Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +718 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,718 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:9358675
|
10 |
+
- loss:TripletLoss
|
11 |
+
widget:
|
12 |
+
- source_sentence: acanthocephala
|
13 |
+
sentences:
|
14 |
+
- superficial genital wound (epidermal only)
|
15 |
+
- spiny-headed worm, nos
|
16 |
+
- fosfodiesterazy 3',5'-cyklicznego amp
|
17 |
+
- source_sentence: androstan-3,17-diol
|
18 |
+
sentences:
|
19 |
+
- forma no especificada del esteroide, normalmente un metabolito importante de la
|
20 |
+
testosterona con actividad androgénica. ha sido relacionado con la regulación
|
21 |
+
de la secreción de gonadotrofina.
|
22 |
+
- 3',5'-camp 5'-ヌクレオチドヒドロラーゼ
|
23 |
+
- hypopharyngeal fistula occluder (physical object)
|
24 |
+
- source_sentence: missbildningar, multipla
|
25 |
+
sentences:
|
26 |
+
- 3_3_amino_3_carboxypropyl_uridine is a modified uridine base feature.
|
27 |
+
- acetil-coa acilasa
|
28 |
+
- multiple congenital malformations
|
29 |
+
- source_sentence: acanthocephala
|
30 |
+
sentences:
|
31 |
+
- tomografía computarizada de estructuras del sistema musculoesquelético (procedimiento)
|
32 |
+
- tipo acanthocephala (organismo)
|
33 |
+
- massa; intra-abdominaal
|
34 |
+
- source_sentence: vägtrafikolyckor
|
35 |
+
sentences:
|
36 |
+
- trimeresurus andersoni
|
37 |
+
- mnohočetné malformace
|
38 |
+
- accidente vial
|
39 |
+
---
|
40 |
+
|
41 |
+
# SentenceTransformer
|
42 |
+
|
43 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
44 |
+
|
45 |
+
## Model Details
|
46 |
+
|
47 |
+
### Model Description
|
48 |
+
- **Model Type:** Sentence Transformer
|
49 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
50 |
+
- **Maximum Sequence Length:** 1024 tokens
|
51 |
+
- **Output Dimensionality:** 384 tokens
|
52 |
+
- **Similarity Function:** Cosine Similarity
|
53 |
+
<!-- - **Training Dataset:** Unknown -->
|
54 |
+
<!-- - **Language:** Unknown -->
|
55 |
+
<!-- - **License:** Unknown -->
|
56 |
+
|
57 |
+
### Model Sources
|
58 |
+
|
59 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
60 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
61 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
62 |
+
|
63 |
+
### Full Model Architecture
|
64 |
+
|
65 |
+
```
|
66 |
+
SentenceTransformer(
|
67 |
+
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel
|
68 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
69 |
+
)
|
70 |
+
```
|
71 |
+
|
72 |
+
## Usage
|
73 |
+
|
74 |
+
### Direct Usage (Sentence Transformers)
|
75 |
+
|
76 |
+
First install the Sentence Transformers library:
|
77 |
+
|
78 |
+
```bash
|
79 |
+
pip install -U sentence-transformers
|
80 |
+
```
|
81 |
+
|
82 |
+
Then you can load this model and run inference.
|
83 |
+
```python
|
84 |
+
from sentence_transformers import SentenceTransformer
|
85 |
+
|
86 |
+
# Download from the 🤗 Hub
|
87 |
+
model = SentenceTransformer("pankajrajdeo/328500_bioformer_16L")
|
88 |
+
# Run inference
|
89 |
+
sentences = [
|
90 |
+
'vägtrafikolyckor',
|
91 |
+
'accidente vial',
|
92 |
+
'trimeresurus andersoni',
|
93 |
+
]
|
94 |
+
embeddings = model.encode(sentences)
|
95 |
+
print(embeddings.shape)
|
96 |
+
# [3, 384]
|
97 |
+
|
98 |
+
# Get the similarity scores for the embeddings
|
99 |
+
similarities = model.similarity(embeddings, embeddings)
|
100 |
+
print(similarities.shape)
|
101 |
+
# [3, 3]
|
102 |
+
```
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Direct Usage (Transformers)
|
106 |
+
|
107 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
108 |
+
|
109 |
+
</details>
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
### Downstream Usage (Sentence Transformers)
|
114 |
+
|
115 |
+
You can finetune this model on your own dataset.
|
116 |
+
|
117 |
+
<details><summary>Click to expand</summary>
|
118 |
+
|
119 |
+
</details>
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Out-of-Scope Use
|
124 |
+
|
125 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
<!--
|
129 |
+
## Bias, Risks and Limitations
|
130 |
+
|
131 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Recommendations
|
136 |
+
|
137 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
## Training Details
|
141 |
+
|
142 |
+
### Training Dataset
|
143 |
+
|
144 |
+
#### Unnamed Dataset
|
145 |
+
|
146 |
+
|
147 |
+
* Size: 9,358,675 training samples
|
148 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
149 |
+
* Approximate statistics based on the first 1000 samples:
|
150 |
+
| | anchor | positive | negative |
|
151 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
152 |
+
| type | string | string | string |
|
153 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 12.84 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 15.45 tokens</li><li>max: 187 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.75 tokens</li><li>max: 91 tokens</li></ul> |
|
154 |
+
* Samples:
|
155 |
+
| anchor | positive | negative |
|
156 |
+
|:--------------------------------------------|:-------------------------------------------------------------------|:------------------------------------------------|
|
157 |
+
| <code>(131)i-makroaggregerat albumin</code> | <code>macroagrégats d'albumine humaine marquée à l'iode 131</code> | <code>1-acylglycerophosphorylinositol</code> |
|
158 |
+
| <code>(131)i-makroaggregerat albumin</code> | <code>albumin, radio-iodinated serum</code> | <code>allo-aromadendrane-10alpha,14-diol</code> |
|
159 |
+
| <code>(131)i-makroaggregerat albumin</code> | <code>serum albumin, radio iodinated</code> | <code>acquired zygomatic hyperplasia</code> |
|
160 |
+
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
|
161 |
+
```json
|
162 |
+
{
|
163 |
+
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
|
164 |
+
"triplet_margin": 5
|
165 |
+
}
|
166 |
+
```
|
167 |
+
|
168 |
+
### Evaluation Dataset
|
169 |
+
|
170 |
+
#### Unnamed Dataset
|
171 |
+
|
172 |
+
|
173 |
+
* Size: 820,102 evaluation samples
|
174 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
175 |
+
* Approximate statistics based on the first 1000 samples:
|
176 |
+
| | anchor | positive | negative |
|
177 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
178 |
+
| type | string | string | string |
|
179 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 10.54 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.21 tokens</li><li>max: 183 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.98 tokens</li><li>max: 322 tokens</li></ul> |
|
180 |
+
* Samples:
|
181 |
+
| anchor | positive | negative |
|
182 |
+
|:-----------------------------------------|:------------------------------------------|:------------------------------------------------------|
|
183 |
+
| <code>15-ketosteryloleathydrolase</code> | <code>steroid esterase, lipoidal</code> | <code>glutamic acid-lysine-tyrosine terpolymer</code> |
|
184 |
+
| <code>15-ketosteryloleathydrolase</code> | <code>hydrolase, cholesterol ester</code> | <code>unionicola parvipora</code> |
|
185 |
+
| <code>15-ketosteryloleathydrolase</code> | <code>acylhydrolase, sterol ester</code> | <code>mayamaea fossalis var. fossalis</code> |
|
186 |
+
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
|
187 |
+
```json
|
188 |
+
{
|
189 |
+
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
|
190 |
+
"triplet_margin": 5
|
191 |
+
}
|
192 |
+
```
|
193 |
+
|
194 |
+
### Training Hyperparameters
|
195 |
+
#### Non-Default Hyperparameters
|
196 |
+
|
197 |
+
- `eval_strategy`: steps
|
198 |
+
- `per_device_train_batch_size`: 128
|
199 |
+
- `learning_rate`: 2e-05
|
200 |
+
- `num_train_epochs`: 10
|
201 |
+
- `warmup_ratio`: 0.1
|
202 |
+
- `fp16`: True
|
203 |
+
- `load_best_model_at_end`: True
|
204 |
+
|
205 |
+
#### All Hyperparameters
|
206 |
+
<details><summary>Click to expand</summary>
|
207 |
+
|
208 |
+
- `overwrite_output_dir`: False
|
209 |
+
- `do_predict`: False
|
210 |
+
- `eval_strategy`: steps
|
211 |
+
- `prediction_loss_only`: True
|
212 |
+
- `per_device_train_batch_size`: 128
|
213 |
+
- `per_device_eval_batch_size`: 8
|
214 |
+
- `per_gpu_train_batch_size`: None
|
215 |
+
- `per_gpu_eval_batch_size`: None
|
216 |
+
- `gradient_accumulation_steps`: 1
|
217 |
+
- `eval_accumulation_steps`: None
|
218 |
+
- `torch_empty_cache_steps`: None
|
219 |
+
- `learning_rate`: 2e-05
|
220 |
+
- `weight_decay`: 0.0
|
221 |
+
- `adam_beta1`: 0.9
|
222 |
+
- `adam_beta2`: 0.999
|
223 |
+
- `adam_epsilon`: 1e-08
|
224 |
+
- `max_grad_norm`: 1.0
|
225 |
+
- `num_train_epochs`: 10
|
226 |
+
- `max_steps`: -1
|
227 |
+
- `lr_scheduler_type`: linear
|
228 |
+
- `lr_scheduler_kwargs`: {}
|
229 |
+
- `warmup_ratio`: 0.1
|
230 |
+
- `warmup_steps`: 0
|
231 |
+
- `log_level`: passive
|
232 |
+
- `log_level_replica`: warning
|
233 |
+
- `log_on_each_node`: True
|
234 |
+
- `logging_nan_inf_filter`: True
|
235 |
+
- `save_safetensors`: True
|
236 |
+
- `save_on_each_node`: False
|
237 |
+
- `save_only_model`: False
|
238 |
+
- `restore_callback_states_from_checkpoint`: False
|
239 |
+
- `no_cuda`: False
|
240 |
+
- `use_cpu`: False
|
241 |
+
- `use_mps_device`: False
|
242 |
+
- `seed`: 42
|
243 |
+
- `data_seed`: None
|
244 |
+
- `jit_mode_eval`: False
|
245 |
+
- `use_ipex`: False
|
246 |
+
- `bf16`: False
|
247 |
+
- `fp16`: True
|
248 |
+
- `fp16_opt_level`: O1
|
249 |
+
- `half_precision_backend`: auto
|
250 |
+
- `bf16_full_eval`: False
|
251 |
+
- `fp16_full_eval`: False
|
252 |
+
- `tf32`: None
|
253 |
+
- `local_rank`: 0
|
254 |
+
- `ddp_backend`: None
|
255 |
+
- `tpu_num_cores`: None
|
256 |
+
- `tpu_metrics_debug`: False
|
257 |
+
- `debug`: []
|
258 |
+
- `dataloader_drop_last`: False
|
259 |
+
- `dataloader_num_workers`: 0
|
260 |
+
- `dataloader_prefetch_factor`: None
|
261 |
+
- `past_index`: -1
|
262 |
+
- `disable_tqdm`: False
|
263 |
+
- `remove_unused_columns`: True
|
264 |
+
- `label_names`: None
|
265 |
+
- `load_best_model_at_end`: True
|
266 |
+
- `ignore_data_skip`: False
|
267 |
+
- `fsdp`: []
|
268 |
+
- `fsdp_min_num_params`: 0
|
269 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
270 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
271 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
272 |
+
- `deepspeed`: None
|
273 |
+
- `label_smoothing_factor`: 0.0
|
274 |
+
- `optim`: adamw_torch
|
275 |
+
- `optim_args`: None
|
276 |
+
- `adafactor`: False
|
277 |
+
- `group_by_length`: False
|
278 |
+
- `length_column_name`: length
|
279 |
+
- `ddp_find_unused_parameters`: None
|
280 |
+
- `ddp_bucket_cap_mb`: None
|
281 |
+
- `ddp_broadcast_buffers`: False
|
282 |
+
- `dataloader_pin_memory`: True
|
283 |
+
- `dataloader_persistent_workers`: False
|
284 |
+
- `skip_memory_metrics`: True
|
285 |
+
- `use_legacy_prediction_loop`: False
|
286 |
+
- `push_to_hub`: False
|
287 |
+
- `resume_from_checkpoint`: None
|
288 |
+
- `hub_model_id`: None
|
289 |
+
- `hub_strategy`: every_save
|
290 |
+
- `hub_private_repo`: False
|
291 |
+
- `hub_always_push`: False
|
292 |
+
- `gradient_checkpointing`: False
|
293 |
+
- `gradient_checkpointing_kwargs`: None
|
294 |
+
- `include_inputs_for_metrics`: False
|
295 |
+
- `eval_do_concat_batches`: True
|
296 |
+
- `fp16_backend`: auto
|
297 |
+
- `push_to_hub_model_id`: None
|
298 |
+
- `push_to_hub_organization`: None
|
299 |
+
- `mp_parameters`:
|
300 |
+
- `auto_find_batch_size`: False
|
301 |
+
- `full_determinism`: False
|
302 |
+
- `torchdynamo`: None
|
303 |
+
- `ray_scope`: last
|
304 |
+
- `ddp_timeout`: 1800
|
305 |
+
- `torch_compile`: False
|
306 |
+
- `torch_compile_backend`: None
|
307 |
+
- `torch_compile_mode`: None
|
308 |
+
- `dispatch_batches`: None
|
309 |
+
- `split_batches`: None
|
310 |
+
- `include_tokens_per_second`: False
|
311 |
+
- `include_num_input_tokens_seen`: False
|
312 |
+
- `neftune_noise_alpha`: None
|
313 |
+
- `optim_target_modules`: None
|
314 |
+
- `batch_eval_metrics`: False
|
315 |
+
- `eval_on_start`: False
|
316 |
+
- `use_liger_kernel`: False
|
317 |
+
- `eval_use_gather_object`: False
|
318 |
+
- `batch_sampler`: batch_sampler
|
319 |
+
- `multi_dataset_batch_sampler`: proportional
|
320 |
+
|
321 |
+
</details>
|
322 |
+
|
323 |
+
### Training Logs
|
324 |
+
<details><summary>Click to expand</summary>
|
325 |
+
|
326 |
+
| Epoch | Step | Training Loss | loss |
|
327 |
+
|:------:|:------:|:-------------:|:------:|
|
328 |
+
| 0.0137 | 1000 | 2.7368 | - |
|
329 |
+
| 0.0274 | 2000 | 1.4396 | - |
|
330 |
+
| 0.0410 | 3000 | 0.8916 | - |
|
331 |
+
| 0.0547 | 4000 | 0.6669 | - |
|
332 |
+
| 0.0684 | 5000 | 0.553 | - |
|
333 |
+
| 0.0821 | 6000 | 0.4759 | - |
|
334 |
+
| 0.0957 | 7000 | 0.4206 | - |
|
335 |
+
| 0.1094 | 8000 | 0.3808 | - |
|
336 |
+
| 0.1231 | 9000 | 0.3543 | - |
|
337 |
+
| 0.1368 | 10000 | 0.3281 | - |
|
338 |
+
| 0.1504 | 11000 | 0.3126 | - |
|
339 |
+
| 0.1641 | 12000 | 0.2923 | - |
|
340 |
+
| 0.1778 | 13000 | 0.2762 | - |
|
341 |
+
| 0.1915 | 14000 | 0.2617 | - |
|
342 |
+
| 0.2052 | 15000 | 0.2488 | - |
|
343 |
+
| 0.2188 | 16000 | 0.2363 | - |
|
344 |
+
| 0.2325 | 17000 | 0.2291 | - |
|
345 |
+
| 0.2462 | 18000 | 0.2235 | - |
|
346 |
+
| 0.2599 | 19000 | 0.2175 | - |
|
347 |
+
| 0.2735 | 20000 | 0.2077 | - |
|
348 |
+
| 0.2872 | 21000 | 0.2014 | - |
|
349 |
+
| 0.3009 | 22000 | 0.1944 | - |
|
350 |
+
| 0.3146 | 23000 | 0.1895 | - |
|
351 |
+
| 0.3283 | 24000 | 0.1889 | - |
|
352 |
+
| 0.3419 | 25000 | 0.1795 | - |
|
353 |
+
| 0.3556 | 26000 | 0.1769 | - |
|
354 |
+
| 0.3693 | 27000 | 0.1743 | - |
|
355 |
+
| 0.3830 | 28000 | 0.1691 | - |
|
356 |
+
| 0.3966 | 29000 | 0.1652 | - |
|
357 |
+
| 0.4103 | 30000 | 0.1654 | - |
|
358 |
+
| 0.4240 | 31000 | 0.1625 | - |
|
359 |
+
| 0.4377 | 32000 | 0.1614 | - |
|
360 |
+
| 0.4513 | 33000 | 0.1513 | - |
|
361 |
+
| 0.4650 | 34000 | 0.1527 | - |
|
362 |
+
| 0.4787 | 35000 | 0.1496 | - |
|
363 |
+
| 0.4924 | 36000 | 0.143 | - |
|
364 |
+
| 0.4992 | 36500 | - | 0.1243 |
|
365 |
+
| 0.5061 | 37000 | 0.1493 | - |
|
366 |
+
| 0.5197 | 38000 | 0.1467 | - |
|
367 |
+
| 0.5334 | 39000 | 0.1407 | - |
|
368 |
+
| 0.5471 | 40000 | 0.1364 | - |
|
369 |
+
| 0.5608 | 41000 | 0.1333 | - |
|
370 |
+
| 0.5744 | 42000 | 0.1378 | - |
|
371 |
+
| 0.5881 | 43000 | 0.1322 | - |
|
372 |
+
| 0.6018 | 44000 | 0.1304 | - |
|
373 |
+
| 0.6155 | 45000 | 0.1308 | - |
|
374 |
+
| 0.6291 | 46000 | 0.1254 | - |
|
375 |
+
| 0.6428 | 47000 | 0.1251 | - |
|
376 |
+
| 0.6565 | 48000 | 0.1256 | - |
|
377 |
+
| 0.6702 | 49000 | 0.1247 | - |
|
378 |
+
| 0.6839 | 50000 | 0.1225 | - |
|
379 |
+
| 0.6975 | 51000 | 0.1194 | - |
|
380 |
+
| 0.7112 | 52000 | 0.125 | - |
|
381 |
+
| 0.7249 | 53000 | 0.1206 | - |
|
382 |
+
| 0.7386 | 54000 | 0.1184 | - |
|
383 |
+
| 0.7522 | 55000 | 0.1134 | - |
|
384 |
+
| 0.7659 | 56000 | 0.1192 | - |
|
385 |
+
| 0.7796 | 57000 | 0.1134 | - |
|
386 |
+
| 0.7933 | 58000 | 0.1133 | - |
|
387 |
+
| 0.8069 | 59000 | 0.1104 | - |
|
388 |
+
| 0.8206 | 60000 | 0.111 | - |
|
389 |
+
| 0.8343 | 61000 | 0.1129 | - |
|
390 |
+
| 0.8480 | 62000 | 0.1098 | - |
|
391 |
+
| 0.8617 | 63000 | 0.1078 | - |
|
392 |
+
| 0.8753 | 64000 | 0.1096 | - |
|
393 |
+
| 0.8890 | 65000 | 0.1027 | - |
|
394 |
+
| 0.9027 | 66000 | 0.1097 | - |
|
395 |
+
| 0.9164 | 67000 | 0.109 | - |
|
396 |
+
| 0.9300 | 68000 | 0.1075 | - |
|
397 |
+
| 0.9437 | 69000 | 0.1036 | - |
|
398 |
+
| 0.9574 | 70000 | 0.1025 | - |
|
399 |
+
| 0.9711 | 71000 | 0.1056 | - |
|
400 |
+
| 0.9848 | 72000 | 0.1055 | - |
|
401 |
+
| 0.9984 | 73000 | 0.1021 | 0.0950 |
|
402 |
+
| 1.0121 | 74000 | 0.097 | - |
|
403 |
+
| 1.0258 | 75000 | 0.0931 | - |
|
404 |
+
| 1.0395 | 76000 | 0.089 | - |
|
405 |
+
| 1.0531 | 77000 | 0.0927 | - |
|
406 |
+
| 1.0668 | 78000 | 0.09 | - |
|
407 |
+
| 1.0805 | 79000 | 0.0922 | - |
|
408 |
+
| 1.0942 | 80000 | 0.0905 | - |
|
409 |
+
| 1.1078 | 81000 | 0.0907 | - |
|
410 |
+
| 1.1215 | 82000 | 0.0885 | - |
|
411 |
+
| 1.1352 | 83000 | 0.0877 | - |
|
412 |
+
| 1.1489 | 84000 | 0.085 | - |
|
413 |
+
| 1.1626 | 85000 | 0.0859 | - |
|
414 |
+
| 1.1762 | 86000 | 0.087 | - |
|
415 |
+
| 1.1899 | 87000 | 0.0851 | - |
|
416 |
+
| 1.2036 | 88000 | 0.0878 | - |
|
417 |
+
| 1.2173 | 89000 | 0.0873 | - |
|
418 |
+
| 1.2309 | 90000 | 0.0876 | - |
|
419 |
+
| 1.2446 | 91000 | 0.0838 | - |
|
420 |
+
| 1.2583 | 92000 | 0.0856 | - |
|
421 |
+
| 1.2720 | 93000 | 0.0818 | - |
|
422 |
+
| 1.2856 | 94000 | 0.0835 | - |
|
423 |
+
| 1.2993 | 95000 | 0.081 | - |
|
424 |
+
| 1.3130 | 96000 | 0.0797 | - |
|
425 |
+
| 1.3267 | 97000 | 0.0811 | - |
|
426 |
+
| 1.3404 | 98000 | 0.0802 | - |
|
427 |
+
| 1.3540 | 99000 | 0.0844 | - |
|
428 |
+
| 1.3677 | 100000 | 0.0787 | - |
|
429 |
+
| 1.3814 | 101000 | 0.0773 | - |
|
430 |
+
| 1.3951 | 102000 | 0.0802 | - |
|
431 |
+
| 1.4087 | 103000 | 0.0801 | - |
|
432 |
+
| 1.4224 | 104000 | 0.0762 | - |
|
433 |
+
| 1.4361 | 105000 | 0.0755 | - |
|
434 |
+
| 1.4498 | 106000 | 0.0791 | - |
|
435 |
+
| 1.4634 | 107000 | 0.0806 | - |
|
436 |
+
| 1.4771 | 108000 | 0.0756 | - |
|
437 |
+
| 1.4908 | 109000 | 0.0771 | - |
|
438 |
+
| 1.4976 | 109500 | - | 0.0779 |
|
439 |
+
| 1.5045 | 110000 | 0.0773 | - |
|
440 |
+
| 1.5182 | 111000 | 0.0769 | - |
|
441 |
+
| 1.5318 | 112000 | 0.0738 | - |
|
442 |
+
| 1.5455 | 113000 | 0.0765 | - |
|
443 |
+
| 1.5592 | 114000 | 0.0758 | - |
|
444 |
+
| 1.5729 | 115000 | 0.0759 | - |
|
445 |
+
| 1.5865 | 116000 | 0.0766 | - |
|
446 |
+
| 1.6002 | 117000 | 0.077 | - |
|
447 |
+
| 1.6139 | 118000 | 0.0755 | - |
|
448 |
+
| 1.6276 | 119000 | 0.0733 | - |
|
449 |
+
| 1.6413 | 120000 | 0.0753 | - |
|
450 |
+
| 1.6549 | 121000 | 0.0747 | - |
|
451 |
+
| 1.6686 | 122000 | 0.0733 | - |
|
452 |
+
| 1.6823 | 123000 | 0.0729 | - |
|
453 |
+
| 1.6960 | 124000 | 0.0705 | - |
|
454 |
+
| 1.7096 | 125000 | 0.0745 | - |
|
455 |
+
| 1.7233 | 126000 | 0.0726 | - |
|
456 |
+
| 1.7370 | 127000 | 0.0717 | - |
|
457 |
+
| 1.7507 | 128000 | 0.0687 | - |
|
458 |
+
| 1.7643 | 129000 | 0.0715 | - |
|
459 |
+
| 1.7780 | 130000 | 0.0701 | - |
|
460 |
+
| 1.7917 | 131000 | 0.0671 | - |
|
461 |
+
| 1.8054 | 132000 | 0.07 | - |
|
462 |
+
| 1.8191 | 133000 | 0.0683 | - |
|
463 |
+
| 1.8327 | 134000 | 0.0684 | - |
|
464 |
+
| 1.8464 | 135000 | 0.0668 | - |
|
465 |
+
| 1.8601 | 136000 | 0.0681 | - |
|
466 |
+
| 1.8738 | 137000 | 0.0668 | - |
|
467 |
+
| 1.8874 | 138000 | 0.0655 | - |
|
468 |
+
| 1.9011 | 139000 | 0.0698 | - |
|
469 |
+
| 1.9148 | 140000 | 0.0692 | - |
|
470 |
+
| 1.9285 | 141000 | 0.0667 | - |
|
471 |
+
| 1.9421 | 142000 | 0.0662 | - |
|
472 |
+
| 1.9558 | 143000 | 0.0695 | - |
|
473 |
+
| 1.9695 | 144000 | 0.0663 | - |
|
474 |
+
| 1.9832 | 145000 | 0.0669 | - |
|
475 |
+
| 1.9969 | 146000 | 0.0661 | 0.0686 |
|
476 |
+
| 2.0105 | 147000 | 0.0553 | - |
|
477 |
+
| 2.0242 | 148000 | 0.0521 | - |
|
478 |
+
| 2.0379 | 149000 | 0.053 | - |
|
479 |
+
| 2.0516 | 150000 | 0.0531 | - |
|
480 |
+
| 2.0652 | 151000 | 0.0529 | - |
|
481 |
+
| 2.0789 | 152000 | 0.0519 | - |
|
482 |
+
| 2.0926 | 153000 | 0.0548 | - |
|
483 |
+
| 2.1063 | 154000 | 0.0549 | - |
|
484 |
+
| 2.1199 | 155000 | 0.0525 | - |
|
485 |
+
| 2.1336 | 156000 | 0.056 | - |
|
486 |
+
| 2.1473 | 157000 | 0.0514 | - |
|
487 |
+
| 2.1610 | 158000 | 0.0526 | - |
|
488 |
+
| 2.1747 | 159000 | 0.0512 | - |
|
489 |
+
| 2.1883 | 160000 | 0.0526 | - |
|
490 |
+
| 2.2020 | 161000 | 0.0524 | - |
|
491 |
+
| 2.2157 | 162000 | 0.052 | - |
|
492 |
+
| 2.2294 | 163000 | 0.0526 | - |
|
493 |
+
| 2.2430 | 164000 | 0.0531 | - |
|
494 |
+
| 2.2567 | 165000 | 0.0522 | - |
|
495 |
+
| 2.2704 | 166000 | 0.0536 | - |
|
496 |
+
| 2.2841 | 167000 | 0.0505 | - |
|
497 |
+
| 2.2978 | 168000 | 0.0521 | - |
|
498 |
+
| 2.3114 | 169000 | 0.0518 | - |
|
499 |
+
| 2.3251 | 170000 | 0.0497 | - |
|
500 |
+
| 2.3388 | 171000 | 0.0534 | - |
|
501 |
+
| 2.3525 | 172000 | 0.0518 | - |
|
502 |
+
| 2.3661 | 173000 | 0.0502 | - |
|
503 |
+
| 2.3798 | 174000 | 0.053 | - |
|
504 |
+
| 2.3935 | 175000 | 0.0515 | - |
|
505 |
+
| 2.4072 | 176000 | 0.0503 | - |
|
506 |
+
| 2.4208 | 177000 | 0.0526 | - |
|
507 |
+
| 2.4345 | 178000 | 0.0497 | - |
|
508 |
+
| 2.4482 | 179000 | 0.0524 | - |
|
509 |
+
| 2.4619 | 180000 | 0.0517 | - |
|
510 |
+
| 2.4756 | 181000 | 0.0522 | - |
|
511 |
+
| 2.4892 | 182000 | 0.0536 | - |
|
512 |
+
| 2.4961 | 182500 | - | 0.0635 |
|
513 |
+
| 2.5029 | 183000 | 0.0474 | - |
|
514 |
+
| 2.5166 | 184000 | 0.0519 | - |
|
515 |
+
| 2.5303 | 185000 | 0.0474 | - |
|
516 |
+
| 2.5439 | 186000 | 0.0503 | - |
|
517 |
+
| 2.5576 | 187000 | 0.0506 | - |
|
518 |
+
| 2.5713 | 188000 | 0.0489 | - |
|
519 |
+
| 2.5850 | 189000 | 0.0497 | - |
|
520 |
+
| 2.5986 | 190000 | 0.0501 | - |
|
521 |
+
| 2.6123 | 191000 | 0.0516 | - |
|
522 |
+
| 2.6260 | 192000 | 0.052 | - |
|
523 |
+
| 2.6397 | 193000 | 0.0477 | - |
|
524 |
+
| 2.6534 | 194000 | 0.049 | - |
|
525 |
+
| 2.6670 | 195000 | 0.0497 | - |
|
526 |
+
| 2.6807 | 196000 | 0.049 | - |
|
527 |
+
| 2.6944 | 197000 | 0.0496 | - |
|
528 |
+
| 2.7081 | 198000 | 0.0522 | - |
|
529 |
+
| 2.7217 | 199000 | 0.0475 | - |
|
530 |
+
| 2.7354 | 200000 | 0.0499 | - |
|
531 |
+
| 2.7491 | 201000 | 0.0501 | - |
|
532 |
+
| 2.7628 | 202000 | 0.0468 | - |
|
533 |
+
| 2.7764 | 203000 | 0.0491 | - |
|
534 |
+
| 2.7901 | 204000 | 0.0515 | - |
|
535 |
+
| 2.8038 | 205000 | 0.0485 | - |
|
536 |
+
| 2.8175 | 206000 | 0.0458 | - |
|
537 |
+
| 2.8312 | 207000 | 0.0502 | - |
|
538 |
+
| 2.8448 | 208000 | 0.048 | - |
|
539 |
+
| 2.8585 | 209000 | 0.0485 | - |
|
540 |
+
| 2.8722 | 210000 | 0.0493 | - |
|
541 |
+
| 2.8859 | 211000 | 0.0462 | - |
|
542 |
+
| 2.8995 | 212000 | 0.048 | - |
|
543 |
+
| 2.9132 | 213000 | 0.0475 | - |
|
544 |
+
| 2.9269 | 214000 | 0.0459 | - |
|
545 |
+
| 2.9406 | 215000 | 0.0487 | - |
|
546 |
+
| 2.9543 | 216000 | 0.0487 | - |
|
547 |
+
| 2.9679 | 217000 | 0.047 | - |
|
548 |
+
| 2.9816 | 218000 | 0.048 | - |
|
549 |
+
| 2.9953 | 219000 | 0.0472 | 0.0592 |
|
550 |
+
| 3.0090 | 220000 | 0.0398 | - |
|
551 |
+
| 3.0226 | 221000 | 0.0353 | - |
|
552 |
+
| 3.0363 | 222000 | 0.0354 | - |
|
553 |
+
| 3.0500 | 223000 | 0.0361 | - |
|
554 |
+
| 3.0637 | 224000 | 0.0367 | - |
|
555 |
+
| 3.0773 | 225000 | 0.0375 | - |
|
556 |
+
| 3.0910 | 226000 | 0.037 | - |
|
557 |
+
| 3.1047 | 227000 | 0.0358 | - |
|
558 |
+
| 3.1184 | 228000 | 0.0372 | - |
|
559 |
+
| 3.1321 | 229000 | 0.0365 | - |
|
560 |
+
| 3.1457 | 230000 | 0.0389 | - |
|
561 |
+
| 3.1594 | 231000 | 0.0372 | - |
|
562 |
+
| 3.1731 | 232000 | 0.0345 | - |
|
563 |
+
| 3.1868 | 233000 | 0.0383 | - |
|
564 |
+
| 3.2004 | 234000 | 0.0337 | - |
|
565 |
+
| 3.2141 | 235000 | 0.0348 | - |
|
566 |
+
| 3.2278 | 236000 | 0.0376 | - |
|
567 |
+
| 3.2415 | 237000 | 0.0394 | - |
|
568 |
+
| 3.2551 | 238000 | 0.0378 | - |
|
569 |
+
| 3.2688 | 239000 | 0.0358 | - |
|
570 |
+
| 3.2825 | 240000 | 0.0344 | - |
|
571 |
+
| 3.2962 | 241000 | 0.0363 | - |
|
572 |
+
| 3.3099 | 242000 | 0.0373 | - |
|
573 |
+
| 3.3235 | 243000 | 0.0371 | - |
|
574 |
+
| 3.3372 | 244000 | 0.0375 | - |
|
575 |
+
| 3.3509 | 245000 | 0.0365 | - |
|
576 |
+
| 3.3646 | 246000 | 0.0362 | - |
|
577 |
+
| 3.3782 | 247000 | 0.0365 | - |
|
578 |
+
| 3.3919 | 248000 | 0.0386 | - |
|
579 |
+
| 3.4056 | 249000 | 0.0337 | - |
|
580 |
+
| 3.4193 | 250000 | 0.0382 | - |
|
581 |
+
| 3.4329 | 251000 | 0.0353 | - |
|
582 |
+
| 3.4466 | 252000 | 0.0349 | - |
|
583 |
+
| 3.4603 | 253000 | 0.0373 | - |
|
584 |
+
| 3.4740 | 254000 | 0.0374 | - |
|
585 |
+
| 3.4877 | 255000 | 0.036 | - |
|
586 |
+
| 3.4945 | 255500 | - | 0.0561 |
|
587 |
+
| 3.5013 | 256000 | 0.0357 | - |
|
588 |
+
| 3.5150 | 257000 | 0.0375 | - |
|
589 |
+
| 3.5287 | 258000 | 0.0372 | - |
|
590 |
+
| 3.5424 | 259000 | 0.0371 | - |
|
591 |
+
| 3.5560 | 260000 | 0.0364 | - |
|
592 |
+
| 3.5697 | 261000 | 0.037 | - |
|
593 |
+
| 3.5834 | 262000 | 0.0375 | - |
|
594 |
+
| 3.5971 | 263000 | 0.0369 | - |
|
595 |
+
| 3.6108 | 264000 | 0.0367 | - |
|
596 |
+
| 3.6244 | 265000 | 0.0359 | - |
|
597 |
+
| 3.6381 | 266000 | 0.0353 | - |
|
598 |
+
| 3.6518 | 267000 | 0.0356 | - |
|
599 |
+
| 3.6655 | 268000 | 0.0362 | - |
|
600 |
+
| 3.6791 | 269000 | 0.0365 | - |
|
601 |
+
| 3.6928 | 270000 | 0.0395 | - |
|
602 |
+
| 3.7065 | 271000 | 0.0352 | - |
|
603 |
+
| 3.7202 | 272000 | 0.0366 | - |
|
604 |
+
| 3.7338 | 273000 | 0.0357 | - |
|
605 |
+
| 3.7475 | 274000 | 0.0372 | - |
|
606 |
+
| 3.7612 | 275000 | 0.0379 | - |
|
607 |
+
| 3.7749 | 276000 | 0.0365 | - |
|
608 |
+
| 3.7886 | 277000 | 0.0374 | - |
|
609 |
+
| 3.8022 | 278000 | 0.0355 | - |
|
610 |
+
| 3.8159 | 279000 | 0.0362 | - |
|
611 |
+
| 3.8296 | 280000 | 0.036 | - |
|
612 |
+
| 3.8433 | 281000 | 0.036 | - |
|
613 |
+
| 3.8569 | 282000 | 0.0337 | - |
|
614 |
+
| 3.8706 | 283000 | 0.0374 | - |
|
615 |
+
| 3.8843 | 284000 | 0.0353 | - |
|
616 |
+
| 3.8980 | 285000 | 0.0344 | - |
|
617 |
+
| 3.9116 | 286000 | 0.0355 | - |
|
618 |
+
| 3.9253 | 287000 | 0.0342 | - |
|
619 |
+
| 3.9390 | 288000 | 0.0361 | - |
|
620 |
+
| 3.9527 | 289000 | 0.0361 | - |
|
621 |
+
| 3.9664 | 290000 | 0.0376 | - |
|
622 |
+
| 3.9800 | 291000 | 0.0363 | - |
|
623 |
+
| 3.9937 | 292000 | 0.0363 | 0.0561 |
|
624 |
+
| 4.0074 | 293000 | 0.0313 | - |
|
625 |
+
| 4.0211 | 294000 | 0.0273 | - |
|
626 |
+
| 4.0347 | 295000 | 0.0277 | - |
|
627 |
+
| 4.0484 | 296000 | 0.0248 | - |
|
628 |
+
| 4.0621 | 297000 | 0.0268 | - |
|
629 |
+
| 4.0758 | 298000 | 0.0259 | - |
|
630 |
+
| 4.0894 | 299000 | 0.027 | - |
|
631 |
+
| 4.1031 | 300000 | 0.0256 | - |
|
632 |
+
| 4.1168 | 301000 | 0.0283 | - |
|
633 |
+
| 4.1305 | 302000 | 0.0294 | - |
|
634 |
+
| 4.1442 | 303000 | 0.0263 | - |
|
635 |
+
| 4.1578 | 304000 | 0.0261 | - |
|
636 |
+
| 4.1715 | 305000 | 0.0257 | - |
|
637 |
+
| 4.1852 | 306000 | 0.0255 | - |
|
638 |
+
| 4.1989 | 307000 | 0.0279 | - |
|
639 |
+
| 4.2125 | 308000 | 0.0273 | - |
|
640 |
+
| 4.2262 | 309000 | 0.0263 | - |
|
641 |
+
| 4.2399 | 310000 | 0.0276 | - |
|
642 |
+
| 4.2536 | 311000 | 0.0262 | - |
|
643 |
+
| 4.2673 | 312000 | 0.029 | - |
|
644 |
+
| 4.2809 | 313000 | 0.0261 | - |
|
645 |
+
| 4.2946 | 314000 | 0.0264 | - |
|
646 |
+
| 4.3083 | 315000 | 0.0252 | - |
|
647 |
+
| 4.3220 | 316000 | 0.0265 | - |
|
648 |
+
| 4.3356 | 317000 | 0.0281 | - |
|
649 |
+
| 4.3493 | 318000 | 0.0249 | - |
|
650 |
+
| 4.3630 | 319000 | 0.0278 | - |
|
651 |
+
| 4.3767 | 320000 | 0.0272 | - |
|
652 |
+
| 4.3903 | 321000 | 0.0285 | - |
|
653 |
+
| 4.4040 | 322000 | 0.0279 | - |
|
654 |
+
| 4.4177 | 323000 | 0.0265 | - |
|
655 |
+
| 4.4314 | 324000 | 0.0268 | - |
|
656 |
+
| 4.4451 | 325000 | 0.0257 | - |
|
657 |
+
| 4.4587 | 326000 | 0.0273 | - |
|
658 |
+
| 4.4724 | 327000 | 0.027 | - |
|
659 |
+
| 4.4861 | 328000 | 0.0275 | - |
|
660 |
+
| 4.4929 | 328500 | - | 0.0548 |
|
661 |
+
|
662 |
+
</details>
|
663 |
+
|
664 |
+
### Framework Versions
|
665 |
+
- Python: 3.9.16
|
666 |
+
- Sentence Transformers: 3.1.1
|
667 |
+
- Transformers: 4.45.2
|
668 |
+
- PyTorch: 2.4.1+cu121
|
669 |
+
- Accelerate: 1.0.0
|
670 |
+
- Datasets: 3.0.1
|
671 |
+
- Tokenizers: 0.20.0
|
672 |
+
|
673 |
+
## Citation
|
674 |
+
|
675 |
+
### BibTeX
|
676 |
+
|
677 |
+
#### Sentence Transformers
|
678 |
+
```bibtex
|
679 |
+
@inproceedings{reimers-2019-sentence-bert,
|
680 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
681 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
682 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
683 |
+
month = "11",
|
684 |
+
year = "2019",
|
685 |
+
publisher = "Association for Computational Linguistics",
|
686 |
+
url = "https://arxiv.org/abs/1908.10084",
|
687 |
+
}
|
688 |
+
```
|
689 |
+
|
690 |
+
#### TripletLoss
|
691 |
+
```bibtex
|
692 |
+
@misc{hermans2017defense,
|
693 |
+
title={In Defense of the Triplet Loss for Person Re-Identification},
|
694 |
+
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
695 |
+
year={2017},
|
696 |
+
eprint={1703.07737},
|
697 |
+
archivePrefix={arXiv},
|
698 |
+
primaryClass={cs.CV}
|
699 |
+
}
|
700 |
+
```
|
701 |
+
|
702 |
+
<!--
|
703 |
+
## Glossary
|
704 |
+
|
705 |
+
*Clearly define terms in order to be accessible across audiences.*
|
706 |
+
-->
|
707 |
+
|
708 |
+
<!--
|
709 |
+
## Model Card Authors
|
710 |
+
|
711 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
712 |
+
-->
|
713 |
+
|
714 |
+
<!--
|
715 |
+
## Model Card Contact
|
716 |
+
|
717 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
718 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/data/aronow/pankaj/EntityDisambiguation/checkpoints/Bioformer_16L_Triplet_Finetuned/checkpoint-328500",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 1024,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 6,
|
17 |
+
"num_hidden_layers": 16,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.45.2",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 32768
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b496f4aa2617920d2d7d17d0fe726d0da783ca0cafc40129b337d932b2e9a6a4
|
3 |
+
size 166097144
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 1024,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 1024,
|
50 |
+
"model_max_length": 1024,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|