Papers
arxiv:2004.06465

Deep Learning Models for Multilingual Hate Speech Detection

Published on Apr 14, 2020
Authors:
,
,
,

Abstract

Hate speech detection is a challenging problem with most of the datasets available in only one language: English. In this paper, we conduct a large scale analysis of multilingual hate speech in 9 languages from 16 different sources. We observe that in low resource setting, simple models such as LASER embedding with logistic regression performs the best, while in high resource setting BERT based models perform better. In case of zero-shot classification, languages such as Italian and Portuguese achieve good results. Our proposed framework could be used as an efficient solution for low-resource languages. These models could also act as good baselines for future multilingual hate speech detection tasks. We have made our code and experimental settings public for other researchers at https://github.com/punyajoy/DE-LIMIT.

Community

Sign up or log in to comment

Models citing this paper 9

Browse 9 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2004.06465 in a dataset README.md to link it from this page.

Spaces citing this paper 7

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.