- From Noisy Fixed-Point Iterations to Private ADMM for Centralized and Federated Learning We study differentially private (DP) machine learning algorithms as instances of noisy fixed-point iterations, in order to derive privacy and utility results from this well-studied framework. We show that this new perspective recovers popular private gradient-based methods like DP-SGD and provides a principled way to design and analyze new private optimization algorithms in a flexible manner. Focusing on the widely-used Alternating Directions Method of Multipliers (ADMM) method, we use our general framework to derive novel private ADMM algorithms for centralized, federated and fully decentralized learning. For these three algorithms, we establish strong privacy guarantees leveraging privacy amplification by iteration and by subsampling. Finally, we provide utility guarantees using a unified analysis that exploits a recent linear convergence result for noisy fixed-point iterations. 3 authors · Feb 24, 2023
- Solving Constrained CASH Problems with ADMM The CASH problem has been widely studied in the context of automated configurations of machine learning (ML) pipelines and various solvers and toolkits are available. However, CASH solvers do not directly handle black-box constraints such as fairness, robustness or other domain-specific custom constraints. We present our recent approach [Liu, et al., 2020] that leverages the ADMM optimization framework to decompose CASH into multiple small problems and demonstrate how ADMM facilitates incorporation of black-box constraints. 8 authors · Jun 16, 2020