Performance limits on photonic heterostructures
Abstract
Recent advances in the area of photonic optimization have made it possible to establish performance bounds on a wide range of electromagnetic objectives, albeit restricted to systems composed of single materials. In this work, motivated by interest in applications of optical heterostructures to broadband absorption, passive cooling, and ultrafast photonics, we show that these existing optimization methods can be readily extended to incorporate multi-material settings. Representative bounds on absorption in multilayer films and compact structures comprising two materials are shown to predict trends seen in topology-optimized devices, typically coming within factors of two of specific designs, and demonstrate higher achievable performance for heterostructures compared to single-material systems.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper