Papers
arxiv:2302.03950

Improving (Dis)agreement Detection with Inductive Social Relation Information From Comment-Reply Interactions

Published on Feb 8, 2023
Authors:
,
,
,

Abstract

(Dis)agreement detection aims to identify the authors' attitudes or positions ({agree, disagree, neutral}) towards a specific text. It is limited for existing methods merely using textual information for identifying (dis)agreements, especially for cross-domain settings. Social relation information can play an assistant role in the (dis)agreement task besides textual information. We propose a novel method to extract such relation information from (dis)agreement data into an inductive social relation graph, merely using the comment-reply pairs without any additional platform-specific information. The inductive social relation globally considers the historical discussion and the relation between authors. Textual information based on a pre-trained language model and social relation information encoded by pre-trained RGCN are jointly considered for (dis)agreement detection. Experimental results show that our model achieves state-of-the-art performance for both the in-domain and cross-domain tasks on the benchmark -- DEBAGREEMENT. We find social relations can boost the performance of the (dis)agreement detection model, especially for the long-token comment-reply pairs, demonstrating the effectiveness of the social relation graph. We also explore the effect of the knowledge graph embedding methods, the information fusing method, and the time interval in constructing the social relation graph, which shows the effectiveness of our model.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2302.03950 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2302.03950 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2302.03950 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.