Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs
Abstract
A novel framework enhances LLMs' planning capabilities using knowledge graph-derived data, improving performance in complex QA tasks.
Improving the performance of large language models (LLMs) in complex question-answering (QA) scenarios has always been a research focal point. Recent studies have attempted to enhance LLMs' performance by combining step-wise planning with external retrieval. While effective for advanced models like GPT-3.5, smaller LLMs face challenges in decomposing complex questions, necessitating supervised fine-tuning. Previous work has relied on manual annotation and knowledge distillation from teacher LLMs, which are time-consuming and not accurate enough. In this paper, we introduce a novel framework for enhancing LLMs' planning capabilities by using planning data derived from knowledge graphs (KGs). LLMs fine-tuned with this data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval. Evaluations on multiple datasets, including our newly proposed benchmark, highlight the effectiveness of our framework and the benefits of KG-derived planning data.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper