Papers
arxiv:1811.00002

WaveGlow: A Flow-based Generative Network for Speech Synthesis

Published on Oct 31, 2018
Authors:
,
,

Abstract

In this paper we propose Wave<PRE_TAG>Glow</POST_TAG>: a flow-based network capable of generating high quality speech from mel-spectrograms. Wave<PRE_TAG>Glow</POST_TAG> combines insights from Glow and WaveNet in order to provide fast, efficient and high-quality audio synthesis, without the need for auto-regression. Wave<PRE_TAG>Glow</POST_TAG> is implemented using only a single network, trained using only a single cost function: maximizing the likelihood of the training data, which makes the training procedure simple and stable. Our PyTorch implementation produces audio samples at a rate of more than 500 kHz on an NVIDIA V100 GPU. Mean Opinion Scores show that it delivers audio quality as good as the best publicly available WaveNet implementation. All code will be made publicly available online.

Community

Hi how are you

Sign up or log in to comment

Models citing this paper 2

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/1811.00002 in a dataset README.md to link it from this page.

Spaces citing this paper 1

Collections including this paper 1