Abstract
Charged dilaton black branes in AdS_4 exhibit Lifshitz-like near horizon geometries with vanishing entropy and positive specific heat, and their AC conductivity vanishes quadratically at zero temperature.
We study charged dilaton black branes in AdS_4. Our system involves a dilaton phi coupled to a Maxwell field F_{munu} with dilaton-dependent gauge coupling, {1over g^2} = f^2(phi). First, we find the solutions for extremal and near extremal branes through a combination of analytical and numerical techniques. The near horizon geometries in the simplest cases, where f(phi) = e^{alphaphi}, are Lifshitz-like, with a dynamical exponent z determined by alpha. The black hole thermodynamics varies in an interesting way with alpha, but in all cases the entropy is vanishing and the specific heat is positive for the near extremal solutions. We then compute conductivity in these backgrounds. We find that somewhat surprisingly, the AC conductivity vanishes like omega^2 at T=0 independent of alpha. We also explore the charged black brane physics of several other classes of gauge-coupling functions f(phi). In addition to possible applications in AdS/CMT, the extremal black branes are of interest from the point of view of the attractor mechanism. The near horizon geometries for these branes are universal, independent of the asymptotic values of the moduli, and describe generic classes of endpoints for attractor flows which are different from AdS_2times R^2.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper