Abstract
LFM2, a family of compact foundation models, achieves high efficiency and performance on-device through hardware-in-the-loop architecture search and advanced training techniques, supporting various tasks including multimodal applications.
We present LFM2, a family of Liquid Foundation Models designed for efficient on-device deployment and strong task capabilities. Using hardware-in-the-loop architecture search under edge latency and memory constraints, we obtain a compact hybrid backbone that combines gated short convolutions with a small number of grouped query attention blocks, delivering up to 2x faster prefill and decode on CPUs compared to similarly sized models. The LFM2 family covers 350M-8.3B parameters, including dense models (350M, 700M, 1.2B, 2.6B) and a mixture-of-experts variant (8.3B total, 1.5B active), all with 32K context length. LFM2's training pipeline includes a tempered, decoupled Top-K knowledge distillation objective that avoids support mismatch; curriculum learning with difficulty-ordered data; and a three-stage post-training recipe of supervised fine-tuning, length-normalized preference optimization, and model merging. Pre-trained on 10-12T tokens, LFM2 models achieve strong results across diverse benchmarks; for example, LFM2-2.6B reaches 79.56% on IFEval and 82.41% on GSM8K. We further build multimodal and retrieval variants: LFM2-VL for vision-language tasks, LFM2-Audio for speech, and LFM2-ColBERT for retrieval. LFM2-VL supports tunable accuracy-latency tradeoffs via token-efficient visual processing, while LFM2-Audio separates audio input and output pathways to enable real-time speech-to-speech interaction competitive with models 3x larger. LFM2-ColBERT provides a low-latency encoder for queries and documents, enabling high-performance retrieval across multiple languages. All models are released with open weights and deployment packages for ExecuTorch, llama.cpp, and vLLM, making LFM2 a practical base for edge applications that need fast, memory-efficient inference and strong task capabilities.
Community
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- MobileLLM-Pro Technical Report (2025)
- BitMar: Low-Bit Multimodal Fusion with Episodic Memory for Edge Devices (2025)
- SparseVILA: Decoupling Visual Sparsity for Efficient VLM Inference (2025)
- Apriel-H1: Towards Efficient Enterprise Reasoning Models (2025)
- LongCat-Flash-Omni Technical Report (2025)
- BitNet Distillation (2025)
- Qwen3-VL Technical Report (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 5
Browse 5 models citing this paperDatasets citing this paper 0
No dataset linking this paper