Sparse Near-Field Channel Estimation for XL-MIMO via Adaptive Filtering
Abstract
A sparse channel estimation framework using polar-domain zero-attracting least mean squares (PD-ZALMS) is developed for XL-MIMO systems in the near-field regime, offering superior accuracy and lower computational complexity.
Extremely large-scale multiple-input multiple-output (XL-MIMO) systems operating at sub-THz carrier frequencies represent a promising solution to meet the demands of next-generation wireless applications. This work focuses on sparse channel estimation for XL-MIMO systems operating in the near-field (NF) regime. Assuming a practical subarray-based architecture, we develop a NF channel estimation framework based on adaptive filtering, referred to as polar-domain zero-attracting least mean squares (PD-ZALMS). The proposed method achieves significantly superior channel estimation accuracy and lower computational complexity compared with the well-established polar-domain orthogonal matching pursuit. In addition, the proposed PD-ZALMS is shown to outperform the oracle least-squares channel estimator at low-to-moderate signal-to-noise ratio.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper