pankajrajdeo commited on
Commit
ddeca4a
·
verified ·
1 Parent(s): 3a3b774

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:33870508
8
+ - loss:MultipleNegativesRankingLoss
9
+ widget:
10
+ - source_sentence: Physical Behavior Profiles Among Older Adults and Their Associations
11
+ With Physical Capacity and Life-Space Mobility.
12
+ sentences:
13
+ - Injectable hydrogel-based materials have emerged as promising alendronate (ALN)
14
+ delivery systems for the treatment of osteoporosis. However, their intrinsic permeability
15
+ limits the sustained delivery of small-molecule drugs. In response to this challenge,
16
+ we present the multifunctional hybrids composed of mesoporous silica particles
17
+ decorated with hydroxyapatite and loaded with alendronate (MSP-NH2-HAp-ALN), which
18
+ are immobilized in collagen/chitosan/hyaluronic acid-based hydrogel. We have mainly
19
+ focused on the biological in vitro/ex vivo evaluation of developed composites.
20
+ It was found that the extracts released from tested systems do not exhibit hemolytic
21
+ properties and are safe for blood elements and the human liver cell model. The
22
+ resulting materials create an environment conducive to differentiating human bone
23
+ marrow mesenchymal stem cells and reduce the viability of osteoclast precursors
24
+ (RAW 264.7). Importantly, even the system with the lowest concentration of ALN
25
+ caused a substantial cytotoxic effect on RAW 264.7 cells; their viability decreased
26
+ to 20 % and 10 % of control on 3 and 7 day of culture. Additionally, prolonged
27
+ ALN release (up to 20 days) with minimized burst release was observed, while material
28
+ features (wettability, swellability, degradation, mechanical properties) depended
29
+ on MSP-NH2-HAp-ALN content. The obtained data indicate that developed composites
30
+ establish a high-potential formulation for safe and effective osteoporosis therapy.
31
+ - 'We identified data-driven multidimensional physical activity (PA) profiles using
32
+ several novel accelerometer-derived metrics. Participants aged 75, 80, and 85
33
+ (n = 441) wore triaxial accelerometers for 3-7 days. PA profiles were formed with
34
+ k-means cluster analysis based on PA minutes, intensity, fragmentation, sit-to-stand
35
+ transitions, and gait bouts for men and women. Associations with physical capacity
36
+ and life-space mobility were examined using age-adjusted general linear models.
37
+ Three profiles emerged: "Exercisers" and "actives" accumulated relatively high
38
+ PA minutes, with actives engaging in lighter intensity PA. "Inactives" had the
39
+ highest activity fragmentation and lowest PA volume, intensity, and gait bouts.
40
+ Inactives showed lower scores in physical capacity and life-space mobility compared
41
+ with exercisers and actives. Exercisers and actives had similar physical capacity
42
+ and life-space mobility, except female exercisers had higher walking speed in
43
+ the 6-min walk test. Our findings demonstrate the importance of assessing PA as
44
+ multidimensional behavior rather than focusing on a single metric.'
45
+ - 'Existing exoskeletons for pediatric gait assistance have limitations in anthropometric
46
+ design, structure weight, cost, user safety features, and adaptability to diverse
47
+ users. Additionally, creating precise models for pediatric rehabilitation is difficult
48
+ because the rapid anthropometric changes in children result in unknown model parameters.
49
+ Furthermore, external disruptions, like unpredictable movements and involuntary
50
+ muscle contractions, add complexity to the control schemes that need to be managed.
51
+ To overcome these limitations, this study aims to develop an affordable stand-aided
52
+ lower-limb exoskeleton specifically for pediatric subjects (8-12 years, 25-40
53
+ kg, 128-132 cm) in passive-assist mode. The authors modified a previously developed
54
+ model (LLESv1) for improved rigidity, reduced mass, simplified motor arrangement,
55
+ variable waist size, and enhanced mobility. A computer-aided design of the new
56
+ exoskeleton system (LLESv2) is presented. The developed prototype of the exoskeleton
57
+ appended with a pediatric subject (age: 12 years old, body mass: 40 kg, body height:
58
+ 132 cm) is presented with real-time hardware architecture. Thereafter, an improved
59
+ fast non-singular terminal sliding mode (IFNSTSM) control scheme is proposed,
60
+ incorporating a double exponential reaching law for expedited error convergence
61
+ and enhanced stability. The Lyapunov stability warrants the control system''s
62
+ performance despite uncertainties and disturbances. In contrast to fast non-singular
63
+ terminal sliding mode (FNSTSM) control and time-scaling sliding mode (TSSM) control,
64
+ experimental validation demonstrates the effectiveness of IFNSTSM control by a
65
+ respective average of 5.39% and 42.1% in tracking desired joint trajectories with
66
+ minimal and rapid finite time converging errors. Moreover, the exoskeleton with
67
+ the proposed IFNSTSM control requires significantly lesser control efforts than
68
+ the exoskeleton using contrast FNSTSM control. The Bland-Altman analysis indicates
69
+ that although there is a minimal mean difference in variables when employing FNSTSM
70
+ and IFNSTSM controllers, the latter exhibits significant performance variations
71
+ as the mean of variables changes. This research contributes to affordable and
72
+ effective pediatric gait assistance, improving rehabilitation outcomes and enhancing
73
+ mobility support.'
74
+ - source_sentence: Anatomo-functional basis of emotional and motor resonance elicited
75
+ by facial expressions.
76
+ sentences:
77
+ - Simulation theories predict that the observation of other's expressions modulates
78
+ neural activity in the same centers controlling their production. This hypothesis
79
+ has been developed by two models, postulating that the visual input is directly
80
+ projected either to the motor system for action recognition (motor resonance)
81
+ or to emotional/interoceptive regions for emotional contagion and social synchronization
82
+ (emotional resonance). Here we investigated the role of frontal/insular regions
83
+ in the processing of observed emotional expressions by combining intracranial
84
+ recording, electrical stimulation and effective connectivity. First, we intracranially
85
+ recorded from prefrontal, premotor or anterior insular regions of 44 patients
86
+ during the passive observation of emotional expressions, finding widespread modulations
87
+ in prefrontal/insular regions (anterior cingulate cortex, anterior insula, orbitofrontal
88
+ cortex and inferior frontal gyrus) and motor territories (rolandic operculum and
89
+ inferior frontal junction). Subsequently, we electrically stimulated the activated
90
+ sites, finding that (a) in the anterior cingulate cortex and anterior insula,
91
+ the stimulation elicited emotional/interoceptive responses, as predicted by the
92
+ 'emotional resonance model', (b) in the rolandic operculum it evoked face/mouth
93
+ sensorimotor responses, in line with the 'motor resonance' model, and (c) all
94
+ other regions were unresponsive or revealed functions unrelated to the processing
95
+ of facial expressions. Finally, we traced the effective connectivity to sketch
96
+ a network-level description of these regions, finding that the anterior cingulate
97
+ cortex and the anterior insula are reciprocally interconnected while the rolandic
98
+ operculum is part of the parieto-frontal circuits and poorly connected with the
99
+ formers. These results support the hypothesis that the pathways hypothesized by
100
+ the 'emotional resonance' and the 'motor resonance' models work in parallel, differing
101
+ in terms of spatio-temporal fingerprints, reactivity to electrical stimulation
102
+ and connectivity patterns.
103
+ - STAC3-related myopathy, or Native American myopathy, and myopathic facies. Since
104
+ the first description of NAM, more cases have been described worldwide, with three
105
+ cases reported from the Middle East. This study presents a cohort of seven Saudi
106
+ NAM patients belonging to three families. To our knowledge, this cohort is the
107
+ largest to be reported in the Arabian Peninsula and the Middle Eastern region.
108
+ We will also highlight the importance of considering this MH-causing disease preoperatively
109
+ in myopathic children with cleft palate in areas where NAM has been described.
110
+ - The Tibetan Plateau supplies water to nearly 2 billion people in Asia, but climate
111
+ change poses threats to its aquatic microbial resources. Here, we construct the
112
+ Tibetan Plateau Microbial Catalog by sequencing 498 metagenomes from six water
113
+ ecosystems (saline lakes, freshwater lakes, rivers, hot springs, wetlands and
114
+ glaciers). Our catalog expands knowledge of regional genomic diversity by presenting
115
+ 32,355 metagenome-assembled genomes that de-replicated into 10,723 representative
116
+ genome-based species, of which 88% were unannotated. The catalog contains nearly
117
+ 300 million non-redundant gene clusters, of which 15% novel, and 73,864 biosynthetic
118
+ gene clusters, of which 50% novel, thus expanding known functional diversity.
119
+ Using these data, we investigate the Tibetan Plateau aquatic microbiome's biogeography
120
+ along a distance of 2,500 km and >5 km in altitude. Microbial compositional similarity
121
+ and the shared gene count with the Tibetan Plateau microbiome decline along with
122
+ distance and altitude difference, suggesting a dispersal pattern. The Tibetan
123
+ Plateau Microbial Catalog stands as a substantial repository for high-altitude
124
+ aquatic microbiome resources, providing potential for discovering novel lineages
125
+ and functions, and bridging knowledge gaps in microbiome biogeography.
126
+ - source_sentence: Effect of verbal cues on the coupling and stability of anti-phase
127
+ bimanual coordination pattern in children with probable developmental coordination
128
+ disorder.
129
+ sentences:
130
+ - 'BACKGROUND: Tobacco smoking remains a key cause of preventable illness and death
131
+ globally. In response, many countries provide extensive services to help people
132
+ to stop smoking by offering a variety of effective behavioural and pharmacological
133
+ therapies. However, many people who wish to stop smoking do not have access to
134
+ or use stop smoking supports, and new modes of support, including the use of financial
135
+ incentives, are needed to address this issue. A realist review of published international
136
+ literature was undertaken to understand how, why, for whom, and in which circumstances
137
+ financial incentives contribute to success in stopping smoking for general population
138
+ groups and among pregnant women. METHODS: Systematic searches were undertaken
139
+ from inception to February 2022 of five academic databases: MEDLINE (ovid), Embase.com,
140
+ CIHAHL, Scopus and PsycINFO. Study selection was inclusive of all study designs.
141
+ Twenty-two studies were included. Using Pawson and Tilley''s iterative realist
142
+ review approach, data collected were screened, selected, coded, analysed, and
143
+ synthesised into a set of explanatory theoretical findings. RESULTS: Data were
144
+ synthesised into six Context-Mechanism-Outcome Configurations and one overarching
145
+ programme theory after iterative rounds of analysis, team discussion, and expert
146
+ panel feedback. Our programme theory shows that financial incentives are particularly
147
+ useful to help people stop smoking if they have a financial need, are pregnant
148
+ or recently post-partum, have a high threshold for behaviour change, and/or respond
149
+ well to external rewards. The incentives work through a number of mechanisms including
150
+ the role their direct monetary value can play in a person''s life and through
151
+ a process of reinforcement where they can help build confidence and self-esteem.
152
+ CONCLUSION: This is the first realist review to synthesise how, why, and for whom
153
+ financial incentives work among those attempting to stop smoking, adding to the
154
+ existing evidence demonstrating their efficacy. The findings will support the
155
+ implementation of current knowledge into effective programmes which can enhance
156
+ the impact of stop smoking care. PROSPERO REGISTRATION NUMBER: CRD42022298941.'
157
+ - We developed a synthetic method for obtaining 4,5-disubstituted 2-(pyridin-2-yl)oxazoles
158
+ from picolinamide and aldehydes by employing Pd(TFA)2 as the catalyst in n-octane.
159
+ This cascade reaction involves the condensation of picolinamide and two aldehyde
160
+ molecules promoted by trifluoroacetic acid (TFA) generated in situ from Pd(TFA)2.
161
+ This one-pot protocol provides rapid access to synthetically valuable triaryloxazoles
162
+ from readily available starting materials under mild conditions. An 18O labeling
163
+ study revealed that this tandem reaction proceeded via a different reaction mechanism
164
+ compared to the Robinson-Gabriel oxazole synthesis.
165
+ - 'The study of the emergence and stability of bimanual and interlimb coordination
166
+ patterns in children with Developmental Coordination Disorder (DCD) has shown
167
+ that they encounter greater difficulties in coupling their limbs compared to typically
168
+ developing (TD) children. Verbal cues have been identified as strategies to direct
169
+ children''s attention to more relevant task information, thus potentially improving
170
+ motor performance. Consequently, this study investigated the effect of providing
171
+ verbal cues on the execution of bimanual tasks in children with and without probable
172
+ DCD. Twenty-eight children aged 9-10, matched by age and gender, were divided
173
+ into two groups: pDCD and TD. The children performed bilateral trajectory movements
174
+ with both hands (horizontal back-and-forth), holding a pen on a tablet, in anti-phase
175
+ (180°) coordination pattern, in two conditions: No cues and Verbal cues. In the
176
+ last condition, children received verbal cues to maintain the anti-phase pattern
177
+ even with an increase in hand oscillation frequency. Relative phase and variability
178
+ of relative phase between the hands were calculated for analysis of pattern coupling
179
+ and stability. Hand cycles, movement amplitude, and tablet pressure force were
180
+ calculated to analyze pattern control parameters. All these variables were compared
181
+ between groups and conditions. The results indicated that despite the pDCD group
182
+ showing greater variability in the anti-phase coordination pattern compared to
183
+ the TD group, both groups performed better in the Verbal cues than the No cues
184
+ condition. Furthermore, the pDCD group exhibited more hand movement cycles and
185
+ applied greater pressure force compared to the TD group, suggesting different
186
+ motor control strategies during the bimanual task. It is suggested that the use
187
+ of verbal cues during bimanual task execution improves children''s performance,
188
+ potentially by promoting interaction between attention, as a cognitive function,
189
+ and intrinsic coordination dynamics, thereby reducing variability in the perceptual-motor
190
+ system.'
191
+ - source_sentence: 'Frailty efficacy as a predictor of clinical and cognitive complications
192
+ in patients undergoing coronary artery bypass grafting: a prospective cohort study.'
193
+ sentences:
194
+ - 'BACKGROUND: Frailty is proposed as a predictor of outcomes in patients undergoing
195
+ major surgeries, although data on the association of frailty and coronary artery
196
+ bypass grafting, cognitive function by Montreal Cognitive Assessment (MoCA), and
197
+ depression by the Geriatric Depression Scale (GDS) were obtained. The incidence
198
+ of adverse outcomes was investigated at the three-month follow-up. Outcomes between
199
+ frail and non-frail groups were compared utilizing T-tests and Mann-Whitney U
200
+ tests, as appropriate. RESULTS: We included 170 patients with a median age of
201
+ 66 ± 4 years (75.3% male). Of these, 58 cases were classified as frail, and 112
202
+ individuals were non-frail, preoperatively. Frail patients demonstrated significantly
203
+ worse baseline MOCA scores (21.08 versus 22.41, P = 0.045), GDS (2.00 versus 1.00,
204
+ P = 0.009), and Lawton IADL (8.00 versus 6.00, P < 0.001) compared to non-frail.
205
+ According to 3-month follow-up data, postoperative MOCA and GDS scores were comparable
206
+ between the two groups, while Lawton IADL (8.00 versus 6.00, P < 0.001) was significantly
207
+ lower in frail cases. A significantly higher rate of readmission (1.8% versus
208
+ 12.1%), sepsis (7.1% versus 19.0%), as well as a higher Euroscore (1.5 versus
209
+ 1.9), was observed in the frail group. A mildly significantly more extended ICU
210
+ stay (6.00 versus 5.00, p = 0.051) was shown in the frail patient. CONCLUSION:
211
+ Frailty showed a significant association with a worse preoperative independence
212
+ level, cognitive function, and depression status, as well as increased postoperative
213
+ complications.'
214
+ - 'OBJECTIVE: To assess presentation of neurosyphilis with a focus on the psychiatric
215
+ aspects. METHOD: File review of the cases with a positive cerebrospinal fluid
216
+ venereal disease research laboratory test between 1999 to 2020. RESULTS: Medical
217
+ records of 143 neurosyphilis patients were analysed. Hallucinations, delusions,
218
+ and catatonia were the commonest psychiatric symptoms. Brain atrophy was the commonest
219
+ neuroimaging finding. The number of neurosyphilis patients and the proportion
220
+ with delirium or catatonia declined during the second decade. CONCLUSION: Atypical
221
+ presentation of psychiatric symptoms around the fifth decade, with associated
222
+ neurological symptoms or brain imaging changes, should prompt evaluation for neurosyphilis.'
223
+ - 'INTRODUCTION: Bibliometrics evaluates the quality of biomedical journals. The
224
+ aim of this study was to compare the main bibliometric indexes of the official
225
+ journals of scientific societies of Internal Medicine in Europe. MATERIAL AND
226
+ METHODS: Bibliometric information was obtained from the Web of Science European
227
+ Journal of Internal Medicine, which ranked in the first quartile (Q1) for JIF,
228
+ CiteScore and JCI metrics, exceeding values of 1 in Normalized Eigenfactor and
229
+ SNIP metrics; 2) Internal and Emergency Medicine, Q1 for CiteScore and JCI metrics,
230
+ and with values >1 in Normalized EigenFactor and SNIP metrics; 3) Polish Archives
231
+ of Internal Medicine, Q1 for JCI metrics; 4) Revista Clínica Española, Q2 for
232
+ JIF, CiteScore and JCI metrics; and 5) Acta Medica Belgica, Q2 for CiteScore and
233
+ JCI metrics. These journals increased their impact metrics in the last 3 years,
234
+ in parallel with the COVID pandemic. CONCLUSIONS: Five official journals of European
235
+ Internal Medicine societies, including Revista Clínica Española, meet high quality
236
+ standards.'
237
+ - source_sentence: 'De Garengeot Hernia, an acute appendicitis in the right femoral
238
+ hernia canal, and successful management with transabdominal closure and appendectomy:
239
+ a case Report.'
240
+ sentences:
241
+ - With the increasing population worldwide more wastewater is created by human activities
242
+ and discharged into the waterbodies. This is causing the contamination of aquatic
243
+ bodies, thus disturbing the marine ecosystems. The rising population is also posing
244
+ a challenge to meet the demands of fresh drinking water in the water-scarce regions
245
+ of the world, where drinking water is made available to people by desalination
246
+ process. The fouling of composite membranes remains a major challenge in water
247
+ desalination. In this innovative study, we present a novel probabilistic approach
248
+ to analyse and anticipate the predominant fouling mechanisms in the filtration
249
+ process. Our establishment of a robust theoretical framework hinges upon the utilization
250
+ of both the geometric law and the Hermia model, elucidating the concept of resistance
251
+ in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective
252
+ management of permeate flux rate and overall product quality. Our investigations
253
+ reveal a decrease in permeate flux in three distinct phases over time, with the
254
+ final stage marked by a significant reduction due to the accumulation of a denser
255
+ cake layer. Additionally, an increase in transmembrane pressure leads to a correlative
256
+ rise in permeate flux, while also exerting negative effects such as membrane ruptures.
257
+ Our study highlights the minimal immediate impact of the intermediate blocking
258
+ mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential
259
+ long-term effects. Additionally, we note a reduced membrane selectivity across
260
+ all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate
261
+ that the membrane undergoes complete fouling with a probability of P = 0.9 in
262
+ the presence of all three fouling mechanisms. This situation renders the membrane
263
+ unable to produce water at its previous flow rate, resulting in a significant
264
+ reduction in the desalination plant's productivity. I have demonstrated that higher
265
+ pressure values notably correlate with increased permeate flux across all four
266
+ membrane types. This correlation highlights the significant role of TMP in enhancing
267
+ the production rate of purified water or desired substances through membrane filtration
268
+ systems. Our innovative approach opens new perspectives for water desalination
269
+ management and optimization, providing crucial insights into fouling mechanisms
270
+ and proposing potential strategies to address associated challenges.
271
+ - Incarceration of the appendix within a femoral hernia is a rare condition of abdominal
272
+ wall hernia about 0.1 to 0.5% in reported femoral hernia. We report a case of
273
+ a 56-year-old female whose appendix was trapped in the right femoral canal. There
274
+ are few reports in the literature on entrapment of the appendix within a femoral
275
+ hernia. The management of this condition includes antibiotics, drainage appendectomy,
276
+ hernioplasty and mesh repair.
277
+ - 'INTRODUCTION: Globally, the prevalence of obesity tripled from 1975 to 2016.
278
+ There is evidence that air pollution may contribute to the obesity epidemic through
279
+ an increase in oxidative stress and inflammation of adipose tissue. However, the
280
+ impact of air pollution on body weight at a population level remains inconclusive.
281
+ This systematic review and meta-analysis will estimate the association of ambient
282
+ air pollution with obesity, distribution of ectopic adipose tissue, and the incidence
283
+ and prevalence of non-alcoholic fatty liver disease among adults. METHODS AND
284
+ ANALYSIS: The study will follow the Preferred Reporting Items for Systematic Reviews
285
+ and Meta-Analyses guidelines for conduct and reporting. The search will include
286
+ the following databases: Ovid Medline, Embase, PubMed, Web of Science and Latin
287
+ America and the Caribbean Literature on Health Sciences, and will be supplemented
288
+ by a grey literature search. Each article will be independently screened by two
289
+ reviewers, and relevant data will be extracted independently and in duplicate.
290
+ Study-specific estimates of associations and their 95% Confidence Intervals will
291
+ be pooled using a DerSimonian and Laird random-effects model, implemented using
292
+ the RevMan software. The I2 statistic will be used to assess interstudy heterogeneity.
293
+ The confidence in the body of evidence will be assessed using the Grading of Recommendations
294
+ Assessment, Development and Evaluation (GRADE) approach. ETHICS AND DISSEMINATION:
295
+ As per institutional policy, ethical approval is not required for secondary data
296
+ analysis. In addition to being published in a peer-reviewed journal and presented
297
+ at conferences, the results of the meta-analysis will be shared with key stakeholders,
298
+ health policymakers and healthcare professionals. PROSPERO REGISTRATION NUMBER:
299
+ CRD42023423955.'
300
+ pipeline_tag: sentence-similarity
301
+ library_name: sentence-transformers
302
+ ---
303
+
304
+ # SentenceTransformer
305
+
306
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the parquet dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
307
+
308
+ ## Model Details
309
+
310
+ ### Model Description
311
+ - **Model Type:** Sentence Transformer
312
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
313
+ - **Maximum Sequence Length:** 1024 tokens
314
+ - **Output Dimensionality:** 384 dimensions
315
+ - **Similarity Function:** Cosine Similarity
316
+ - **Training Dataset:**
317
+ - parquet
318
+ <!-- - **Language:** Unknown -->
319
+ <!-- - **License:** Unknown -->
320
+
321
+ ### Model Sources
322
+
323
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
324
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
325
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
326
+
327
+ ### Full Model Architecture
328
+
329
+ ```
330
+ SentenceTransformer(
331
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel
332
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
333
+ )
334
+ ```
335
+
336
+ ## Usage
337
+
338
+ ### Direct Usage (Sentence Transformers)
339
+
340
+ First install the Sentence Transformers library:
341
+
342
+ ```bash
343
+ pip install -U sentence-transformers
344
+ ```
345
+
346
+ Then you can load this model and run inference.
347
+ ```python
348
+ from sentence_transformers import SentenceTransformer
349
+
350
+ # Download from the 🤗 Hub
351
+ model = SentenceTransformer("pankajrajdeo/Bioformer-16L-UMLS-Pubmed_PMC-Forward_TCE-Epoch-3")
352
+ # Run inference
353
+ sentences = [
354
+ 'De Garengeot Hernia, an acute appendicitis in the right femoral hernia canal, and successful management with transabdominal closure and appendectomy: a case Report.',
355
+ 'Incarceration of the appendix within a femoral hernia is a rare condition of abdominal wall hernia about 0.1 to 0.5% in reported femoral hernia. We report a case of a 56-year-old female whose appendix was trapped in the right femoral canal. There are few reports in the literature on entrapment of the appendix within a femoral hernia. The management of this condition includes antibiotics, drainage appendectomy, hernioplasty and mesh repair.',
356
+ "With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.",
357
+ ]
358
+ embeddings = model.encode(sentences)
359
+ print(embeddings.shape)
360
+ # [3, 384]
361
+
362
+ # Get the similarity scores for the embeddings
363
+ similarities = model.similarity(embeddings, embeddings)
364
+ print(similarities.shape)
365
+ # [3, 3]
366
+ ```
367
+
368
+ <!--
369
+ ### Direct Usage (Transformers)
370
+
371
+ <details><summary>Click to see the direct usage in Transformers</summary>
372
+
373
+ </details>
374
+ -->
375
+
376
+ <!--
377
+ ### Downstream Usage (Sentence Transformers)
378
+
379
+ You can finetune this model on your own dataset.
380
+
381
+ <details><summary>Click to expand</summary>
382
+
383
+ </details>
384
+ -->
385
+
386
+ <!--
387
+ ### Out-of-Scope Use
388
+
389
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
390
+ -->
391
+
392
+ <!--
393
+ ## Bias, Risks and Limitations
394
+
395
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
396
+ -->
397
+
398
+ <!--
399
+ ### Recommendations
400
+
401
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
402
+ -->
403
+
404
+ ## Training Details
405
+
406
+ ### Training Dataset
407
+
408
+ #### parquet
409
+
410
+ * Dataset: parquet
411
+ * Size: 33,870,508 training samples
412
+ * Columns: <code>anchor</code> and <code>positive</code>
413
+ * Approximate statistics based on the first 1000 samples:
414
+ | | anchor | positive |
415
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
416
+ | type | string | string |
417
+ | details | <ul><li>min: 5 tokens</li><li>mean: 36.24 tokens</li><li>max: 106 tokens</li></ul> | <ul><li>min: 30 tokens</li><li>mean: 328.76 tokens</li><li>max: 1024 tokens</li></ul> |
418
+ * Samples:
419
+ | anchor | positive |
420
+ |:---------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
421
+ | <code>How TO OBTAIN THE BRAIN OF THE CAT.</code> | <code>How to obtain the Brain of the Cat, (Wilder).-Correction: Page 158, second column, line 7, "grains," should be "grams;" page 159, near middle of 2nd column, "successily," should be "successively;" page 161, the number of Flower's paper is 3.</code> |
422
+ | <code>ADDRESS OF COL. GARRICK MALLERY, U. S. ARMY.</code> | <code>It may be conceded that after man had all his present faculties, he did not choose between the adoption of voice and gesture, and never with those faculties, was in a state where the one was used, to the absolute exclusion of the other. The epoch, however, to which our speculations relate is that in which he had not reached the present symmetric development of his intellect and of his bodily organs, and the inquiry is: Which mode of communication was earliest adopted to his single wants and informed intelligence? With the voice he could imitate distinictively but few sounds of nature, while with gesture he could exhibit actions, motions, positions, forms, dimensions, directions and distances, with their derivations and analogues. It would seem from this unequal division of capacity that oral speech remained rudimentary long after gesture had become an efficient mode of communication. With due allowance for all purely imitative sounds, and for the spontaneous action of vocal organs unde...</code> |
423
+ | <code>DOLBEAR ON THE NATURE AND CONSTITUTION OF MATTER.</code> | <code>Mr. Dopp desires to make the following correction in his paper in the last issue: "In my article on page 200 of "Science", the expression and should have been and being the velocity of light.</code> |
424
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
425
+ ```json
426
+ {
427
+ "scale": 20.0,
428
+ "similarity_fct": "cos_sim"
429
+ }
430
+ ```
431
+
432
+ ### Evaluation Dataset
433
+
434
+ #### parquet
435
+
436
+ * Dataset: parquet
437
+ * Size: 33,870,508 evaluation samples
438
+ * Columns: <code>anchor</code> and <code>positive</code>
439
+ * Approximate statistics based on the first 1000 samples:
440
+ | | anchor | positive |
441
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
442
+ | type | string | string |
443
+ | details | <ul><li>min: 6 tokens</li><li>mean: 24.64 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 281.83 tokens</li><li>max: 894 tokens</li></ul> |
444
+ * Samples:
445
+ | anchor | positive |
446
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
447
+ | <code>Noticing education campaigns or public health messages about vaping among youth in the United States, Canada and England from 2018 to 2022.</code> | <code>Public health campaigns have the potential to correct vaping misperceptions. However, campaigns highlighting vaping harms to youth may increase misperceptions that vaping is equally/more harmful than smoking. Vaping campaigns have been implemented in the United States and Canada since 2018 and in England since 2017 but with differing focus: youth vaping prevention. Over half of youth reported noticing vaping campaigns, and noticing increased from August 2018 to February 2020. Consistent with implementation of youth vaping prevention campaigns in the United States and Canada, most youth reported noticing vaping campaigns/messages, and most were perceived to negatively portray vaping.</code> |
448
+ | <code>Comprehensive performance evaluation of six bioaerosol samplers based on an aerosol wind tunnel.</code> | <code>Choosing a suitable bioaerosol sampler for atmospheric microbial monitoring has been a challenge to researchers interested in environmental microbiology, especially during a pandemic. However, a comprehensive and integrated evaluation method to fully assess bioaerosol sampler performance is still lacking. Herein, we constructed a customized wind tunnel operated at 2-20 km/h wind speed to systematically and efficiently evaluate the performance of six frequently used samplers, where various aerosols, including Arizona test dust, bacterial spores, gram-positive and gram-negative bacteria, phages, and viruses, were generated. After 10 or 60 min of sampling, the physical and biological sampling efficiency and short or long-term sampling capabilities were determined by performing aerodynamic particle size analysis, live microbial culturing, and a qPCR assay. The results showed that AGI-30 and BioSampler impingers have good physical and biological sampling efficiencies for short-term sampling...</code> |
449
+ | <code>The occurrence, sources, and health risks of substituted polycyclic aromatic hydrocarbons (SPAHs) cannot be ignored.</code> | <code>Similar to parent polycyclic aromatic hydrocarbons (PPAHs), substituted PAHs (SPAHs) are prevalent in the environment and harmful to humans. However, they have not received much attention. This study investigated the occurrence, distribution, and sources of 10 PPAHs and 15 SPAHs in soil, water, and indoor and outdoor PM2.5 and dust in high-exposure areas (EAH) near industrial parks and low-exposure areas (EAL) far from industrial parks. PAH pollution in all media was more severe in the EAH than in the EAL. All SPAHs were detected in this study, with alkylated and oxygenated PAHs being predominant. Additionally, 3-OH-BaP and 1-OH-Pyr were detected in all dust samples in this study, and 6-N-Chr, a compound with carcinogenicity 10 times higher than that of BaP, was detected at high levels in all tap water samples. According to the indoor-outdoor ratio, PAHs in indoor PM2.5 in the EAH mainly originated from indoor pollution sources; however, those in the EAL were simultaneously affected by...</code> |
450
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
451
+ ```json
452
+ {
453
+ "scale": 20.0,
454
+ "similarity_fct": "cos_sim"
455
+ }
456
+ ```
457
+
458
+ ### Training Hyperparameters
459
+ #### Non-Default Hyperparameters
460
+
461
+ - `eval_strategy`: steps
462
+ - `per_device_train_batch_size`: 128
463
+ - `learning_rate`: 2e-05
464
+ - `num_train_epochs`: 2
465
+ - `max_steps`: 502764
466
+ - `log_level`: info
467
+ - `fp16`: True
468
+ - `dataloader_num_workers`: 16
469
+ - `load_best_model_at_end`: True
470
+ - `resume_from_checkpoint`: True
471
+
472
+ #### All Hyperparameters
473
+ <details><summary>Click to expand</summary>
474
+
475
+ - `overwrite_output_dir`: False
476
+ - `do_predict`: False
477
+ - `eval_strategy`: steps
478
+ - `prediction_loss_only`: True
479
+ - `per_device_train_batch_size`: 128
480
+ - `per_device_eval_batch_size`: 8
481
+ - `per_gpu_train_batch_size`: None
482
+ - `per_gpu_eval_batch_size`: None
483
+ - `gradient_accumulation_steps`: 1
484
+ - `eval_accumulation_steps`: None
485
+ - `torch_empty_cache_steps`: None
486
+ - `learning_rate`: 2e-05
487
+ - `weight_decay`: 0.0
488
+ - `adam_beta1`: 0.9
489
+ - `adam_beta2`: 0.999
490
+ - `adam_epsilon`: 1e-08
491
+ - `max_grad_norm`: 1.0
492
+ - `num_train_epochs`: 2
493
+ - `max_steps`: 502764
494
+ - `lr_scheduler_type`: linear
495
+ - `lr_scheduler_kwargs`: {}
496
+ - `warmup_ratio`: 0.0
497
+ - `warmup_steps`: 0
498
+ - `log_level`: info
499
+ - `log_level_replica`: warning
500
+ - `log_on_each_node`: True
501
+ - `logging_nan_inf_filter`: True
502
+ - `save_safetensors`: True
503
+ - `save_on_each_node`: False
504
+ - `save_only_model`: False
505
+ - `restore_callback_states_from_checkpoint`: False
506
+ - `no_cuda`: False
507
+ - `use_cpu`: False
508
+ - `use_mps_device`: False
509
+ - `seed`: 42
510
+ - `data_seed`: None
511
+ - `jit_mode_eval`: False
512
+ - `use_ipex`: False
513
+ - `bf16`: False
514
+ - `fp16`: True
515
+ - `fp16_opt_level`: O1
516
+ - `half_precision_backend`: auto
517
+ - `bf16_full_eval`: False
518
+ - `fp16_full_eval`: False
519
+ - `tf32`: None
520
+ - `local_rank`: 0
521
+ - `ddp_backend`: None
522
+ - `tpu_num_cores`: None
523
+ - `tpu_metrics_debug`: False
524
+ - `debug`: []
525
+ - `dataloader_drop_last`: False
526
+ - `dataloader_num_workers`: 16
527
+ - `dataloader_prefetch_factor`: None
528
+ - `past_index`: -1
529
+ - `disable_tqdm`: False
530
+ - `remove_unused_columns`: True
531
+ - `label_names`: None
532
+ - `load_best_model_at_end`: True
533
+ - `ignore_data_skip`: False
534
+ - `fsdp`: []
535
+ - `fsdp_min_num_params`: 0
536
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
537
+ - `fsdp_transformer_layer_cls_to_wrap`: None
538
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
539
+ - `deepspeed`: None
540
+ - `label_smoothing_factor`: 0.0
541
+ - `optim`: adamw_torch
542
+ - `optim_args`: None
543
+ - `adafactor`: False
544
+ - `group_by_length`: False
545
+ - `length_column_name`: length
546
+ - `ddp_find_unused_parameters`: None
547
+ - `ddp_bucket_cap_mb`: None
548
+ - `ddp_broadcast_buffers`: False
549
+ - `dataloader_pin_memory`: True
550
+ - `dataloader_persistent_workers`: False
551
+ - `skip_memory_metrics`: True
552
+ - `use_legacy_prediction_loop`: False
553
+ - `push_to_hub`: False
554
+ - `resume_from_checkpoint`: True
555
+ - `hub_model_id`: None
556
+ - `hub_strategy`: every_save
557
+ - `hub_private_repo`: None
558
+ - `hub_always_push`: False
559
+ - `gradient_checkpointing`: False
560
+ - `gradient_checkpointing_kwargs`: None
561
+ - `include_inputs_for_metrics`: False
562
+ - `include_for_metrics`: []
563
+ - `eval_do_concat_batches`: True
564
+ - `fp16_backend`: auto
565
+ - `push_to_hub_model_id`: None
566
+ - `push_to_hub_organization`: None
567
+ - `mp_parameters`:
568
+ - `auto_find_batch_size`: False
569
+ - `full_determinism`: False
570
+ - `torchdynamo`: None
571
+ - `ray_scope`: last
572
+ - `ddp_timeout`: 1800
573
+ - `torch_compile`: False
574
+ - `torch_compile_backend`: None
575
+ - `torch_compile_mode`: None
576
+ - `dispatch_batches`: None
577
+ - `split_batches`: None
578
+ - `include_tokens_per_second`: False
579
+ - `include_num_input_tokens_seen`: False
580
+ - `neftune_noise_alpha`: None
581
+ - `optim_target_modules`: None
582
+ - `batch_eval_metrics`: False
583
+ - `eval_on_start`: False
584
+ - `use_liger_kernel`: False
585
+ - `eval_use_gather_object`: False
586
+ - `average_tokens_across_devices`: False
587
+ - `prompts`: None
588
+ - `batch_sampler`: batch_sampler
589
+ - `multi_dataset_batch_sampler`: proportional
590
+
591
+ </details>
592
+
593
+ ### Training Logs
594
+ <details><summary>Click to expand</summary>
