Papers
arxiv:1907.06292

TWEETQA: A Social Media Focused Question Answering Dataset

Published on Jul 14, 2019
Authors:
,
,
,
,
Mo Yu ,
,
,

Abstract

With social media becoming increasingly pop-ular on which lots of news and real-time eventsare reported, developing automated questionanswering systems is critical to the effective-ness of many applications that rely on real-time knowledge. While previous datasets haveconcentrated on question answering (QA) forformal text like news and Wikipedia, wepresent the first large-scale dataset for QA oversocial media data. To ensure that the tweetswe collected are useful, we only gather tweetsused by journalists to write news articles. Wethen ask human annotators to write questionsand answers upon these tweets. Unlike otherQA datasets like SQuAD in which the answersare extractive, we allow the answers to be ab-stractive. We show that two recently proposedneural models that perform well on formaltexts are limited in their performance when ap-plied to our dataset. In addition, even the fine-tuned BERT model is still lagging behind hu-man performance with a large margin. Our re-sults thus point to the need of improved QAsystems targeting social media text.

Community

Sign up or log in to comment

Models citing this paper 23

Browse 23 models citing this paper

Datasets citing this paper 1

Spaces citing this paper 48

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.