pankajrajdeo commited on
Commit
abd7816
·
verified ·
1 Parent(s): 0589e64

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,718 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:9358675
10
+ - loss:TripletLoss
11
+ widget:
12
+ - source_sentence: acanthocephala
13
+ sentences:
14
+ - superficial genital wound (epidermal only)
15
+ - spiny-headed worm, nos
16
+ - fosfodiesterazy 3',5'-cyklicznego amp
17
+ - source_sentence: androstan-3,17-diol
18
+ sentences:
19
+ - forma no especificada del esteroide, normalmente un metabolito importante de la
20
+ testosterona con actividad androgénica. ha sido relacionado con la regulación
21
+ de la secreción de gonadotrofina.
22
+ - 3',5'-camp 5'-ヌクレオチドヒドロラーゼ
23
+ - hypopharyngeal fistula occluder (physical object)
24
+ - source_sentence: missbildningar, multipla
25
+ sentences:
26
+ - 3_3_amino_3_carboxypropyl_uridine is a modified uridine base feature.
27
+ - acetil-coa acilasa
28
+ - multiple congenital malformations
29
+ - source_sentence: acanthocephala
30
+ sentences:
31
+ - tomografía computarizada de estructuras del sistema musculoesquelético (procedimiento)
32
+ - tipo acanthocephala (organismo)
33
+ - massa; intra-abdominaal
34
+ - source_sentence: vägtrafikolyckor
35
+ sentences:
36
+ - trimeresurus andersoni
37
+ - mnohočetné malformace
38
+ - accidente vial
39
+ ---
40
+
41
+ # SentenceTransformer
42
+
43
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** Sentence Transformer
49
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
50
+ - **Maximum Sequence Length:** 1024 tokens
51
+ - **Output Dimensionality:** 384 tokens
52
+ - **Similarity Function:** Cosine Similarity
53
+ <!-- - **Training Dataset:** Unknown -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
60
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
61
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
62
+
63
+ ### Full Model Architecture
64
+
65
+ ```
66
+ SentenceTransformer(
67
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel
68
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("pankajrajdeo/328500_bioformer_16L")
88
+ # Run inference
89
+ sentences = [
90
+ 'vägtrafikolyckor',
91
+ 'accidente vial',
92
+ 'trimeresurus andersoni',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 384]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 9,358,675 training samples
148
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
149
+ * Approximate statistics based on the first 1000 samples:
150
+ | | anchor | positive | negative |
151
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
152
+ | type | string | string | string |
153
+ | details | <ul><li>min: 6 tokens</li><li>mean: 12.84 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 15.45 tokens</li><li>max: 187 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.75 tokens</li><li>max: 91 tokens</li></ul> |
154
+ * Samples:
155
+ | anchor | positive | negative |
156
+ |:--------------------------------------------|:-------------------------------------------------------------------|:------------------------------------------------|
157
+ | <code>(131)i-makroaggregerat albumin</code> | <code>macroagrégats d'albumine humaine marquée à l'iode 131</code> | <code>1-acylglycerophosphorylinositol</code> |
158
+ | <code>(131)i-makroaggregerat albumin</code> | <code>albumin, radio-iodinated serum</code> | <code>allo-aromadendrane-10alpha,14-diol</code> |
159
+ | <code>(131)i-makroaggregerat albumin</code> | <code>serum albumin, radio iodinated</code> | <code>acquired zygomatic hyperplasia</code> |
160
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
161
+ ```json
162
+ {
163
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
164
+ "triplet_margin": 5
165
+ }
166
+ ```
167
+
168
+ ### Evaluation Dataset
169
+
170
+ #### Unnamed Dataset
171
+
172
+
173
+ * Size: 820,102 evaluation samples
174
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
175
+ * Approximate statistics based on the first 1000 samples:
176
+ | | anchor | positive | negative |
177
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
178
+ | type | string | string | string |
179
+ | details | <ul><li>min: 3 tokens</li><li>mean: 10.54 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.21 tokens</li><li>max: 183 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.98 tokens</li><li>max: 322 tokens</li></ul> |
180
+ * Samples:
181
+ | anchor | positive | negative |
182
+ |:-----------------------------------------|:------------------------------------------|:------------------------------------------------------|
183
+ | <code>15-ketosteryloleathydrolase</code> | <code>steroid esterase, lipoidal</code> | <code>glutamic acid-lysine-tyrosine terpolymer</code> |
184
+ | <code>15-ketosteryloleathydrolase</code> | <code>hydrolase, cholesterol ester</code> | <code>unionicola parvipora</code> |
185
+ | <code>15-ketosteryloleathydrolase</code> | <code>acylhydrolase, sterol ester</code> | <code>mayamaea fossalis var. fossalis</code> |
186
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
187
+ ```json
188
+ {
189
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
190
+ "triplet_margin": 5
191
+ }
192
+ ```
193
+
194
+ ### Training Hyperparameters
195
+ #### Non-Default Hyperparameters
196
+
197
+ - `eval_strategy`: steps
198
+ - `per_device_train_batch_size`: 128
199
+ - `learning_rate`: 2e-05
200
+ - `num_train_epochs`: 10
201
+ - `warmup_ratio`: 0.1
202
+ - `fp16`: True
203
+ - `load_best_model_at_end`: True
204
+
205
+ #### All Hyperparameters
206
+ <details><summary>Click to expand</summary>
207
+
208
+ - `overwrite_output_dir`: False
209
+ - `do_predict`: False
210
+ - `eval_strategy`: steps
211
+ - `prediction_loss_only`: True
212
+ - `per_device_train_batch_size`: 128
213
+ - `per_device_eval_batch_size`: 8
214
+ - `per_gpu_train_batch_size`: None
215
+ - `per_gpu_eval_batch_size`: None
216
+ - `gradient_accumulation_steps`: 1
217
+ - `eval_accumulation_steps`: None
218
+ - `torch_empty_cache_steps`: None
219
+ - `learning_rate`: 2e-05
220
+ - `weight_decay`: 0.0
221
+ - `adam_beta1`: 0.9
222
+ - `adam_beta2`: 0.999
223
+ - `adam_epsilon`: 1e-08
224
+ - `max_grad_norm`: 1.0
225
+ - `num_train_epochs`: 10
226
+ - `max_steps`: -1
227
+ - `lr_scheduler_type`: linear
228
+ - `lr_scheduler_kwargs`: {}
229
+ - `warmup_ratio`: 0.1
230
+ - `warmup_steps`: 0
231
+ - `log_level`: passive
232
+ - `log_level_replica`: warning
233
+ - `log_on_each_node`: True
234
+ - `logging_nan_inf_filter`: True
235
+ - `save_safetensors`: True
236
+ - `save_on_each_node`: False
237
+ - `save_only_model`: False
238
+ - `restore_callback_states_from_checkpoint`: False
239
+ - `no_cuda`: False
240
+ - `use_cpu`: False
241
+ - `use_mps_device`: False
242
+ - `seed`: 42
243
+ - `data_seed`: None
244
+ - `jit_mode_eval`: False
245
+ - `use_ipex`: False
246
+ - `bf16`: False
247
+ - `fp16`: True
248
+ - `fp16_opt_level`: O1
249
+ - `half_precision_backend`: auto
250
+ - `bf16_full_eval`: False
251
+ - `fp16_full_eval`: False
252
+ - `tf32`: None
253
+ - `local_rank`: 0
254
+ - `ddp_backend`: None
255
+ - `tpu_num_cores`: None
256
+ - `tpu_metrics_debug`: False
257
+ - `debug`: []
258
+ - `dataloader_drop_last`: False
259
+ - `dataloader_num_workers`: 0
260
+ - `dataloader_prefetch_factor`: None
261
+ - `past_index`: -1
262
+ - `disable_tqdm`: False
263
+ - `remove_unused_columns`: True
264
+ - `label_names`: None
265
+ - `load_best_model_at_end`: True
266
+ - `ignore_data_skip`: False
267
+ - `fsdp`: []
268
+ - `fsdp_min_num_params`: 0
269
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
270
+ - `fsdp_transformer_layer_cls_to_wrap`: None
271
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
272
+ - `deepspeed`: None
273
+ - `label_smoothing_factor`: 0.0
274
+ - `optim`: adamw_torch
275
+ - `optim_args`: None
276
+ - `adafactor`: False
277
+ - `group_by_length`: False
278
+ - `length_column_name`: length
279
+ - `ddp_find_unused_parameters`: None
280
+ - `ddp_bucket_cap_mb`: None
281
+ - `ddp_broadcast_buffers`: False
282
+ - `dataloader_pin_memory`: True
283
+ - `dataloader_persistent_workers`: False
284
+ - `skip_memory_metrics`: True
285
+ - `use_legacy_prediction_loop`: False
286
+ - `push_to_hub`: False
287
+ - `resume_from_checkpoint`: None
288
+ - `hub_model_id`: None
289
+ - `hub_strategy`: every_save
290
+ - `hub_private_repo`: False
291
+ - `hub_always_push`: False
292
+ - `gradient_checkpointing`: False
293
+ - `gradient_checkpointing_kwargs`: None
294
+ - `include_inputs_for_metrics`: False
295
+ - `eval_do_concat_batches`: True
296
+ - `fp16_backend`: auto
297
+ - `push_to_hub_model_id`: None
298
+ - `push_to_hub_organization`: None
299
+ - `mp_parameters`:
300
+ - `auto_find_batch_size`: False
301
+ - `full_determinism`: False
302
+ - `torchdynamo`: None
303
+ - `ray_scope`: last
304
+ - `ddp_timeout`: 1800
305
+ - `torch_compile`: False
306
+ - `torch_compile_backend`: None
307
+ - `torch_compile_mode`: None
308
+ - `dispatch_batches`: None
309
+ - `split_batches`: None
310
+ - `include_tokens_per_second`: False
311
+ - `include_num_input_tokens_seen`: False
312
+ - `neftune_noise_alpha`: None
313
+ - `optim_target_modules`: None
314
+ - `batch_eval_metrics`: False
315
+ - `eval_on_start`: False
316
+ - `use_liger_kernel`: False
317
+ - `eval_use_gather_object`: False
318
+ - `batch_sampler`: batch_sampler
319
+ - `multi_dataset_batch_sampler`: proportional
320
+
321
+ </details>
322
+
323
+ ### Training Logs
324
+ <details><summary>Click to expand</summary>
325
+
326
+ | Epoch | Step | Training Loss | loss |
327
+ |:------:|:------:|:-------------:|:------:|
328
+ | 0.0137 | 1000 | 2.7368 | - |
329
+ | 0.0274 | 2000 | 1.4396 | - |
330
+ | 0.0410 | 3000 | 0.8916 | - |
331
+ | 0.0547 | 4000 | 0.6669 | - |
332
+ | 0.0684 | 5000 | 0.553 | - |
333
+ | 0.0821 | 6000 | 0.4759 | - |
334
+ | 0.0957 | 7000 | 0.4206 | - |
335
+ | 0.1094 | 8000 | 0.3808 | - |
336
+ | 0.1231 | 9000 | 0.3543 | - |
337
+ | 0.1368 | 10000 | 0.3281 | - |
338
+ | 0.1504 | 11000 | 0.3126 | - |
339
+ | 0.1641 | 12000 | 0.2923 | - |
340
+ | 0.1778 | 13000 | 0.2762 | - |
341
+ | 0.1915 | 14000 | 0.2617 | - |
342
+ | 0.2052 | 15000 | 0.2488 | - |
343
+ | 0.2188 | 16000 | 0.2363 | - |
344
+ | 0.2325 | 17000 | 0.2291 | - |
345
+ | 0.2462 | 18000 | 0.2235 | - |
346
+ | 0.2599 | 19000 | 0.2175 | - |
347
+ | 0.2735 | 20000 | 0.2077 | - |
348
+ | 0.2872 | 21000 | 0.2014 | - |
349
+ | 0.3009 | 22000 | 0.1944 | - |
350
+ | 0.3146 | 23000 | 0.1895 | - |
351
+ | 0.3283 | 24000 | 0.1889 | - |
352
+ | 0.3419 | 25000 | 0.1795 | - |
353
+ | 0.3556 | 26000 | 0.1769 | - |
354
+ | 0.3693 | 27000 | 0.1743 | - |
355
+ | 0.3830 | 28000 | 0.1691 | - |
356
+ | 0.3966 | 29000 | 0.1652 | - |
357
+ | 0.4103 | 30000 | 0.1654 | - |
358
+ | 0.4240 | 31000 | 0.1625 | - |
359
+ | 0.4377 | 32000 | 0.1614 | - |
360
+ | 0.4513 | 33000 | 0.1513 | - |
361
+ | 0.4650 | 34000 | 0.1527 | - |
362
+ | 0.4787 | 35000 | 0.1496 | - |
363
+ | 0.4924 | 36000 | 0.143 | - |
364
+ | 0.4992 | 36500 | - | 0.1243 |
365
+ | 0.5061 | 37000 | 0.1493 | - |
366
+ | 0.5197 | 38000 | 0.1467 | - |
367
+ | 0.5334 | 39000 | 0.1407 | - |
368
+ | 0.5471 | 40000 | 0.1364 | - |
369
+ | 0.5608 | 41000 | 0.1333 | - |
370
+ | 0.5744 | 42000 | 0.1378 | - |
371
+ | 0.5881 | 43000 | 0.1322 | - |
372
+ | 0.6018 | 44000 | 0.1304 | - |
373
+ | 0.6155 | 45000 | 0.1308 | - |
374
+ | 0.6291 | 46000 | 0.1254 | - |
375
+ | 0.6428 | 47000 | 0.1251 | - |
376
+ | 0.6565 | 48000 | 0.1256 | - |
377
+ | 0.6702 | 49000 | 0.1247 | - |
378
+ | 0.6839 | 50000 | 0.1225 | - |
379
+ | 0.6975 | 51000 | 0.1194 | - |
380
+ | 0.7112 | 52000 | 0.125 | - |
381
+ | 0.7249 | 53000 | 0.1206 | - |
382
+ | 0.7386 | 54000 | 0.1184 | - |
383
+ | 0.7522 | 55000 | 0.1134 | - |
384
+ | 0.7659 | 56000 | 0.1192 | - |
385
+ | 0.7796 | 57000 | 0.1134 | - |
386
+ | 0.7933 | 58000 | 0.1133 | - |
387
+ | 0.8069 | 59000 | 0.1104 | - |
388
+ | 0.8206 | 60000 | 0.111 | - |
389
+ | 0.8343 | 61000 | 0.1129 | - |
390
+ | 0.8480 | 62000 | 0.1098 | - |
391
+ | 0.8617 | 63000 | 0.1078 | - |
392
+ | 0.8753 | 64000 | 0.1096 | - |
393
+ | 0.8890 | 65000 | 0.1027 | - |
394
+ | 0.9027 | 66000 | 0.1097 | - |
395
+ | 0.9164 | 67000 | 0.109 | - |
396
+ | 0.9300 | 68000 | 0.1075 | - |
397
+ | 0.9437 | 69000 | 0.1036 | - |
398
+ | 0.9574 | 70000 | 0.1025 | - |
399
+ | 0.9711 | 71000 | 0.1056 | - |
400
+ | 0.9848 | 72000 | 0.1055 | - |
401
+ | 0.9984 | 73000 | 0.1021 | 0.0950 |
402
+ | 1.0121 | 74000 | 0.097 | - |
403
+ | 1.0258 | 75000 | 0.0931 | - |
404
+ | 1.0395 | 76000 | 0.089 | - |
405
+ | 1.0531 | 77000 | 0.0927 | - |
406
+ | 1.0668 | 78000 | 0.09 | - |
407
+ | 1.0805 | 79000 | 0.0922 | - |
408
+ | 1.0942 | 80000 | 0.0905 | - |
409
+ | 1.1078 | 81000 | 0.0907 | - |
410
+ | 1.1215 | 82000 | 0.0885 | - |
411
+ | 1.1352 | 83000 | 0.0877 | - |
412
+ | 1.1489 | 84000 | 0.085 | - |
413
+ | 1.1626 | 85000 | 0.0859 | - |
414
+ | 1.1762 | 86000 | 0.087 | - |
415
+ | 1.1899 | 87000 | 0.0851 | - |
416
+ | 1.2036 | 88000 | 0.0878 | - |
417
+ | 1.2173 | 89000 | 0.0873 | - |
418
+ | 1.2309 | 90000 | 0.0876 | - |
419
+ | 1.2446 | 91000 | 0.0838 | - |
420
+ | 1.2583 | 92000 | 0.0856 | - |
421
+ | 1.2720 | 93000 | 0.0818 | - |
422
+ | 1.2856 | 94000 | 0.0835 | - |
423
+ | 1.2993 | 95000 | 0.081 | - |
424
+ | 1.3130 | 96000 | 0.0797 | - |
425
+ | 1.3267 | 97000 | 0.0811 | - |
426
+ | 1.3404 | 98000 | 0.0802 | - |
427
+ | 1.3540 | 99000 | 0.0844 | - |
428
+ | 1.3677 | 100000 | 0.0787 | - |
429
+ | 1.3814 | 101000 | 0.0773 | - |
430
+ | 1.3951 | 102000 | 0.0802 | - |
431
+ | 1.4087 | 103000 | 0.0801 | - |
432
+ | 1.4224 | 104000 | 0.0762 | - |
433
+ | 1.4361 | 105000 | 0.0755 | - |
434
+ | 1.4498 | 106000 | 0.0791 | - |
435
+ | 1.4634 | 107000 | 0.0806 | - |
436
+ | 1.4771 | 108000 | 0.0756 | - |
437
+ | 1.4908 | 109000 | 0.0771 | - |
438
+ | 1.4976 | 109500 | - | 0.0779 |
439
+ | 1.5045 | 110000 | 0.0773 | - |
440
+ | 1.5182 | 111000 | 0.0769 | - |
441
+ | 1.5318 | 112000 | 0.0738 | - |
442
+ | 1.5455 | 113000 | 0.0765 | - |
443
+ | 1.5592 | 114000 | 0.0758 | - |
444
+ | 1.5729 | 115000 | 0.0759 | - |
445
+ | 1.5865 | 116000 | 0.0766 | - |
446
+ | 1.6002 | 117000 | 0.077 | - |
447
+ | 1.6139 | 118000 | 0.0755 | - |
448
+ | 1.6276 | 119000 | 0.0733 | - |
449
+ | 1.6413 | 120000 | 0.0753 | - |
450
+ | 1.6549 | 121000 | 0.0747 | - |
451
+ | 1.6686 | 122000 | 0.0733 | - |
452
+ | 1.6823 | 123000 | 0.0729 | - |
453
+ | 1.6960 | 124000 | 0.0705 | - |
454
+ | 1.7096 | 125000 | 0.0745 | - |
455
+ | 1.7233 | 126000 | 0.0726 | - |
456
+ | 1.7370 | 127000 | 0.0717 | - |
457
+ | 1.7507 | 128000 | 0.0687 | - |
458
+ | 1.7643 | 129000 | 0.0715 | - |
459
+ | 1.7780 | 130000 | 0.0701 | - |
460
+ | 1.7917 | 131000 | 0.0671 | - |
461
+ | 1.8054 | 132000 | 0.07 | - |
462
+ | 1.8191 | 133000 | 0.0683 | - |
463
+ | 1.8327 | 134000 | 0.0684 | - |
464
+ | 1.8464 | 135000 | 0.0668 | - |
465
+ | 1.8601 | 136000 | 0.0681 | - |
466
+ | 1.8738 | 137000 | 0.0668 | - |
467
+ | 1.8874 | 138000 | 0.0655 | - |
468
+ | 1.9011 | 139000 | 0.0698 | - |
469
+ | 1.9148 | 140000 | 0.0692 | - |
470
+ | 1.9285 | 141000 | 0.0667 | - |
471
+ | 1.9421 | 142000 | 0.0662 | - |
472
+ | 1.9558 | 143000 | 0.0695 | - |
473
+ | 1.9695 | 144000 | 0.0663 | - |
474
+ | 1.9832 | 145000 | 0.0669 | - |
475
+ | 1.9969 | 146000 | 0.0661 | 0.0686 |
476
+ | 2.0105 | 147000 | 0.0553 | - |
477
+ | 2.0242 | 148000 | 0.0521 | - |
478
+ | 2.0379 | 149000 | 0.053 | - |
479
+ | 2.0516 | 150000 | 0.0531 | - |
480
+ | 2.0652 | 151000 | 0.0529 | - |
481
+ | 2.0789 | 152000 | 0.0519 | - |
482
+ | 2.0926 | 153000 | 0.0548 | - |
483
+ | 2.1063 | 154000 | 0.0549 | - |
484
+ | 2.1199 | 155000 | 0.0525 | - |
485
+ | 2.1336 | 156000 | 0.056 | - |
486
+ | 2.1473 | 157000 | 0.0514 | - |
487
+ | 2.1610 | 158000 | 0.0526 | - |
488
+ | 2.1747 | 159000 | 0.0512 | - |
489
+ | 2.1883 | 160000 | 0.0526 | - |
490
+ | 2.2020 | 161000 | 0.0524 | - |
491
+ | 2.2157 | 162000 | 0.052 | - |
492
+ | 2.2294 | 163000 | 0.0526 | - |
493
+ | 2.2430 | 164000 | 0.0531 | - |
494
+ | 2.2567 | 165000 | 0.0522 | - |
495
+ | 2.2704 | 166000 | 0.0536 | - |
496
+ | 2.2841 | 167000 | 0.0505 | - |
497
+ | 2.2978 | 168000 | 0.0521 | - |
498
+ | 2.3114 | 169000 | 0.0518 | - |
499
+ | 2.3251 | 170000 | 0.0497 | - |
500
+ | 2.3388 | 171000 | 0.0534 | - |
501
+ | 2.3525 | 172000 | 0.0518 | - |
502
+ | 2.3661 | 173000 | 0.0502 | - |
503
+ | 2.3798 | 174000 | 0.053 | - |
504
+ | 2.3935 | 175000 | 0.0515 | - |
505
+ | 2.4072 | 176000 | 0.0503 | - |
506
+ | 2.4208 | 177000 | 0.0526 | - |
507
+ | 2.4345 | 178000 | 0.0497 | - |
508
+ | 2.4482 | 179000 | 0.0524 | - |
509
+ | 2.4619 | 180000 | 0.0517 | - |
510
+ | 2.4756 | 181000 | 0.0522 | - |
511
+ | 2.4892 | 182000 | 0.0536 | - |
512
+ | 2.4961 | 182500 | - | 0.0635 |
513
+ | 2.5029 | 183000 | 0.0474 | - |
514
+ | 2.5166 | 184000 | 0.0519 | - |
515
+ | 2.5303 | 185000 | 0.0474 | - |
516
+ | 2.5439 | 186000 | 0.0503 | - |
517
+ | 2.5576 | 187000 | 0.0506 | - |
518
+ | 2.5713 | 188000 | 0.0489 | - |
519
+ | 2.5850 | 189000 | 0.0497 | - |
520
+ | 2.5986 | 190000 | 0.0501 | - |
521
+ | 2.6123 | 191000 | 0.0516 | - |
522
+ | 2.6260 | 192000 | 0.052 | - |
523
+ | 2.6397 | 193000 | 0.0477 | - |
524
+ | 2.6534 | 194000 | 0.049 | - |
525
+ | 2.6670 | 195000 | 0.0497 | - |
526
+ | 2.6807 | 196000 | 0.049 | - |
527
+ | 2.6944 | 197000 | 0.0496 | - |
528
+ | 2.7081 | 198000 | 0.0522 | - |
529
+ | 2.7217 | 199000 | 0.0475 | - |
530
+ | 2.7354 | 200000 | 0.0499 | - |
531
+ | 2.7491 | 201000 | 0.0501 | - |
532
+ | 2.7628 | 202000 | 0.0468 | - |
533
+ | 2.7764 | 203000 | 0.0491 | - |
534
+ | 2.7901 | 204000 | 0.0515 | - |
535
+ | 2.8038 | 205000 | 0.0485 | - |
536
+ | 2.8175 | 206000 | 0.0458 | - |
537
+ | 2.8312 | 207000 | 0.0502 | - |
538
+ | 2.8448 | 208000 | 0.048 | - |
539
+ | 2.8585 | 209000 | 0.0485 | - |
540
+ | 2.8722 | 210000 | 0.0493 | - |
541
+ | 2.8859 | 211000 | 0.0462 | - |
542
+ | 2.8995 | 212000 | 0.048 | - |
543
+ | 2.9132 | 213000 | 0.0475 | - |
544
+ | 2.9269 | 214000 | 0.0459 | - |
545
+ | 2.9406 | 215000 | 0.0487 | - |
546
+ | 2.9543 | 216000 | 0.0487 | - |
547
+ | 2.9679 | 217000 | 0.047 | - |
548
+ | 2.9816 | 218000 | 0.048 | - |
549
+ | 2.9953 | 219000 | 0.0472 | 0.0592 |
550
+ | 3.0090 | 220000 | 0.0398 | - |
551
+ | 3.0226 | 221000 | 0.0353 | - |
552
+ | 3.0363 | 222000 | 0.0354 | - |
553
+ | 3.0500 | 223000 | 0.0361 | - |
554
+ | 3.0637 | 224000 | 0.0367 | - |
555
+ | 3.0773 | 225000 | 0.0375 | - |
556
+ | 3.0910 | 226000 | 0.037 | - |
557
+ | 3.1047 | 227000 | 0.0358 | - |
558
+ | 3.1184 | 228000 | 0.0372 | - |
559
+ | 3.1321 | 229000 | 0.0365 | - |
560
+ | 3.1457 | 230000 | 0.0389 | - |
561
+ | 3.1594 | 231000 | 0.0372 | - |
562
+ | 3.1731 | 232000 | 0.0345 | - |
563
+ | 3.1868 | 233000 | 0.0383 | - |
564
+ | 3.2004 | 234000 | 0.0337 | - |
565
+ | 3.2141 | 235000 | 0.0348 | - |
566
+ | 3.2278 | 236000 | 0.0376 | - |
567
+ | 3.2415 | 237000 | 0.0394 | - |
568
+ | 3.2551 | 238000 | 0.0378 | - |
569
+ | 3.2688 | 239000 | 0.0358 | - |
570
+ | 3.2825 | 240000 | 0.0344 | - |
571
+ | 3.2962 | 241000 | 0.0363 | - |
572
+ | 3.3099 | 242000 | 0.0373 | - |
573
+ | 3.3235 | 243000 | 0.0371 | - |
574
+ | 3.3372 | 244000 | 0.0375 | - |
575
+ | 3.3509 | 245000 | 0.0365 | - |
576
+ | 3.3646 | 246000 | 0.0362 | - |
577
+ | 3.3782 | 247000 | 0.0365 | - |
578
+ | 3.3919 | 248000 | 0.0386 | - |
579
+ | 3.4056 | 249000 | 0.0337 | - |
580
+ | 3.4193 | 250000 | 0.0382 | - |
581
+ | 3.4329 | 251000 | 0.0353 | - |
582
+ | 3.4466 | 252000 | 0.0349 | - |
583
+ | 3.4603 | 253000 | 0.0373 | - |
584
+ | 3.4740 | 254000 | 0.0374 | - |
585
+ | 3.4877 | 255000 | 0.036 | - |
586
+ | 3.4945 | 255500 | - | 0.0561 |
587
+ | 3.5013 | 256000 | 0.0357 | - |
588
+ | 3.5150 | 257000 | 0.0375 | - |
589
+ | 3.5287 | 258000 | 0.0372 | - |
590
+ | 3.5424 | 259000 | 0.0371 | - |
591
+ | 3.5560 | 260000 | 0.0364 | - |
592
+ | 3.5697 | 261000 | 0.037 | - |
593
+ | 3.5834 | 262000 | 0.0375 | - |
594
+ | 3.5971 | 263000 | 0.0369 | - |
595
+ | 3.6108 | 264000 | 0.0367 | - |
596
+ | 3.6244 | 265000 | 0.0359 | - |
597
+ | 3.6381 | 266000 | 0.0353 | - |
598
+ | 3.6518 | 267000 | 0.0356 | - |
599
+ | 3.6655 | 268000 | 0.0362 | - |
600
+ | 3.6791 | 269000 | 0.0365 | - |
601
+ | 3.6928 | 270000 | 0.0395 | - |
602
+ | 3.7065 | 271000 | 0.0352 | - |
603
+ | 3.7202 | 272000 | 0.0366 | - |
604
+ | 3.7338 | 273000 | 0.0357 | - |
605
+ | 3.7475 | 274000 | 0.0372 | - |
606
+ | 3.7612 | 275000 | 0.0379 | - |
607
+ | 3.7749 | 276000 | 0.0365 | - |
608
+ | 3.7886 | 277000 | 0.0374 | - |
609
+ | 3.8022 | 278000 | 0.0355 | - |
610
+ | 3.8159 | 279000 | 0.0362 | - |
611
+ | 3.8296 | 280000 | 0.036 | - |
612
+ | 3.8433 | 281000 | 0.036 | - |
613
+ | 3.8569 | 282000 | 0.0337 | - |
614
+ | 3.8706 | 283000 | 0.0374 | - |
615
+ | 3.8843 | 284000 | 0.0353 | - |
616
+ | 3.8980 | 285000 | 0.0344 | - |
617
+ | 3.9116 | 286000 | 0.0355 | - |
618
+ | 3.9253 | 287000 | 0.0342 | - |
619
+ | 3.9390 | 288000 | 0.0361 | - |
620
+ | 3.9527 | 289000 | 0.0361 | - |
621
+ | 3.9664 | 290000 | 0.0376 | - |
622
+ | 3.9800 | 291000 | 0.0363 | - |
623
+ | 3.9937 | 292000 | 0.0363 | 0.0561 |
624
+ | 4.0074 | 293000 | 0.0313 | - |
625
+ | 4.0211 | 294000 | 0.0273 | - |
626
+ | 4.0347 | 295000 | 0.0277 | - |
627
+ | 4.0484 | 296000 | 0.0248 | - |
628
+ | 4.0621 | 297000 | 0.0268 | - |
629
+ | 4.0758 | 298000 | 0.0259 | - |
630
+ | 4.0894 | 299000 | 0.027 | - |
631
+ | 4.1031 | 300000 | 0.0256 | - |
632
+ | 4.1168 | 301000 | 0.0283 | - |
633
+ | 4.1305 | 302000 | 0.0294 | - |
634
+ | 4.1442 | 303000 | 0.0263 | - |
635
+ | 4.1578 | 304000 | 0.0261 | - |
636
+ | 4.1715 | 305000 | 0.0257 | - |
637
+ | 4.1852 | 306000 | 0.0255 | - |
638
+ | 4.1989 | 307000 | 0.0279 | - |
639
+ | 4.2125 | 308000 | 0.0273 | - |
640
+ | 4.2262 | 309000 | 0.0263 | - |
641
+ | 4.2399 | 310000 | 0.0276 | - |
642
+ | 4.2536 | 311000 | 0.0262 | - |
643
+ | 4.2673 | 312000 | 0.029 | - |
644
+ | 4.2809 | 313000 | 0.0261 | - |
645
+ | 4.2946 | 314000 | 0.0264 | - |
646
+ | 4.3083 | 315000 | 0.0252 | - |
647
+ | 4.3220 | 316000 | 0.0265 | - |
648
+ | 4.3356 | 317000 | 0.0281 | - |
649
+ | 4.3493 | 318000 | 0.0249 | - |
650
+ | 4.3630 | 319000 | 0.0278 | - |
651
+ | 4.3767 | 320000 | 0.0272 | - |
652
+ | 4.3903 | 321000 | 0.0285 | - |
653
+ | 4.4040 | 322000 | 0.0279 | - |
654
+ | 4.4177 | 323000 | 0.0265 | - |
655
+ | 4.4314 | 324000 | 0.0268 | - |
656
+ | 4.4451 | 325000 | 0.0257 | - |
657
+ | 4.4587 | 326000 | 0.0273 | - |
658
+ | 4.4724 | 327000 | 0.027 | - |
659
+ | 4.4861 | 328000 | 0.0275 | - |
660
+ | 4.4929 | 328500 | - | 0.0548 |
661
+
662
+ </details>
663
+
664
+ ### Framework Versions
665
+ - Python: 3.9.16
666
+ - Sentence Transformers: 3.1.1
667
+ - Transformers: 4.45.2
668
+ - PyTorch: 2.4.1+cu121
669
+ - Accelerate: 1.0.0
670
+ - Datasets: 3.0.1
671
+ - Tokenizers: 0.20.0
672
+
673
+ ## Citation
674
+
675
+ ### BibTeX
676
+
677
+ #### Sentence Transformers
678
+ ```bibtex
679
+ @inproceedings{reimers-2019-sentence-bert,
680
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
681
+ author = "Reimers, Nils and Gurevych, Iryna",
682
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
683
+ month = "11",
684
+ year = "2019",
685
+ publisher = "Association for Computational Linguistics",
686
+ url = "https://arxiv.org/abs/1908.10084",
687
+ }
688
+ ```
689
+
690
+ #### TripletLoss
691
+ ```bibtex
692
+ @misc{hermans2017defense,
693
+ title={In Defense of the Triplet Loss for Person Re-Identification},
694
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
695
+ year={2017},
696
+ eprint={1703.07737},
697
+ archivePrefix={arXiv},
698
+ primaryClass={cs.CV}
699
+ }
700
+ ```
701
+
702
+ <!--
703
+ ## Glossary
704
+
705
+ *Clearly define terms in order to be accessible across audiences.*
706
+ -->
707
+
708
+ <!--
709
+ ## Model Card Authors
710
+
711
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
712
+ -->
713
+
714
+ <!--
715
+ ## Model Card Contact
716
+
717
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
718
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/aronow/pankaj/EntityDisambiguation/checkpoints/Bioformer_16L_Triplet_Finetuned/checkpoint-328500",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 1024,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 6,
17
+ "num_hidden_layers": 16,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.45.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32768
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b496f4aa2617920d2d7d17d0fe726d0da783ca0cafc40129b337d932b2e9a6a4
3
+ size 166097144
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 1024,
50
+ "model_max_length": 1024,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff