Bangla-Bayanno: A 52K-Pair Bengali Visual Question Answering Dataset with LLM-Assisted Translation Refinement
Abstract
Bangla-Bayanno is an open-ended VQA dataset in Bangla, featuring a multilingual LLM-assisted translation pipeline to ensure high-quality and comprehensive question-answer pairs across various answer types.
In this paper, we introduce Bangla-Bayanno, an open-ended Visual Question Answering (VQA) Dataset in Bangla, a widely used, low-resource language in multimodal AI research. The majority of existing datasets are either manually annotated with an emphasis on a specific domain, query type, or answer type or are constrained by niche answer formats. In order to mitigate human-induced errors and guarantee lucidity, we implemented a multilingual LLM-assisted translation refinement pipeline. This dataset overcomes the issues of low-quality translations from multilingual sources. The dataset comprises 52,650 question-answer pairs across 4750+ images. Questions are classified into three distinct answer types: nominal (short descriptive), quantitative (numeric), and polar (yes/no). Bangla-Bayanno provides the most comprehensive open-source, high-quality VQA benchmark in Bangla, aiming to advance research in low-resource multimodal learning and facilitate the development of more inclusive AI systems.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 5
Browse 5 datasets citing this paperSpaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper