Fighting Fake News: Image Splice Detection via Learned Self-Consistency
Abstract
Advances in photo editing and manipulation tools have made it significantly easier to create fake imagery. Learning to detect such manipulations, however, remains a challenging problem due to the lack of sufficient amounts of manipulated training data. In this paper, we propose a learning algorithm for detecting visual image manipulations that is trained only using a large dataset of real photographs. The algorithm uses the automatically recorded photo EXIF metadata as supervisory signal for training a model to determine whether an image is self-consistent -- that is, whether its content could have been produced by a single imaging pipeline. We apply this self-consistency model to the task of detecting and localizing image splices. The proposed method obtains state-of-the-art performance on several image forensics benchmarks, despite never seeing any manipulated images at training. That said, it is merely a step in the long quest for a truly general purpose visual forensics tool.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper