasks and evaluate an array of detection methods. Our findings highlight the strengths and limitations of different detection methods in terms of performance on individual datasets, revealing a lack of suitable machine-generated datasets that can be aligned with human expectations. Our main finding is that human-authored paraphrases exceed machine-generated ones in terms of difficulty, diversity, and similarity implying that automatically generated texts are not yet on par with human-level performance. Transformers emerged as the most effective method across datasets with TF-IDF excelling on semantically diverse corpora. Additionally, we identify four datasets as the most diverse and challenging for paraphrase detection.
GigaCheck: Detecting LLM-generated Content
With the increasing quality and spread of LLM-based assistants, the amount of LLM-generated content is growing rapidly. In many cases and tasks, such texts are already indistinguishable from those written by humans, and the quality of generation tends to only increase. At the same time, detection methods are developing more slowly, making it challenging to prevent misuse of generative AI technologies. In this work, we investigate the task of generated text detection by proposing the GigaCheck. Our research explores two approaches: (i) distinguishing human-written texts from LLM-generated ones, and (ii) detecting LLM-generated intervals in Human-Machine collaborative texts. For the first task, our approach utilizes a general-purpose LLM, leveraging its extensive language abilities to fine-tune efficiently for the downstream task of LLM-generated text detection, achieving high performance even with limited data. For the second task, we propose a novel approach that combines computer vision and natural language processing techniques. Specifically, we use a fine-tuned general-purpose LLM in conjunction with a DETR-like detection model, adapted from computer vision, to localize AI-generated intervals within text. We evaluate the GigaCheck on five classification datasets with English texts and three datasets designed for Human-Machine collaborative text analysis. Our results demonstrate that GigaCheck outperforms previous methods, even in out-of-distribution settings, establishing a strong baseline across all datasets.
Exploring the Limitations of Detecting Machine-Generated Text
Recent improvements in the quality of the generations by large language models have spurred research into identifying machine-generated text. Systems proposed for the task often achieve high performance. However, humans and machines can produce text in different styles and in different domains, and it remains unclear whether machine generated-text detection models favour particular styles or domains. In this paper, we critically examine the classification performance for detecting machine-generated text by evaluating on texts with varying writing styles. We find that classifiers are highly sensitive to stylistic changes and differences in text complexity, and in some cases degrade entirely to random classifiers. We further find that detection systems are particularly susceptible to misclassify easy-to-read texts while they have high performance for complex texts.
Deepfake Text Detection in the Wild
Recent advances in large language models have enabled them to reach a level of text generation comparable to that of humans. These models show powerful capabilities across a wide range of content, including news article writing, story generation, and scientific writing. Such capability further narrows the gap between human-authored and machine-generated texts, highlighting the importance of deepfake text detection to avoid potential risks such as fake news propagation and plagiarism. However, previous work has been limited in that they testify methods on testbed of specific domains or certain language models. In practical scenarios, the detector faces texts from various domains or LLMs without knowing their sources. To this end, we build a wild testbed by gathering texts from various human writings and deepfake texts generated by different LLMs. Human annotators are only slightly better than random guessing at identifying machine-generated texts. Empirical results on automatic detection methods further showcase the challenges of deepfake text detection in a wild testbed. In addition, out-of-distribution poses a greater challenge for a detector to be employed in realistic application scenarios. We release our resources at https://github.com/yafuly/DeepfakeTextDetect.
Real or Fake Text?: Investigating Human Ability to Detect Boundaries Between Human-Written and Machine-Generated Text
As text generated by large language models proliferates, it becomes vital to understand how humans engage with such text, and whether or not they are able to detect when the text they are reading did not originate with a human writer. Prior work on human detection of generated text focuses on the case where an entire passage is either human-written or machine-generated. In this paper, we study a more realistic setting where text begins as human-written and transitions to being generated by state-of-the-art neural language models. We show that, while annotators often struggle at this task, there is substantial variance in annotator skill and that given proper incentives, annotators can improve at this task over time. Furthermore, we conduct a detailed comparison study and analyze how a variety of variables (model size, decoding strategy, fine-tuning, prompt genre, etc.) affect human detection performance. Finally, we collect error annotations from our participants and use them to show that certain textual genres influence models to make different types of errors and that certain sentence-level features correlate highly with annotator selection. We release the RoFT dataset: a collection of over 21,000 human annotations paired with error classifications to encourage future work in human detection and evaluation of generated text.
GenAI Content Detection Task 3: Cross-Domain Machine-Generated Text Detection Challenge
Recently there have been many shared tasks targeting the detection of generated text from Large Language Models (LLMs). However, these shared tasks tend to focus either on cases where text is limited to one particular domain or cases where text can be from many domains, some of which may not be seen during test time. In this shared task, using the newly released RAID benchmark, we aim to answer whether or not models can detect generated text from a large, yet fixed, number of domains and LLMs, all of which are seen during training. Over the course of three months, our task was attempted by 9 teams with 23 detector submissions. We find that multiple participants were able to obtain accuracies of over 99% on machine-generated text from RAID while maintaining a 5% False Positive Rate -- suggesting that detectors are able to robustly detect text from many domains and models simultaneously. We discuss potential interpretations of this result and provide directions for future research.
HU at SemEval-2024 Task 8A: Can Contrastive Learning Learn Embeddings to Detect Machine-Generated Text?
This paper describes our system developed for SemEval-2024 Task 8, "Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection." Machine-generated texts have been one of the main concerns due to the use of large language models (LLM) in fake text generation, phishing, cheating in exams, or even plagiarizing copyright materials. A lot of systems have been developed to detect machine-generated text. Nonetheless, the majority of these systems rely on the text-generating model, a limitation that is impractical in real-world scenarios, as it's often impossible to know which specific model the user has used for text generation. In this work, we propose a single model based on contrastive learning, which uses ~40% of the baseline's parameters (149M vs. 355M) but shows a comparable performance on the test dataset (21st out of 137 participants). Our key finding is that even without an ensemble of multiple models, a single base model can have comparable performance with the help of data augmentation and contrastive learning.
M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box Machine-Generated Text Detection
Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries, but this has also resulted in concerns regarding the potential misuse of such texts in journalism, educational, and academic context. In this work, we aim to develop automatic systems to identify machine-generated text and to detect potential misuse. We first introduce a large-scale benchmark M4, which is multi-generator, multi-domain, and multi-lingual corpus for machine-generated text detection. Using the dataset, we experiment with a number of methods and we show that it is challenging for detectors to generalize well on unseen examples if they are either from different domains or are generated by different large language models. In such cases, detectors tend to misclassify machine-generated text as human-written. These results show that the problem is far from solved and there is a lot of room for improvement. We believe that our dataset M4, which covers different generators, domains and languages, will enable future research towards more robust approaches for this pressing societal problem. The M4 dataset is available at https://github.com/mbzuai-nlp/M4.
SEFD: Semantic-Enhanced Framework for Detecting LLM-Generated Text
The widespread adoption of large language models (LLMs) has created an urgent need for robust tools to detect LLM-generated text, especially in light of paraphrasing techniques that often evade existing detection methods. To address this challenge, we present a novel semantic-enhanced framework for detecting LLM-generated text (SEFD) that leverages a retrieval-based mechanism to fully utilize text semantics. Our framework improves upon existing detection methods by systematically integrating retrieval-based techniques with traditional detectors, employing a carefully curated retrieval mechanism that strikes a balance between comprehensive coverage and computational efficiency. We showcase the effectiveness of our approach in sequential text scenarios common in real-world applications, such as online forums and Q\&A platforms. Through comprehensive experiments across various LLM-generated texts and detection methods, we demonstrate that our framework substantially enhances detection accuracy in paraphrasing scenarios while maintaining robustness for standard LLM-generated content.
Copy Is All You Need
The dominant text generation models compose the output by sequentially selecting words from a fixed vocabulary. In this paper, we formulate text generation as progressively copying text segments (e.g., words or phrases) from an existing text collection. We compute the contextualized representations of meaningful text segments and index them using efficient vector search toolkits. The task of text generation is then decomposed into a series of copy-and-paste operations: at each time step, we seek suitable text spans from the text collection rather than selecting from a standalone vocabulary. Experiments on the standard language modeling benchmark (WikiText-103) show that our approach achieves better generation quality according to both automatic and human evaluations. Besides, its inference efficiency is comparable to token-level autoregressive models thanks to the reduction of decoding steps. We also show that our approach allows for effective domain adaptation by simply switching to domain-specific text collection without extra training. Finally, we observe that our approach attains additional performance gains by simply scaling up to larger text collections, again without further training.Our source codes are publicly available at \url{https://github.com/gmftbyGMFTBY/Copyisallyouneed.}
GLTR: Statistical Detection and Visualization of Generated Text
The rapid improvement of language models has raised the specter of abuse of text generation systems. This progress motivates the development of simple methods for detecting generated text that can be used by and explained to non-experts. We develop GLTR, a tool to support humans in detecting whether a text was generated by a model. GLTR applies a suite of baseline statistical methods that can detect generation artifacts across common sampling schemes. In a human-subjects study, we show that the annotation scheme provided by GLTR improves the human detection-rate of fake text from 54% to 72% without any prior training. GLTR is open-source and publicly deployed, and has already been widely used to detect generated outputs
Findings of the The RuATD Shared Task 2022 on Artificial Text Detection in Russian
We present the shared task on artificial text detection in Russian, which is organized as a part of the Dialogue Evaluation initiative, held in 2022. The shared task dataset includes texts from 14 text generators, i.e., one human writer and 13 text generative models fine-tuned for one or more of the following generation tasks: machine translation, paraphrase generation, text summarization, text simplification. We also consider back-translation and zero-shot generation approaches. The human-written texts are collected from publicly available resources across multiple domains. The shared task consists of two sub-tasks: (i) to determine if a given text is automatically generated or written by a human; (ii) to identify the author of a given text. The first task is framed as a binary classification problem. The second task is a multi-class classification problem. We provide count-based and BERT-based baselines, along with the human evaluation on the first sub-task. A total of 30 and 8 systems have been submitted to the binary and multi-class sub-tasks, correspondingly. Most teams outperform the baselines by a wide margin. We publicly release our codebase, human evaluation results, and other materials in our GitHub repository (https://github.com/dialogue-evaluation/RuATD).
Generative AI-Based Text Generation Methods Using Pre-Trained GPT-2 Model
This work delved into the realm of automatic text generation, exploring a variety of techniques ranging from traditional deterministic approaches to more modern stochastic methods. Through analysis of greedy search, beam search, top-k sampling, top-p sampling, contrastive searching, and locally typical searching, this work has provided valuable insights into the strengths, weaknesses, and potential applications of each method. Each text-generating method is evaluated using several standard metrics and a comparative study has been made on the performance of the approaches. Finally, some future directions of research in the field of automatic text generation are also identified.
Neural Passage Quality Estimation for Static Pruning
Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods.
RoFT: A Tool for Evaluating Human Detection of Machine-Generated Text
In recent years, large neural networks for natural language generation (NLG) have made leaps and bounds in their ability to generate fluent text. However, the tasks of evaluating quality differences between NLG systems and understanding how humans perceive the generated text remain both crucial and difficult. In this system demonstration, we present Real or Fake Text (RoFT), a website that tackles both of these challenges by inviting users to try their hand at detecting machine-generated text in a variety of domains. We introduce a novel evaluation task based on detecting the boundary at which a text passage that starts off human-written transitions to being machine-generated. We show preliminary results of using RoFT to evaluate detection of machine-generated news articles.
MUGC: Machine Generated versus User Generated Content Detection
As advanced modern systems like deep neural networks (DNNs) and generative AI continue to enhance their capabilities in producing convincing and realistic content, the need to distinguish between user-generated and machine generated content is becoming increasingly evident. In this research, we undertake a comparative evaluation of eight traditional machine-learning algorithms to distinguish between machine-generated and human-generated data across three diverse datasets: Poems, Abstracts, and Essays. Our results indicate that traditional methods demonstrate a high level of accuracy in identifying machine-generated data, reflecting the documented effectiveness of popular pre-trained models like RoBERT. We note that machine-generated texts tend to be shorter and exhibit less word variety compared to human-generated content. While specific domain-related keywords commonly utilized by humans, albeit disregarded by current LLMs (Large Language Models), may contribute to this high detection accuracy, we show that deeper word representations like word2vec can capture subtle semantic variances. Furthermore, readability, bias, moral, and affect comparisons reveal a discernible contrast between machine-generated and human generated content. There are variations in expression styles and potentially underlying biases in the data sources (human and machine-generated). This study provides valuable insights into the advancing capacities and challenges associated with machine-generated content across various domains.
Evade ChatGPT Detectors via A Single Space
ChatGPT brings revolutionary social value but also raises concerns about the misuse of AI-generated text. Consequently, an important question is how to detect whether texts are generated by ChatGPT or by human. Existing detectors are built upon the assumption that there are distributional gaps between human-generated and AI-generated text. These gaps are typically identified using statistical information or classifiers. Our research challenges the distributional gap assumption in detectors. We find that detectors do not effectively discriminate the semantic and stylistic gaps between human-generated and AI-generated text. Instead, the "subtle differences", such as an extra space, become crucial for detection. Based on this discovery, we propose the SpaceInfi strategy to evade detection. Experiments demonstrate the effectiveness of this strategy across multiple benchmarks and detectors. We also provide a theoretical explanation for why SpaceInfi is successful in evading perplexity-based detection. And we empirically show that a phenomenon called token mutation causes the evasion for language model-based detectors. Our findings offer new insights and challenges for understanding and constructing more applicable ChatGPT detectors.
RAID: A Shared Benchmark for Robust Evaluation of Machine-Generated Text Detectors
Many commercial and open-source models claim to detect machine-generated text with extremely high accuracy (99% or more). However, very few of these detectors are evaluated on shared benchmark datasets and even when they are, the datasets used for evaluation are insufficiently challenging-lacking variations in sampling strategy, adversarial attacks, and open-source generative models. In this work we present RAID: the largest and most challenging benchmark dataset for machine-generated text detection. RAID includes over 6 million generations spanning 11 models, 8 domains, 11 adversarial attacks and 4 decoding strategies. Using RAID, we evaluate the out-of-domain and adversarial robustness of 8 open- and 4 closed-source detectors and find that current detectors are easily fooled by adversarial attacks, variations in sampling strategies, repetition penalties, and unseen generative models. We release our data along with a leaderboard to encourage future research.
Feature-Level Insights into Artificial Text Detection with Sparse Autoencoders
Artificial Text Detection (ATD) is becoming increasingly important with the rise of advanced Large Language Models (LLMs). Despite numerous efforts, no single algorithm performs consistently well across different types of unseen text or guarantees effective generalization to new LLMs. Interpretability plays a crucial role in achieving this goal. In this study, we enhance ATD interpretability by using Sparse Autoencoders (SAE) to extract features from Gemma-2-2b residual stream. We identify both interpretable and efficient features, analyzing their semantics and relevance through domain- and model-specific statistics, a steering approach, and manual or LLM-based interpretation. Our methods offer valuable insights into how texts from various models differ from human-written content. We show that modern LLMs have a distinct writing style, especially in information-dense domains, even though they can produce human-like outputs with personalized prompts.
AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts
The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fill-in-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AutoPrompt, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AutoPrompt, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.
The Science of Detecting LLM-Generated Texts
The emergence of large language models (LLMs) has resulted in the production of LLM-generated texts that is highly sophisticated and almost indistinguishable from texts written by humans. However, this has also sparked concerns about the potential misuse of such texts, such as spreading misinformation and causing disruptions in the education system. Although many detection approaches have been proposed, a comprehensive understanding of the achievements and challenges is still lacking. This survey aims to provide an overview of existing LLM-generated text detection techniques and enhance the control and regulation of language generation models. Furthermore, we emphasize crucial considerations for future research, including the development of comprehensive evaluation metrics and the threat posed by open-source LLMs, to drive progress in the area of LLM-generated text detection.
Stumbling Blocks: Stress Testing the Robustness of Machine-Generated Text Detectors Under Attacks
The widespread use of large language models (LLMs) is increasing the demand for methods that detect machine-generated text to prevent misuse. The goal of our study is to stress test the detectors' robustness to malicious attacks under realistic scenarios. We comprehensively study the robustness of popular machine-generated text detectors under attacks from diverse categories: editing, paraphrasing, prompting, and co-generating. Our attacks assume limited access to the generator LLMs, and we compare the performance of detectors on different attacks under different budget levels. Our experiments reveal that almost none of the existing detectors remain robust under all the attacks, and all detectors exhibit different loopholes. Averaging all detectors, the performance drops by 35% across all attacks. Further, we investigate the reasons behind these defects and propose initial out-of-the-box patches to improve robustness.
SPACE-IDEAS: A Dataset for Salient Information Detection in Space Innovation
Detecting salient parts in text using natural language processing has been widely used to mitigate the effects of information overflow. Nevertheless, most of the datasets available for this task are derived mainly from academic publications. We introduce SPACE-IDEAS, a dataset for salient information detection from innovation ideas related to the Space domain. The text in SPACE-IDEAS varies greatly and includes informal, technical, academic and business-oriented writing styles. In addition to a manually annotated dataset we release an extended version that is annotated using a large generative language model. We train different sentence and sequential sentence classifiers, and show that the automatically annotated dataset can be leveraged using multitask learning to train better classifiers.
Evaluating the Efficacy of Hybrid Deep Learning Models in Distinguishing AI-Generated Text
My research investigates the use of cutting-edge hybrid deep learning models to accurately differentiate between AI-generated text and human writing. I applied a robust methodology, utilising a carefully selected dataset comprising AI and human texts from various sources, each tagged with instructions. Advanced natural language processing techniques facilitated the analysis of textual features. Combining sophisticated neural networks, the custom model enabled it to detect nuanced differences between AI and human content.
Teaching Machines to Read and Comprehend
Teaching machines to read natural language documents remains an elusive challenge. Machine reading systems can be tested on their ability to answer questions posed on the contents of documents that they have seen, but until now large scale training and test datasets have been missing for this type of evaluation. In this work we define a new methodology that resolves this bottleneck and provides large scale supervised reading comprehension data. This allows us to develop a class of attention based deep neural networks that learn to read real documents and answer complex questions with minimal prior knowledge of language structure.
ArguGPT: evaluating, understanding and identifying argumentative essays generated by GPT models
AI generated content (AIGC) presents considerable challenge to educators around the world. Instructors need to be able to detect such text generated by large language models, either with the naked eye or with the help of some tools. There is also growing need to understand the lexical, syntactic and stylistic features of AIGC. To address these challenges in English language teaching, we first present ArguGPT, a balanced corpus of 4,038 argumentative essays generated by 7 GPT models in response to essay prompts from three sources: (1) in-class or homework exercises, (2) TOEFL and (3) GRE writing tasks. Machine-generated texts are paired with roughly equal number of human-written essays with three score levels matched in essay prompts. We then hire English instructors to distinguish machine essays from human ones. Results show that when first exposed to machine-generated essays, the instructors only have an accuracy of 61% in detecting them. But the number rises to 67% after one round of minimal self-training. Next, we perform linguistic analyses of these essays, which show that machines produce sentences with more complex syntactic structures while human essays tend to be lexically more complex. Finally, we test existing AIGC detectors and build our own detectors using SVMs and RoBERTa. Results suggest that a RoBERTa fine-tuned with the training set of ArguGPT achieves above 90% accuracy in both essay- and sentence-level classification. To the best of our knowledge, this is the first comprehensive analysis of argumentative essays produced by generative large language models. Machine-authored essays in ArguGPT and our models will be made publicly available at https://github.com/huhailinguist/ArguGPT
Data-to-text Generation with Variational Sequential Planning
We consider the task of data-to-text generation, which aims to create textual output from non-linguistic input. We focus on generating long-form text, i.e., documents with multiple paragraphs, and propose a neural model enhanced with a planning component responsible for organizing high-level information in a coherent and meaningful way. We infer latent plans sequentially with a structured variational model, while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Experiments on two data-to-text benchmarks (RotoWire and MLB) show that our model outperforms strong baselines and is sample efficient in the face of limited training data (e.g., a few hundred instances).
DetectRL: Benchmarking LLM-Generated Text Detection in Real-World Scenarios
Detecting text generated by large language models (LLMs) is of great recent interest. With zero-shot methods like DetectGPT, detection capabilities have reached impressive levels. However, the reliability of existing detectors in real-world applications remains underexplored. In this study, we present a new benchmark, DetectRL, highlighting that even state-of-the-art (SOTA) detection techniques still underperformed in this task. We collected human-written datasets from domains where LLMs are particularly prone to misuse. Using popular LLMs, we generated data that better aligns with real-world applications. Unlike previous studies, we employed heuristic rules to create adversarial LLM-generated text, simulating advanced prompt usages, human revisions like word substitutions, and writing errors. Our development of DetectRL reveals the strengths and limitations of current SOTA detectors. More importantly, we analyzed the potential impact of writing styles, model types, attack methods, the text lengths, and real-world human writing factors on different types of detectors. We believe DetectRL could serve as an effective benchmark for assessing detectors in real-world scenarios, evolving with advanced attack methods, thus providing more stressful evaluation to drive the development of more efficient detectors. Data and code are publicly available at: https://github.com/NLP2CT/DetectRL.
Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery
The strength of modern generative models lies in their ability to be controlled through text-based prompts. Typical "hard" prompts are made from interpretable words and tokens, and must be hand-crafted by humans. There are also "soft" prompts, which consist of continuous feature vectors. These can be discovered using powerful optimization methods, but they cannot be easily interpreted, re-used across models, or plugged into a text-based interface. We describe an approach to robustly optimize hard text prompts through efficient gradient-based optimization. Our approach automatically generates hard text-based prompts for both text-to-image and text-to-text applications. In the text-to-image setting, the method creates hard prompts for diffusion models, allowing API users to easily generate, discover, and mix and match image concepts without prior knowledge on how to prompt the model. In the text-to-text setting, we show that hard prompts can be automatically discovered that are effective in tuning LMs for classification.
LLM-DetectAIve: a Tool for Fine-Grained Machine-Generated Text Detection
The widespread accessibility of large language models (LLMs) to the general public has significantly amplified the dissemination of machine-generated texts (MGTs). Advancements in prompt manipulation have exacerbated the difficulty in discerning the origin of a text (human-authored vs machinegenerated). This raises concerns regarding the potential misuse of MGTs, particularly within educational and academic domains. In this paper, we present LLM-DetectAIve -- a system designed for fine-grained MGT detection. It is able to classify texts into four categories: human-written, machine-generated, machine-written machine-humanized, and human-written machine-polished. Contrary to previous MGT detectors that perform binary classification, introducing two additional categories in LLM-DetectiAIve offers insights into the varying degrees of LLM intervention during the text creation. This might be useful in some domains like education, where any LLM intervention is usually prohibited. Experiments show that LLM-DetectAIve can effectively identify the authorship of textual content, proving its usefulness in enhancing integrity in education, academia, and other domains. LLM-DetectAIve is publicly accessible at https://huggingface.co/spaces/raj-tomar001/MGT-New. The video describing our system is available at https://youtu.be/E8eT_bE7k8c.
BERTScore: Evaluating Text Generation with BERT
We propose BERTScore, an automatic evaluation metric for text generation. Analogously to common metrics, BERTScore computes a similarity score for each token in the candidate sentence with each token in the reference sentence. However, instead of exact matches, we compute token similarity using contextual embeddings. We evaluate using the outputs of 363 machine translation and image captioning systems. BERTScore correlates better with human judgments and provides stronger model selection performance than existing metrics. Finally, we use an adversarial paraphrase detection task to show that BERTScore is more robust to challenging examples when compared to existing metrics.
The Curious Case of Neural Text Degeneration
Despite considerable advancements with deep neural language models, the enigma of neural text degeneration persists when these models are tested as text generators. The counter-intuitive empirical observation is that even though the use of likelihood as training objective leads to high quality models for a broad range of language understanding tasks, using likelihood as a decoding objective leads to text that is bland and strangely repetitive. In this paper, we reveal surprising distributional differences between human text and machine text. In addition, we find that decoding strategies alone can dramatically effect the quality of machine text, even when generated from exactly the same neural language model. Our findings motivate Nucleus Sampling, a simple but effective method to draw the best out of neural generation. By sampling text from the dynamic nucleus of the probability distribution, which allows for diversity while effectively truncating the less reliable tail of the distribution, the resulting text better demonstrates the quality of human text, yielding enhanced diversity without sacrificing fluency and coherence.
Text Generation: A Systematic Literature Review of Tasks, Evaluation, and Challenges
Text generation has become more accessible than ever, and the increasing interest in these systems, especially those using large language models, has spurred an increasing number of related publications. We provide a systematic literature review comprising 244 selected papers between 2017 and 2024. This review categorizes works in text generation into five main tasks: open-ended text generation, summarization, translation, paraphrasing, and question answering. For each task, we review their relevant characteristics, sub-tasks, and specific challenges (e.g., missing datasets for multi-document summarization, coherence in story generation, and complex reasoning for question answering). Additionally, we assess current approaches for evaluating text generation systems and ascertain problems with current metrics. Our investigation shows nine prominent challenges common to all tasks and sub-tasks in recent text generation publications: bias, reasoning, hallucinations, misuse, privacy, interpretability, transparency, datasets, and computing. We provide a detailed analysis of these challenges, their potential solutions, and which gaps still require further engagement from the community. This systematic literature review targets two main audiences: early career researchers in natural language processing looking for an overview of the field and promising research directions, as well as experienced researchers seeking a detailed view of tasks, evaluation methodologies, open challenges, and recent mitigation strategies.
A Contrastive Framework for Neural Text Generation
Text generation is of great importance to many natural language processing applications. However, maximization-based decoding methods (e.g. beam search) of neural language models often lead to degenerate solutions -- the generated text is unnatural and contains undesirable repetitions. Existing approaches introduce stochasticity via sampling or modify training objectives to decrease probabilities of certain tokens (e.g., unlikelihood training). However, they often lead to solutions that lack coherence. In this work, we show that an underlying reason for model degeneration is the anisotropic distribution of token representations. We present a contrastive solution: (i) SimCTG, a contrastive training objective to calibrate the model's representation space, and (ii) a decoding method -- contrastive search -- to encourage diversity while maintaining coherence in the generated text. Extensive experiments and analyses on three benchmarks from two languages demonstrate that our proposed approach significantly outperforms current state-of-the-art text generation methods as evaluated by both human and automatic metrics.
Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore
The efficacy of an large language model (LLM) generated text detector depends substantially on the availability of sizable training data. White-box zero-shot detectors, which require no such data, are nonetheless limited by the accessibility of the source model of the LLM-generated text. In this paper, we propose an simple but effective black-box zero-shot detection approach, predicated on the observation that human-written texts typically contain more grammatical errors than LLM-generated texts. This approach entails computing the Grammar Error Correction Score (GECScore) for the given text to distinguish between human-written and LLM-generated text. Extensive experimental results show that our method outperforms current state-of-the-art (SOTA) zero-shot and supervised methods, achieving an average AUROC of 98.7% and showing strong robustness against paraphrase and adversarial perturbation attacks.
RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement
Text ranking is a critical task in various information retrieval applications, and the recent success of Large Language Models (LLMs) in natural language processing has sparked interest in their application to text ranking. These methods primarily involve combining query and candidate documents and leveraging prompt learning to determine query-document relevance using the LLM's output probabilities for specific tokens or by directly generating a ranked list of candidate documents. Although these approaches have demonstrated promise, a noteworthy disparity arises between the training objective of LLMs, which typically centers around next token prediction, and the objective of evaluating query-document relevance. To address this gap and fully leverage LLM potential in text ranking tasks, we propose a progressive multi-stage training strategy. Firstly, we introduce a large-scale weakly supervised dataset of relevance texts to enable the LLMs to acquire the ability to predict relevant tokens without altering their original training objective. Subsequently, we incorporate supervised training to further enhance LLM ranking capability. Our experimental results on multiple benchmarks demonstrate the superior performance of our proposed method compared to previous competitive approaches, both in in-domain and out-of-domain scenarios.
Robust Detection of LLM-Generated Text: A Comparative Analysis
The ability of large language models to generate complex texts allows them to be widely integrated into many aspects of life, and their output can quickly fill all network resources. As the impact of LLMs grows, it becomes increasingly important to develop powerful detectors for the generated text. This detector is essential to prevent the potential misuse of these technologies and to protect areas such as social media from the negative effects of false content generated by LLMS. The main goal of LLM-generated text detection is to determine whether text is generated by an LLM, which is a basic binary classification task. In our work, we mainly use three different classification methods based on open source datasets: traditional machine learning techniques such as logistic regression, k-means clustering, Gaussian Naive Bayes, support vector machines, and methods based on converters such as BERT, and finally algorithms that use LLMs to detect LLM-generated text. We focus on model generalization, potential adversarial attacks, and accuracy of model evaluation. Finally, the possible research direction in the future is proposed, and the current experimental results are summarized.
A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding
We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods.
Retrieving Texts based on Abstract Descriptions
In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.
Efficient Intent Detection with Dual Sentence Encoders
Building conversational systems in new domains and with added functionality requires resource-efficient models that work under low-data regimes (i.e., in few-shot setups). Motivated by these requirements, we introduce intent detection methods backed by pretrained dual sentence encoders such as USE and ConveRT. We demonstrate the usefulness and wide applicability of the proposed intent detectors, showing that: 1) they outperform intent detectors based on fine-tuning the full BERT-Large model or using BERT as a fixed black-box encoder on three diverse intent detection data sets; 2) the gains are especially pronounced in few-shot setups (i.e., with only 10 or 30 annotated examples per intent); 3) our intent detectors can be trained in a matter of minutes on a single CPU; and 4) they are stable across different hyperparameter settings. In hope of facilitating and democratizing research focused on intention detection, we release our code, as well as a new challenging single-domain intent detection dataset comprising 13,083 annotated examples over 77 intents.
KInIT at SemEval-2024 Task 8: Fine-tuned LLMs for Multilingual Machine-Generated Text Detection
SemEval-2024 Task 8 is focused on multigenerator, multidomain, and multilingual black-box machine-generated text detection. Such a detection is important for preventing a potential misuse of large language models (LLMs), the newest of which are very capable in generating multilingual human-like texts. We have coped with this task in multiple ways, utilizing language identification and parameter-efficient fine-tuning of smaller LLMs for text classification. We have further used the per-language classification-threshold calibration to uniquely combine fine-tuned models predictions with statistical detection metrics to improve generalization of the system detection performance. Our submitted method achieved competitive results, ranking at the fourth place, just under 1 percentage point behind the winner.
Text Segmentation as a Supervised Learning Task
Text segmentation, the task of dividing a document into contiguous segments based on its semantic structure, is a longstanding challenge in language understanding. Previous work on text segmentation focused on unsupervised methods such as clustering or graph search, due to the paucity in labeled data. In this work, we formulate text segmentation as a supervised learning problem, and present a large new dataset for text segmentation that is automatically extracted and labeled from Wikipedia. Moreover, we develop a segmentation model based on this dataset and show that it generalizes well to unseen natural text.
ChatGPT Alternative Solutions: Large Language Models Survey
In recent times, the grandeur of Large Language Models (LLMs) has not only shone in the realm of natural language processing but has also cast its brilliance across a vast array of applications. This remarkable display of LLM capabilities has ignited a surge in research contributions within this domain, spanning a diverse spectrum of topics. These contributions encompass advancements in neural network architecture, context length enhancements, model alignment, training datasets, benchmarking, efficiency improvements, and more. Recent years have witnessed a dynamic synergy between academia and industry, propelling the field of LLM research to new heights. A notable milestone in this journey is the introduction of ChatGPT, a powerful AI chatbot grounded in LLMs, which has garnered widespread societal attention. The evolving technology of LLMs has begun to reshape the landscape of the entire AI community, promising a revolutionary shift in the way we create and employ AI algorithms. Given this swift-paced technical evolution, our survey embarks on a journey to encapsulate the recent strides made in the world of LLMs. Through an exploration of the background, key discoveries, and prevailing methodologies, we offer an up-to-the-minute review of the literature. By examining multiple LLM models, our paper not only presents a comprehensive overview but also charts a course that identifies existing challenges and points toward potential future research trajectories. This survey furnishes a well-rounded perspective on the current state of generative AI, shedding light on opportunities for further exploration, enhancement, and innovation.
TM-TREK at SemEval-2024 Task 8: Towards LLM-Based Automatic Boundary Detection for Human-Machine Mixed Text
With the increasing prevalence of text generated by large language models (LLMs), there is a growing concern about distinguishing between LLM-generated and human-written texts in order to prevent the misuse of LLMs, such as the dissemination of misleading information and academic dishonesty. Previous research has primarily focused on classifying text as either entirely human-written or LLM-generated, neglecting the detection of mixed texts that contain both types of content. This paper explores LLMs' ability to identify boundaries in human-written and machine-generated mixed texts. We approach this task by transforming it into a token classification problem and regard the label turning point as the boundary. Notably, our ensemble model of LLMs achieved first place in the 'Human-Machine Mixed Text Detection' sub-task of the SemEval'24 Competition Task 8. Additionally, we investigate factors that influence the capability of LLMs in detecting boundaries within mixed texts, including the incorporation of extra layers on top of LLMs, combination of segmentation loss, and the impact of pretraining. Our findings aim to provide valuable insights for future research in this area.
Siamese BERT-based Model for Web Search Relevance Ranking Evaluated on a New Czech Dataset
Web search engines focus on serving highly relevant results within hundreds of milliseconds. Pre-trained language transformer models such as BERT are therefore hard to use in this scenario due to their high computational demands. We present our real-time approach to the document ranking problem leveraging a BERT-based siamese architecture. The model is already deployed in a commercial search engine and it improves production performance by more than 3%. For further research and evaluation, we release DaReCzech, a unique data set of 1.6 million Czech user query-document pairs with manually assigned relevance levels. We also release Small-E-Czech, an Electra-small language model pre-trained on a large Czech corpus. We believe this data will support endeavours both of search relevance and multilingual-focused research communities.
Style Vectors for Steering Generative Large Language Model
This research explores strategies for steering the output of large language models (LLMs) towards specific styles, such as sentiment, emotion, or writing style, by adding style vectors to the activations of hidden layers during text generation. We show that style vectors can be simply computed from recorded layer activations for input texts in a specific style in contrast to more complex training-based approaches. Through a series of experiments, we demonstrate the effectiveness of activation engineering using such style vectors to influence the style of generated text in a nuanced and parameterisable way, distinguishing it from prompt engineering. The presented research constitutes a significant step towards developing more adaptive and effective AI-empowered interactive systems.
Neural Question Generation from Text: A Preliminary Study
Automatic question generation aims to generate questions from a text passage where the generated questions can be answered by certain sub-spans of the given passage. Traditional methods mainly use rigid heuristic rules to transform a sentence into related questions. In this work, we propose to apply the neural encoder-decoder model to generate meaningful and diverse questions from natural language sentences. The encoder reads the input text and the answer position, to produce an answer-aware input representation, which is fed to the decoder to generate an answer focused question. We conduct a preliminary study on neural question generation from text with the SQuAD dataset, and the experiment results show that our method can produce fluent and diverse questions.
Text Spotting Transformers
In this paper, we present TExt Spotting TRansformers (TESTR), a generic end-to-end text spotting framework using Transformers for text detection and recognition in the wild. TESTR builds upon a single encoder and dual decoders for the joint text-box control point regression and character recognition. Other than most existing literature, our method is free from Region-of-Interest operations and heuristics-driven post-processing procedures; TESTR is particularly effective when dealing with curved text-boxes where special cares are needed for the adaptation of the traditional bounding-box representations. We show our canonical representation of control points suitable for text instances in both Bezier curve and polygon annotations. In addition, we design a bounding-box guided polygon detection (box-to-polygon) process. Experiments on curved and arbitrarily shaped datasets demonstrate state-of-the-art performances of the proposed TESTR algorithm.
Crafting Tomorrow's Headlines: Neural News Generation and Detection in English, Turkish, Hungarian, and Persian
In the era dominated by information overload and its facilitation with Large Language Models (LLMs), the prevalence of misinformation poses a significant threat to public discourse and societal well-being. A critical concern at present involves the identification of machine-generated news. In this work, we take a significant step by introducing a benchmark dataset designed for neural news detection in four languages: English, Turkish, Hungarian, and Persian. The dataset incorporates outputs from multiple multilingual generators (in both, zero-shot and fine-tuned setups) such as BloomZ, LLaMa-2, Mistral, Mixtral, and GPT-4. Next, we experiment with a variety of classifiers, ranging from those based on linguistic features to advanced Transformer-based models and LLMs prompting. We present the detection results aiming to delve into the interpretablity and robustness of machine-generated texts detectors across all target languages.
MGTBench: Benchmarking Machine-Generated Text Detection
Nowadays large language models (LLMs) have shown revolutionary power in a variety of natural language processing (NLP) tasks such as text classification, sentiment analysis, language translation, and question-answering. In this way, detecting machine-generated texts (MGTs) is becoming increasingly important as LLMs become more advanced and prevalent. These models can generate human-like language that can be difficult to distinguish from text written by a human, which raises concerns about authenticity, accountability, and potential bias. However, existing detection methods against MGTs are evaluated under different model architectures, datasets, and experimental settings, resulting in a lack of a comprehensive evaluation framework across different methodologies In this paper, we fill this gap by proposing the first benchmark framework for MGT detection, named MGTBench. Extensive evaluations on public datasets with curated answers generated by ChatGPT (the most representative and powerful LLMs thus far) show that most of the current detection methods perform less satisfactorily against MGTs. An exceptional case is ChatGPT Detector, which is trained with ChatGPT-generated texts and shows great performance in detecting MGTs. Nonetheless, we note that only a small fraction of adversarial-crafted perturbations on MGTs can evade the ChatGPT Detector, thus highlighting the need for more robust MGT detection methods. We envision that MGTBench will serve as a benchmark tool to accelerate future investigations involving the evaluation of state-of-the-art MGT detection methods on their respective datasets and the development of more advanced MGT detection methods. Our source code and datasets are available at https://github.com/xinleihe/MGTBench.
Nugget: Neural Agglomerative Embeddings of Text
Embedding text sequences is a widespread requirement in modern language understanding. Existing approaches focus largely on constant-size representations. This is problematic, as the amount of information contained in text often varies with the length of the input. We propose a solution called Nugget, which encodes language into a representation based on a dynamically selected subset of input tokens. These nuggets are learned through tasks like autoencoding and machine translation, and intuitively segment language into meaningful units. We demonstrate Nugget outperforms related approaches in tasks involving semantic comparison. Finally, we illustrate these compact units allow for expanding the contextual window of a language model (LM), suggesting new future LMs that can condition on significantly larger amounts of content.
From Text Segmentation to Smart Chaptering: A Novel Benchmark for Structuring Video Transcriptions
Text segmentation is a fundamental task in natural language processing, where documents are split into contiguous sections. However, prior research in this area has been constrained by limited datasets, which are either small in scale, synthesized, or only contain well-structured documents. In this paper, we address these limitations by introducing a novel benchmark YTSeg focusing on spoken content that is inherently more unstructured and both topically and structurally diverse. As part of this work, we introduce an efficient hierarchical segmentation model MiniSeg, that outperforms state-of-the-art baselines. Lastly, we expand the notion of text segmentation to a more practical "smart chaptering" task that involves the segmentation of unstructured content, the generation of meaningful segment titles, and a potential real-time application of the models.
Learning to Ask: Neural Question Generation for Reading Comprehension
We study automatic question generation for sentences from text passages in reading comprehension. We introduce an attention-based sequence learning model for the task and investigate the effect of encoding sentence- vs. paragraph-level information. In contrast to all previous work, our model does not rely on hand-crafted rules or a sophisticated NLP pipeline; it is instead trainable end-to-end via sequence-to-sequence learning. Automatic evaluation results show that our system significantly outperforms the state-of-the-art rule-based system. In human evaluations, questions generated by our system are also rated as being more natural (i.e., grammaticality, fluency) and as more difficult to answer (in terms of syntactic and lexical divergence from the original text and reasoning needed to answer).
A Survey of Knowledge-Enhanced Text Generation
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Recent work has demonstrated that increased training dataset diversity improves general cross-domain knowledge and downstream generalization capability for large-scale language models. With this in mind, we present the Pile: an 825 GiB English text corpus targeted at training large-scale language models. The Pile is constructed from 22 diverse high-quality subsets -- both existing and newly constructed -- many of which derive from academic or professional sources. Our evaluation of the untuned performance of GPT-2 and GPT-3 on the Pile shows that these models struggle on many of its components, such as academic writing. Conversely, models trained on the Pile improve significantly over both Raw CC and CC-100 on all components of the Pile, while improving performance on downstream evaluations. Through an in-depth exploratory analysis, we document potentially concerning aspects of the data for prospective users. We make publicly available the code used in its construction.
Scalable and Domain-General Abstractive Proposition Segmentation
Segmenting text into fine-grained units of meaning is important to a wide range of NLP applications. The default approach of segmenting text into sentences is often insufficient, especially since sentences are usually complex enough to include multiple units of meaning that merit separate treatment in the downstream task. We focus on the task of abstractive proposition segmentation: transforming text into simple, self-contained, well-formed sentences. Several recent works have demonstrated the utility of proposition segmentation with few-shot prompted LLMs for downstream tasks such as retrieval-augmented grounding and fact verification. However, this approach does not scale to large amounts of text and may not always extract all the facts from the input text. In this paper, we first introduce evaluation metrics for the task to measure several dimensions of quality. We then propose a scalable, yet accurate, proposition segmentation model. We model proposition segmentation as a supervised task by training LLMs on existing annotated datasets and show that training yields significantly improved results. We further show that by using the fine-tuned LLMs as teachers for annotating large amounts of multi-domain synthetic distillation data, we can train smaller student models with results similar to the teacher LLMs. We then demonstrate that our technique leads to effective domain generalization, by annotating data in two domains outside the original training data and evaluating on them. Finally, as a key contribution of the paper, we share an easy-to-use API for NLP practitioners to use.
Transformer and Hybrid Deep Learning Based Models for Machine-Generated Text Detection
This paper describes the approach of the UniBuc - NLP team in tackling the SemEval 2024 Task 8: Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection. We explored transformer-based and hybrid deep learning architectures. For subtask B, our transformer-based model achieved a strong second-place out of 77 teams with an accuracy of 86.95\%, demonstrating the architecture's suitability for this task. However, our models showed overfitting in subtask A which could potentially be fixed with less fine-tunning and increasing maximum sequence length. For subtask C (token-level classification), our hybrid model overfit during training, hindering its ability to detect transitions between human and machine-generated text.
Optimizing Factual Accuracy in Text Generation through Dynamic Knowledge Selection
Language models (LMs) have revolutionized the way we interact with information, but they often generate nonfactual text, raising concerns about their reliability. Previous methods use external knowledge as references for text generation to enhance factuality but often struggle with the knowledge mix-up(e.g., entity mismatch) of irrelevant references. Besides,as the length of the output text grows, the randomness of sampling can escalate, detrimentally impacting the factual accuracy of the generated text. In this paper, we present DKGen, which divide the text generation process into an iterative process. In each iteration, DKGen takes the input query, the previously generated text and a subset of the reference passages as input to generate short text. During the process, the subset is dynamically selected from the full passage set based on their relevance to the previously generated text and the query, largely eliminating the irrelevant references from input. To further enhance DKGen's ability to correctly use these external knowledge, DKGen distills the relevance order of reference passages to the cross-attention distribution of decoder. We train and evaluate DKGen on a large-scale benchmark dataset. Experiment results show that DKGen outperforms all baseline models.
MultiSocial: Multilingual Benchmark of Machine-Generated Text Detection of Social-Media Texts
Recent LLMs are able to generate high-quality multilingual texts, indistinguishable for humans from authentic human-written ones. Research in machine-generated text detection is however mostly focused on the English language and longer texts, such as news articles, scientific papers or student essays. Social-media texts are usually much shorter and often feature informal language, grammatical errors, or distinct linguistic items (e.g., emoticons, hashtags). There is a gap in studying the ability of existing methods in detection of such texts, reflected also in the lack of existing multilingual benchmark datasets. To fill this gap we propose the first multilingual (22 languages) and multi-platform (5 social media platforms) dataset for benchmarking machine-generated text detection in the social-media domain, called MultiSocial. It contains 472,097 texts, of which about 58k are human-written and approximately the same amount is generated by each of 7 multilingual LLMs. We use this benchmark to compare existing detection methods in zero-shot as well as fine-tuned form. Our results indicate that the fine-tuned detectors have no problem to be trained on social-media texts and that the platform selection for training matters.
NoticIA: A Clickbait Article Summarization Dataset in Spanish
We present NoticIA, a dataset consisting of 850 Spanish news articles featuring prominent clickbait headlines, each paired with high-quality, single-sentence generative summarizations written by humans. This task demands advanced text understanding and summarization abilities, challenging the models' capacity to infer and connect diverse pieces of information to meet the user's informational needs generated by the clickbait headline. We evaluate the Spanish text comprehension capabilities of a wide range of state-of-the-art large language models. Additionally, we use the dataset to train ClickbaitFighter, a task-specific model that achieves near-human performance in this task.
Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge
We present a new question set, text corpus, and baselines assembled to encourage AI research in advanced question answering. Together, these constitute the AI2 Reasoning Challenge (ARC), which requires far more powerful knowledge and reasoning than previous challenges such as SQuAD or SNLI. The ARC question set is partitioned into a Challenge Set and an Easy Set, where the Challenge Set contains only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurence algorithm. The dataset contains only natural, grade-school science questions (authored for human tests), and is the largest public-domain set of this kind (7,787 questions). We test several baselines on the Challenge Set, including leading neural models from the SQuAD and SNLI tasks, and find that none are able to significantly outperform a random baseline, reflecting the difficult nature of this task. We are also releasing the ARC Corpus, a corpus of 14M science sentences relevant to the task, and implementations of the three neural baseline models tested. Can your model perform better? We pose ARC as a challenge to the community.
Neural Code Search Evaluation Dataset
There has been an increase of interest in code search using natural language. Assessing the performance of such code search models can be difficult without a readily available evaluation suite. In this paper, we present an evaluation dataset consisting of natural language query and code snippet pairs, with the hope that future work in this area can use this dataset as a common benchmark. We also provide the results of two code search models ([1] and [6]) from recent work. The evaluation dataset is available at https://github.com/facebookresearch/Neural-Code-Search-Evaluation-Dataset
GPT-Sentinel: Distinguishing Human and ChatGPT Generated Content
This paper presents a novel approach for detecting ChatGPT-generated vs. human-written text using language models. To this end, we first collected and released a pre-processed dataset named OpenGPTText, which consists of rephrased content generated using ChatGPT. We then designed, implemented, and trained two different models for text classification, using Robustly Optimized BERT Pretraining Approach (RoBERTa) and Text-to-Text Transfer Transformer (T5), respectively. Our models achieved remarkable results, with an accuracy of over 97% on the test dataset, as evaluated through various metrics. Furthermore, we conducted an interpretability study to showcase our model's ability to extract and differentiate key features between human-written and ChatGPT-generated text. Our findings provide important insights into the effective use of language models to detect generated text.
Answer is All You Need: Instruction-following Text Embedding via Answering the Question
This work aims to build a text embedder that can capture characteristics of texts specified by user instructions. Despite its tremendous potential to deploy user-oriented embeddings, none of previous approaches provides a concrete solution for it. This paper offers a new viewpoint, which treats the instruction as a question about the input text and encodes the expected answers to obtain the representation accordingly. Intuitively, texts with the same (implicit) semantics would share similar answers following the instruction, thus leading to more similar embeddings. Specifically, we propose InBedder that instantiates this embed-via-answering idea by only fine-tuning language models on abstractive question answering tasks. InBedder demonstrates significantly improved instruction-following capabilities according to our proposed instruction awareness tests and instruction robustness tests, when applied to both large language models (LLMs) (e.g., llama-2-7b) and smaller encoder-based LMs (e.g., roberta-large). Additionally, our qualitative analysis of clustering outcomes, achieved by applying different instructions to the same corpus, demonstrates a high degree of interpretability.
EAST: An Efficient and Accurate Scene Text Detector
Previous approaches for scene text detection have already achieved promising performances across various benchmarks. However, they usually fall short when dealing with challenging scenarios, even when equipped with deep neural network models, because the overall performance is determined by the interplay of multiple stages and components in the pipelines. In this work, we propose a simple yet powerful pipeline that yields fast and accurate text detection in natural scenes. The pipeline directly predicts words or text lines of arbitrary orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate steps (e.g., candidate aggregation and word partitioning), with a single neural network. The simplicity of our pipeline allows concentrating efforts on designing loss functions and neural network architecture. Experiments on standard datasets including ICDAR 2015, COCO-Text and MSRA-TD500 demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both accuracy and efficiency. On the ICDAR 2015 dataset, the proposed algorithm achieves an F-score of 0.7820 at 13.2fps at 720p resolution.
Think&Cite: Improving Attributed Text Generation with Self-Guided Tree Search and Progress Reward Modeling
Despite their outstanding capabilities, large language models (LLMs) are prone to hallucination and producing factually incorrect information. This challenge has spurred efforts in attributed text generation, which prompts LLMs to generate content with supporting evidence. In this paper, we propose a novel framework, called Think&Cite, and formulate attributed text generation as a multi-step reasoning problem integrated with search. Specifically, we propose Self-Guided Monte Carlo Tree Search (SG-MCTS), which capitalizes on the self-reflection capability of LLMs to reflect on the intermediate states of MCTS for guiding the tree expansion process. To provide reliable and comprehensive feedback, we introduce Progress Reward Models to measure the progress of tree search from the root to the current state from two aspects, i.e., generation and attribution progress. We conduct extensive experiments on three datasets and the results show that our approach significantly outperforms baseline approaches.
DetectLLM: Leveraging Log Rank Information for Zero-Shot Detection of Machine-Generated Text
With the rapid progress of large language models (LLMs) and the huge amount of text they generated, it becomes more and more impractical to manually distinguish whether a text is machine-generated. Given the growing use of LLMs in social media and education, it prompts us to develop methods to detect machine-generated text, preventing malicious usage such as plagiarism, misinformation, and propaganda. Previous work has studied several zero-shot methods, which require no training data. These methods achieve good performance, but there is still a lot of room for improvement. In this paper, we introduce two novel zero-shot methods for detecting machine-generated text by leveraging the log rank information. One is called DetectLLM-LRR, which is fast and efficient, and the other is called DetectLLM-NPR, which is more accurate, but slower due to the need for perturbations. Our experiments on three datasets and seven language models show that our proposed methods improve over the state of the art by 3.9 and 1.75 AUROC points absolute. Moreover, DetectLLM-NPR needs fewer perturbations than previous work to achieve the same level of performance, which makes it more practical for real-world use. We also investigate the efficiency--performance trade-off based on users preference on these two measures and we provide intuition for using them in practice effectively. We release the data and the code of both methods in https://github.com/mbzuai-nlp/DetectLLM
Advacheck at GenAI Detection Task 1: AI Detection Powered by Domain-Aware Multi-Tasking
The paper describes a system designed by Advacheck team to recognise machine-generated and human-written texts in the monolingual subtask of GenAI Detection Task 1 competition. Our developed system is a multi-task architecture with shared Transformer Encoder between several classification heads. One head is responsible for binary classification between human-written and machine-generated texts, while the other heads are auxiliary multiclass classifiers for texts of different domains from particular datasets. As multiclass heads were trained to distinguish the domains presented in the data, they provide a better understanding of the samples. This approach led us to achieve the first place in the official ranking with 83.07% macro F1-score on the test set and bypass the baseline by 10%. We further study obtained system through ablation, error and representation analyses, finding that multi-task learning outperforms single-task mode and simultaneous tasks form a cluster structure in embeddings space.
Fine-tuning Large Language Models for Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection
SemEval-2024 Task 8 introduces the challenge of identifying machine-generated texts from diverse Large Language Models (LLMs) in various languages and domains. The task comprises three subtasks: binary classification in monolingual and multilingual (Subtask A), multi-class classification (Subtask B), and mixed text detection (Subtask C). This paper focuses on Subtask A & B. Each subtask is supported by three datasets for training, development, and testing. To tackle this task, two methods: 1) using traditional machine learning (ML) with natural language preprocessing (NLP) for feature extraction, and 2) fine-tuning LLMs for text classification. The results show that transformer models, particularly LoRA-RoBERTa, exceed traditional ML methods in effectiveness, with majority voting being particularly effective in multilingual contexts for identifying machine-generated texts.
Enabling Large Language Models to Generate Text with Citations
Large language models (LLMs) have emerged as a widely-used tool for information seeking, but their generated outputs are prone to hallucination. In this work, we aim to enable LLMs to generate text with citations, improving their factual correctness and verifiability. Existing work mainly relies on commercial search engines and human evaluation, making it challenging to reproduce and compare with different modeling approaches. We propose ALCE, the first benchmark for Automatic LLMs' Citation Evaluation. ALCE collects a diverse set of questions and retrieval corpora and requires building end-to-end systems to retrieve supporting evidence and generate answers with citations. We build automatic metrics along three dimensions -- fluency, correctness, and citation quality -- and demonstrate their strong correlation with human judgements. Our experiments with state-of-the-art LLMs and novel prompting strategies show that current systems have considerable room for improvements -- for example, on the ELI5 dataset, even the best model has 49% of its generations lacking complete citation support. Our extensive analyses further highlight promising future directions, including developing better retrievers, advancing long-context LLMs, and improving the ability to synthesize information from multiple sources.
Tailor: Generating and Perturbing Text with Semantic Controls
Controlled text perturbation is useful for evaluating and improving model generalizability. However, current techniques rely on training a model for every target perturbation, which is expensive and hard to generalize. We present Tailor, a semantically-controlled text generation system. Tailor builds on a pretrained seq2seq model and produces textual outputs conditioned on control codes derived from semantic representations. We craft a set of operations to modify the control codes, which in turn steer generation towards targeted attributes. These operations can be further composed into higher-level ones, allowing for flexible perturbation strategies. We demonstrate the effectiveness of these perturbations in multiple applications. First, we use Tailor to automatically create high-quality contrast sets for four distinct natural language processing (NLP) tasks. These contrast sets contain fewer spurious artifacts and are complementary to manually annotated ones in their lexical diversity. Second, we show that Tailor perturbations can improve model generalization through data augmentation. Perturbing just 2% of training data leads to a 5.8-point gain on an NLI challenge set measuring reliance on syntactic heuristics.
Prompts as Auto-Optimized Training Hyperparameters: Training Best-in-Class IR Models from Scratch with 10 Gold Labels
We develop a method for training small-scale (under 100M parameter) neural information retrieval models with as few as 10 gold relevance labels. The method depends on generating synthetic queries for documents using a language model (LM), and the key step is that we automatically optimize the LM prompt that is used to generate these queries based on training quality. In experiments with the BIRCO benchmark, we find that models trained with our method outperform RankZephyr and are competitive with RankLLama, both of which are 7B parameter models trained on over 100K labels. These findings point to the power of automatic prompt optimization for synthetic dataset generation.
When Text Embedding Meets Large Language Model: A Comprehensive Survey
Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications, such as semantic matching, clustering, and information retrieval, continue to rely on text embeddings for their efficiency and effectiveness. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, utilizing their innate capabilities for embedding generation; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing these efforts based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.
Deeper Text Understanding for IR with Contextual Neural Language Modeling
Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR. Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited.
Retrieval is Accurate Generation
Standard language models generate text by selecting tokens from a fixed, finite, and standalone vocabulary. We introduce a novel method that selects context-aware phrases from a collection of supporting documents. One of the most significant challenges for this paradigm shift is determining the training oracles, because a string of text can be segmented in various ways and each segment can be retrieved from numerous possible documents. To address this, we propose to initialize the training oracles using linguistic heuristics and, more importantly, bootstrap the oracles through iterative self-reinforcement. Extensive experiments show that our model not only outperforms standard language models on a variety of knowledge-intensive tasks but also demonstrates improved generation quality in open-ended text generation. For instance, compared to the standard language model counterpart, our model raises the accuracy from 23.47% to 36.27% on OpenbookQA, and improves the MAUVE score from 42.61% to 81.58% in open-ended text generation. Remarkably, our model also achieves the best performance and the lowest latency among several retrieval-augmented baselines. In conclusion, we assert that retrieval is more accurate generation and hope that our work will encourage further research on this new paradigm shift.
Utilizing BERT for Information Retrieval: Survey, Applications, Resources, and Challenges
Recent years have witnessed a substantial increase in the use of deep learning to solve various natural language processing (NLP) problems. Early deep learning models were constrained by their sequential or unidirectional nature, such that they struggled to capture the contextual relationships across text inputs. The introduction of bidirectional encoder representations from transformers (BERT) leads to a robust encoder for the transformer model that can understand the broader context and deliver state-of-the-art performance across various NLP tasks. This has inspired researchers and practitioners to apply BERT to practical problems, such as information retrieval (IR). A survey that focuses on a comprehensive analysis of prevalent approaches that apply pretrained transformer encoders like BERT to IR can thus be useful for academia and the industry. In light of this, we revisit a variety of BERT-based methods in this survey, cover a wide range of techniques of IR, and group them into six high-level categories: (i) handling long documents, (ii) integrating semantic information, (iii) balancing effectiveness and efficiency, (iv) predicting the weights of terms, (v) query expansion, and (vi) document expansion. We also provide links to resources, including datasets and toolkits, for BERT-based IR systems. A key highlight of our survey is the comparison between BERT's encoder-based models and the latest generative Large Language Models (LLMs), such as ChatGPT, which rely on decoders. Despite the popularity of LLMs, we find that for specific tasks, finely tuned BERT encoders still outperform, and at a lower deployment cost. Finally, we summarize the comprehensive outcomes of the survey and suggest directions for future research in the area.
Text Understanding from Scratch
This article demontrates that we can apply deep learning to text understanding from character-level inputs all the way up to abstract text concepts, using temporal convolutional networks (ConvNets). We apply ConvNets to various large-scale datasets, including ontology classification, sentiment analysis, and text categorization. We show that temporal ConvNets can achieve astonishing performance without the knowledge of words, phrases, sentences and any other syntactic or semantic structures with regards to a human language. Evidence shows that our models can work for both English and Chinese.
TeClass: A Human-Annotated Relevance-based Headline Classification and Generation Dataset for Telugu
News headline generation is a crucial task in increasing productivity for both the readers and producers of news. This task can easily be aided by automated News headline-generation models. However, the presence of irrelevant headlines in scraped news articles results in sub-optimal performance of generation models. We propose that relevance-based headline classification can greatly aid the task of generating relevant headlines. Relevance-based headline classification involves categorizing news headlines based on their relevance to the corresponding news articles. While this task is well-established in English, it remains under-explored in low-resource languages like Telugu due to a lack of annotated data. To address this gap, we present TeClass, the first-ever human-annotated Telugu news headline classification dataset, containing 78,534 annotations across 26,178 article-headline pairs. We experiment with various baseline models and provide a comprehensive analysis of their results. We further demonstrate the impact of this work by fine-tuning various headline generation models using TeClass dataset. The headlines generated by the models fine-tuned on highly relevant article-headline pairs, showed about a 5 point increment in the ROUGE-L scores. To encourage future research, the annotated dataset as well as the annotation guidelines will be made publicly available.
How Large Language Models are Transforming Machine-Paraphrased Plagiarism
The recent success of large language models for text generation poses a severe threat to academic integrity, as plagiarists can generate realistic paraphrases indistinguishable from original work. However, the role of large autoregressive transformers in generating machine-paraphrased plagiarism and their detection is still developing in the literature. This work explores T5 and GPT-3 for machine-paraphrase generation on scientific articles from arXiv, student theses, and Wikipedia. We evaluate the detection performance of six automated solutions and one commercial plagiarism detection software and perform a human study with 105 participants regarding their detection performance and the quality of generated examples. Our results suggest that large models can rewrite text humans have difficulty identifying as machine-paraphrased (53% mean acc.). Human experts rate the quality of paraphrases generated by GPT-3 as high as original texts (clarity 4.0/5, fluency 4.2/5, coherence 3.8/5). The best-performing detection model (GPT-3) achieves a 66% F1-score in detecting paraphrases.
CoCo: Coherence-Enhanced Machine-Generated Text Detection Under Data Limitation With Contrastive Learning
Machine-Generated Text (MGT) detection, a task that discriminates MGT from Human-Written Text (HWT), plays a crucial role in preventing misuse of text generative models, which excel in mimicking human writing style recently. Latest proposed detectors usually take coarse text sequence as input and output some good results by fine-tune pretrained models with standard cross-entropy loss. However, these methods fail to consider the linguistic aspect of text (e.g., coherence) and sentence-level structures. Moreover, they lack the ability to handle the low-resource problem which could often happen in practice considering the enormous amount of textual data online. In this paper, we present a coherence-based contrastive learning model named CoCo to detect the possible MGT under low-resource scenario. Inspired by the distinctiveness and permanence properties of linguistic feature, we represent text as a coherence graph to capture its entity consistency, which is further encoded by the pretrained model and graph neural network. To tackle the challenges of data limitations, we employ a contrastive learning framework and propose an improved contrastive loss for making full use of hard negative samples in training stage. The experiment results on two public datasets prove our approach outperforms the state-of-art methods significantly.
Pretrained Transformers for Text Ranking: BERT and Beyond
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.
Artificial Text Detection via Examining the Topology of Attention Maps
The impressive capabilities of recent generative models to create texts that are challenging to distinguish from the human-written ones can be misused for generating fake news, product reviews, and even abusive content. Despite the prominent performance of existing methods for artificial text detection, they still lack interpretability and robustness towards unseen models. To this end, we propose three novel types of interpretable topological features for this task based on Topological Data Analysis (TDA) which is currently understudied in the field of NLP. We empirically show that the features derived from the BERT model outperform count- and neural-based baselines up to 10\% on three common datasets, and tend to be the most robust towards unseen GPT-style generation models as opposed to existing methods. The probing analysis of the features reveals their sensitivity to the surface and syntactic properties. The results demonstrate that TDA is a promising line with respect to NLP tasks, specifically the ones that incorporate surface and structural information.
CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-Intensive Language Tasks
Knowledge-intensive language tasks (KILT) usually require a large body of information to provide correct answers. A popular paradigm to solve this problem is to combine a search system with a machine reader, where the former retrieves supporting evidences and the latter examines them to produce answers. Recently, the reader component has witnessed significant advances with the help of large-scale pre-trained generative models. Meanwhile most existing solutions in the search component rely on the traditional ``index-retrieve-then-rank'' pipeline, which suffers from large memory footprint and difficulty in end-to-end optimization. Inspired by recent efforts in constructing model-based IR models, we propose to replace the traditional multi-step search pipeline with a novel single-step generative model, which can dramatically simplify the search process and be optimized in an end-to-end manner. We show that a strong generative retrieval model can be learned with a set of adequately designed pre-training tasks, and be adopted to improve a variety of downstream KILT tasks with further fine-tuning. We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index. Empirical results show that CorpusBrain can significantly outperform strong baselines for the retrieval task on the KILT benchmark and establish new state-of-the-art downstream performances. We also show that CorpusBrain works well under zero- and low-resource settings.
Prompt-Based Document Modifications In Ranking Competitions
We study prompting-based approaches with Large Language Models (LLMs) for modifying documents so as to promote their ranking in a competitive search setting. Our methods are inspired by prior work on leveraging LLMs as rankers. We evaluate our approach by deploying it as a bot in previous ranking competitions and in competitions we organized. Our findings demonstrate that our approach effectively improves document ranking while preserving high levels of faithfulness to the original content and maintaining overall document quality.
CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data
Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.
Constructing Datasets for Multi-hop Reading Comprehension Across Documents
Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently there exist no resources to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence - effectively performing multi-hop (alias multi-step) inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information, as providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 42.9% compared to human performance at 74.0% - leaving ample room for improvement.
Training-free LLM-generated Text Detection by Mining Token Probability Sequences
Large language models (LLMs) have demonstrated remarkable capabilities in generating high-quality texts across diverse domains. However, the potential misuse of LLMs has raised significant concerns, underscoring the urgent need for reliable detection of LLM-generated texts. Conventional training-based detectors often struggle with generalization, particularly in cross-domain and cross-model scenarios. In contrast, training-free methods, which focus on inherent discrepancies through carefully designed statistical features, offer improved generalization and interpretability. Despite this, existing training-free detection methods typically rely on global text sequence statistics, neglecting the modeling of local discriminative features, thereby limiting their detection efficacy. In this work, we introduce a novel training-free detector, termed Lastde that synergizes local and global statistics for enhanced detection. For the first time, we introduce time series analysis to LLM-generated text detection, capturing the temporal dynamics of token probability sequences. By integrating these local statistics with global ones, our detector reveals significant disparities between human and LLM-generated texts. We also propose an efficient alternative, Lastde++ to enable real-time detection. Extensive experiments on six datasets involving cross-domain, cross-model, and cross-lingual detection scenarios, under both white-box and black-box settings, demonstrated that our method consistently achieves state-of-the-art performance. Furthermore, our approach exhibits greater robustness against paraphrasing attacks compared to existing baseline methods.
Text and Code Embeddings by Contrastive Pre-Training
Text embeddings are useful features in many applications such as semantic search and computing text similarity. Previous work typically trains models customized for different use cases, varying in dataset choice, training objective and model architecture. In this work, we show that contrastive pre-training on unsupervised data at scale leads to high quality vector representations of text and code. The same unsupervised text embeddings that achieve new state-of-the-art results in linear-probe classification also display impressive semantic search capabilities and sometimes even perform competitively with fine-tuned models. On linear-probe classification accuracy averaging over 7 tasks, our best unsupervised model achieves a relative improvement of 4% and 1.8% over previous best unsupervised and supervised text embedding models respectively. The same text embeddings when evaluated on large-scale semantic search attains a relative improvement of 23.4%, 14.7%, and 10.6% over previous best unsupervised methods on MSMARCO, Natural Questions and TriviaQA benchmarks, respectively. Similarly to text embeddings, we train code embedding models on (text, code) pairs, obtaining a 20.8% relative improvement over prior best work on code search.
BoundingDocs: a Unified Dataset for Document Question Answering with Spatial Annotations
We present a unified dataset for document Question-Answering (QA), which is obtained combining several public datasets related to Document AI and visually rich document understanding (VRDU). Our main contribution is twofold: on the one hand we reformulate existing Document AI tasks, such as Information Extraction (IE), into a Question-Answering task, making it a suitable resource for training and evaluating Large Language Models; on the other hand, we release the OCR of all the documents and include the exact position of the answer to be found in the document image as a bounding box. Using this dataset, we explore the impact of different prompting techniques (that might include bounding box information) on the performance of open-weight models, identifying the most effective approaches for document comprehension.
Multi-Stage Document Ranking with BERT
The advent of deep neural networks pre-trained via language modeling tasks has spurred a number of successful applications in natural language processing. This work explores one such popular model, BERT, in the context of document ranking. We propose two variants, called monoBERT and duoBERT, that formulate the ranking problem as pointwise and pairwise classification, respectively. These two models are arranged in a multi-stage ranking architecture to form an end-to-end search system. One major advantage of this design is the ability to trade off quality against latency by controlling the admission of candidates into each pipeline stage, and by doing so, we are able to find operating points that offer a good balance between these two competing metrics. On two large-scale datasets, MS MARCO and TREC CAR, experiments show that our model produces results that are either at or comparable to the state of the art. Ablation studies show the contributions of each component and characterize the latency/quality tradeoff space.
GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation
We introduce GENIUS: a conditional text generation model using sketches as input, which can fill in the missing contexts for a given sketch (key information consisting of textual spans, phrases, or words, concatenated by mask tokens). GENIUS is pre-trained on a large-scale textual corpus with a novel reconstruction from sketch objective using an extreme and selective masking strategy, enabling it to generate diverse and high-quality texts given sketches. Comparison with other competitive conditional language models (CLMs) reveals the superiority of GENIUS's text generation quality. We further show that GENIUS can be used as a strong and ready-to-use data augmentation tool for various natural language processing (NLP) tasks. Most existing textual data augmentation methods are either too conservative, by making small changes to the original text, or too aggressive, by creating entirely new samples. With GENIUS, we propose GeniusAug, which first extracts the target-aware sketches from the original training set and then generates new samples based on the sketches. Empirical experiments on 6 text classification datasets show that GeniusAug significantly improves the models' performance in both in-distribution (ID) and out-of-distribution (OOD) settings. We also demonstrate the effectiveness of GeniusAug on named entity recognition (NER) and machine reading comprehension (MRC) tasks. (Code and models are publicly available at https://github.com/microsoft/SCGLab and https://github.com/beyondguo/genius)
SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection
We present the results and the main findings of SemEval-2024 Task 8: Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection. The task featured three subtasks. Subtask A is a binary classification task determining whether a text is written by a human or generated by a machine. This subtask has two tracks: a monolingual track focused solely on English texts and a multilingual track. Subtask B is to detect the exact source of a text, discerning whether it is written by a human or generated by a specific LLM. Subtask C aims to identify the changing point within a text, at which the authorship transitions from human to machine. The task attracted a large number of participants: subtask A monolingual (126), subtask A multilingual (59), subtask B (70), and subtask C (30). In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For all subtasks, the best systems used LLMs.
PLANET: Dynamic Content Planning in Autoregressive Transformers for Long-form Text Generation
Despite recent progress of pre-trained language models on generating fluent text, existing methods still suffer from incoherence problems in long-form text generation tasks that require proper content control and planning to form a coherent high-level logical flow. In this work, we propose PLANET, a novel generation framework leveraging autoregressive self-attention mechanism to conduct content planning and surface realization dynamically. To guide the generation of output sentences, our framework enriches the Transformer decoder with latent representations to maintain sentence-level semantic plans grounded by bag-of-words. Moreover, we introduce a new coherence-based contrastive learning objective to further improve the coherence of output. Extensive experiments are conducted on two challenging long-form text generation tasks including counterargument generation and opinion article generation. Both automatic and human evaluations show that our method significantly outperforms strong baselines and generates more coherent texts with richer contents.
VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain
The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.
TEXTRON: Weakly Supervised Multilingual Text Detection through Data Programming
Several recent deep learning (DL) based techniques perform considerably well on image-based multilingual text detection. However, their performance relies heavily on the availability and quality of training data. There are numerous types of page-level document images consisting of information in several modalities, languages, fonts, and layouts. This makes text detection a challenging problem in the field of computer vision (CV), especially for low-resource or handwritten languages. Furthermore, there is a scarcity of word-level labeled data for text detection, especially for multilingual settings and Indian scripts that incorporate both printed and handwritten text. Conventionally, Indian script text detection requires training a DL model on plenty of labeled data, but to the best of our knowledge, no relevant datasets are available. Manual annotation of such data requires a lot of time, effort, and expertise. In order to solve this problem, we propose TEXTRON, a Data Programming-based approach, where users can plug various text detection methods into a weak supervision-based learning framework. One can view this approach to multilingual text detection as an ensemble of different CV-based techniques and DL approaches. TEXTRON can leverage the predictions of DL models pre-trained on a significant amount of language data in conjunction with CV-based methods to improve text detection in other languages. We demonstrate that TEXTRON can improve the detection performance for documents written in Indian languages, despite the absence of corresponding labeled data. Further, through extensive experimentation, we show improvement brought about by our approach over the current State-of-the-art (SOTA) models, especially for handwritten Devanagari text. Code and dataset has been made available at https://github.com/IITB-LEAP-OCR/TEXTRON
Are You Robert or RoBERTa? Deceiving Online Authorship Attribution Models Using Neural Text Generators
Recently, there has been a rise in the development of powerful pre-trained natural language models, including GPT-2, Grover, and XLM. These models have shown state-of-the-art capabilities towards a variety of different NLP tasks, including question answering, content summarisation, and text generation. Alongside this, there have been many studies focused on online authorship attribution (AA). That is, the use of models to identify the authors of online texts. Given the power of natural language models in generating convincing texts, this paper examines the degree to which these language models can generate texts capable of deceiving online AA models. Experimenting with both blog and Twitter data, we utilise GPT-2 language models to generate texts using the existing posts of online users. We then examine whether these AI-based text generators are capable of mimicking authorial style to such a degree that they can deceive typical AA models. From this, we find that current AI-based text generators are able to successfully mimic authorship, showing capabilities towards this on both datasets. Our findings, in turn, highlight the current capacity of powerful natural language models to generate original online posts capable of mimicking authorial style sufficiently to deceive popular AA methods; a key finding given the proposed role of AA in real world applications such as spam-detection and forensic investigation.
AutoPureData: Automated Filtering of Web Data for LLM Fine-tuning
Up-to-date and reliable Large Language Models (LLMs) are consistently sought after. Typically, LLMs are trained on a fixed dataset and then deployed. However, the training data continually becomes outdated. Enable automatic training of AI using web data involves significant concerns regarding data quality and safety due to bias, spam, and other unsafe or unwanted text. Pure data is essential for producing reliable models. Training a model on impure data may result in undesirable outcomes. This research proposes a system that collects web data and automatically filters out unwanted text with the assistance of existing trusted AI models. In the experiment, a small sample of web data was collected and filtered, demonstrating the system's effectiveness in purifying the data.
Some Like It Small: Czech Semantic Embedding Models for Industry Applications
This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance.
DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature
The fluency and factual knowledge of large language models (LLMs) heightens the need for corresponding systems to detect whether a piece of text is machine-written. For example, students may use LLMs to complete written assignments, leaving instructors unable to accurately assess student learning. In this paper, we first demonstrate that text sampled from an LLM tends to occupy negative curvature regions of the model's log probability function. Leveraging this observation, we then define a new curvature-based criterion for judging if a passage is generated from a given LLM. This approach, which we call DetectGPT, does not require training a separate classifier, collecting a dataset of real or generated passages, or explicitly watermarking generated text. It uses only log probabilities computed by the model of interest and random perturbations of the passage from another generic pre-trained language model (e.g, T5). We find DetectGPT is more discriminative than existing zero-shot methods for model sample detection, notably improving detection of fake news articles generated by 20B parameter GPT-NeoX from 0.81 AUROC for the strongest zero-shot baseline to 0.95 AUROC for DetectGPT. See https://ericmitchell.ai/detectgpt for code, data, and other project information.