595
+
596
+ | Epoch | Step | Training Loss | Validation Loss |
597
+ |:------:|:------:|:-------------:|:---------------:|
598
+ | 0.0000 | 1 | 1.793 | - |
599
+ | 0.0040 | 1000 | 0.3695 | - |
600
+ | 0.0080 | 2000 | 0.0813 | - |
601
+ | 0.0119 | 3000 | 0.0666 | - |
602
+ | 0.0159 | 4000 | 0.0817 | - |
603
+ | 0.0199 | 5000 | 0.0694 | - |
604
+ | 0.0239 | 6000 | 0.0586 | - |
605
+ | 0.0278 | 7000 | 0.0539 | - |
606
+ | 0.0318 | 8000 | 0.0545 | - |
607
+ | 0.0358 | 9000 | 0.0515 | - |
608
+ | 0.0398 | 10000 | 0.0493 | - |
609
+ | 0.0438 | 11000 | 0.0419 | - |
610
+ | 0.0477 | 12000 | 0.0464 | - |
611
+ | 0.0517 | 13000 | 0.0494 | - |
612
+ | 0.0557 | 14000 | 0.0536 | - |
613
+ | 0.0597 | 15000 | 0.0472 | - |
614
+ | 0.0636 | 16000 | 0.0945 | - |
615
+ | 0.0676 | 17000 | 0.0385 | - |
616
+ | 0.0716 | 18000 | 0.068 | - |
617
+ | 0.0756 | 19000 | 0.0362 | - |
618
+ | 0.0796 | 20000 | 0.0865 | - |
619
+ | 0.0835 | 21000 | 0.0403 | - |
620
+ | 0.0875 | 22000 | 0.0798 | - |
621
+ | 0.0915 | 23000 | 0.0421 | - |
622
+ | 0.0955 | 24000 | 0.0428 | - |
623
+ | 0.0994 | 25000 | 0.035 | - |
624
+ | 0.1034 | 26000 | 0.0736 | - |
625
+ | 0.1074 | 27000 | 0.0395 | - |
626
+ | 0.1114 | 28000 | 0.0837 | - |
627
+ | 0.1154 | 29000 | 0.0432 | - |
628
+ | 0.1193 | 30000 | 0.0695 | - |
629
+ | 0.1233 | 31000 | 0.0584 | - |
630
+ | 0.1273 | 32000 | 0.0394 | - |
631
+ | 0.1313 | 33000 | 0.113 | - |
632
+ | 0.1353 | 34000 | 0.0349 | - |
633
+ | 0.1392 | 35000 | 0.044 | - |
634
+ | 0.1432 | 36000 | 0.0712 | - |
635
+ | 0.1472 | 37000 | 0.0322 | - |
636
+ | 0.1512 | 38000 | 0.0628 | - |
637
+ | 0.1551 | 39000 | 0.035 | - |
638
+ | 0.1591 | 40000 | 0.0305 | - |
639
+ | 0.1631 | 41000 | 0.0733 | - |
640
+ | 0.1671 | 42000 | 0.0449 | - |
641
+ | 0.1711 | 43000 | 0.0434 | - |
642
+ | 0.1750 | 44000 | 0.0597 | - |
643
+ | 0.1790 | 45000 | 0.0464 | - |
644
+ | 0.1830 | 46000 | 0.0428 | - |
645
+ | 0.1870 | 47000 | 0.0657 | - |
646
+ | 0.1909 | 48000 | 0.0346 | - |
647
+ | 0.1949 | 49000 | 0.0537 | - |
648
+ | 0.1989 | 50000 | 0.0577 | - |
649
+ | 0.2029 | 51000 | 0.0349 | - |
650
+ | 0.2069 | 52000 | 0.0376 | - |
651
+ | 0.2108 | 53000 | 0.0476 | - |
652
+ | 0.2148 | 54000 | 0.0453 | - |
653
+ | 0.2188 | 55000 | 0.0366 | - |
654
+ | 0.2228 | 56000 | 0.0295 | - |
655
+ | 0.2267 | 57000 | 0.0427 | - |
656
+ | 0.2307 | 58000 | 0.0352 | - |
657
+ | 0.2347 | 59000 | 0.0319 | - |
658
+ | 0.2387 | 60000 | 0.0316 | - |
659
+ | 0.2427 | 61000 | 0.0433 | - |
660
+ | 0.2466 | 62000 | 0.0272 | - |
661
+ | 0.2506 | 63000 | 0.0253 | - |
662
+ | 0.2546 | 64000 | 0.0356 | - |
663
+ | 0.2586 | 65000 | 0.0429 | - |
664
+ | 0.2625 | 66000 | 0.0301 | - |
665
+ | 0.2665 | 67000 | 0.0293 | - |
666
+ | 0.2705 | 68000 | 0.0269 | - |
667
+ | 0.2745 | 69000 | 0.03 | - |
668
+ | 0.2785 | 70000 | 0.0585 | - |
669
+ | 0.2824 | 71000 | 0.05 | - |
670
+ | 0.2864 | 72000 | 0.0455 | - |
671
+ | 0.2904 | 73000 | 0.0212 | - |
672
+ | 0.2944 | 74000 | 0.0296 | - |
673
+ | 0.2983 | 75000 | 0.043 | - |
674
+ | 0.3023 | 76000 | 0.0277 | - |
675
+ | 0.3063 | 77000 | 0.0592 | - |
676
+ | 0.3103 | 78000 | 0.0247 | - |
677
+ | 0.3143 | 79000 | 0.046 | - |
678
+ | 0.3182 | 80000 | 0.0429 | - |
679
+ | 0.3222 | 81000 | 0.0306 | - |
680
+ | 0.3262 | 82000 | 0.0313 | - |
681
+ | 0.3302 | 83000 | 0.0386 | - |
682
+ | 0.3342 | 84000 | 0.0196 | - |
683
+ | 0.3381 | 85000 | 0.0353 | - |
684
+ | 0.3421 | 86000 | 0.0462 | - |
685
+ | 0.3461 | 87000 | 0.0277 | - |
686
+ | 0.3501 | 88000 | 0.0461 | - |
687
+ | 0.3540 | 89000 | 0.0265 | - |
688
+ | 0.3580 | 90000 | 0.0159 | - |
689
+ | 0.3620 | 91000 | 0.0201 | - |
690
+ | 0.3660 | 92000 | 0.031 | - |
691
+ | 0.3700 | 93000 | 0.0337 | - |
692
+ | 0.3739 | 94000 | 0.0369 | - |
693
+ | 0.3779 | 95000 | 0.0504 | - |
694
+ | 0.3819 | 96000 | 0.0254 | - |
695
+ | 0.3859 | 97000 | 0.0265 | - |
696
+ | 0.3898 | 98000 | 0.0205 | - |
697
+ | 0.3938 | 99000 | 0.0181 | - |
698
+ | 0.3978 | 100000 | 0.0242 | - |
699
+ | 0.4018 | 101000 | 0.0317 | - |
700
+ | 0.4058 | 102000 | 0.0248 | - |
701
+ | 0.4097 | 103000 | 0.0171 | - |
702
+ | 0.4137 | 104000 | 0.0183 | - |
703
+ | 0.4177 | 105000 | 0.0156 | - |
704
+ | 0.4217 | 106000 | 0.0217 | - |
705
+ | 0.4256 | 107000 | 0.0282 | - |
706
+ | 0.4296 | 108000 | 0.0381 | - |
707
+ | 0.4336 | 109000 | 0.0271 | - |
708
+ | 0.4376 | 110000 | 0.0165 | - |
709
+ | 0.4416 | 111000 | 0.01 | - |
710
+ | 0.4455 | 112000 | 0.0241 | - |
711
+ | 0.4495 | 113000 | 0.0226 | - |
712
+ | 0.4535 | 114000 | 0.0161 | - |
713
+ | 0.4575 | 115000 | 0.0172 | - |
714
+ | 0.4614 | 116000 | 0.0129 | - |
715
+ | 0.4654 | 117000 | 0.0147 | - |
716
+ | 0.4694 | 118000 | 0.0346 | - |
717
+ | 0.4734 | 119000 | 0.039 | - |
718
+ | 0.4774 | 120000 | 0.0348 | - |
719
+ | 0.4813 | 121000 | 0.0353 | - |
720
+ | 0.4853 | 122000 | 0.0178 | - |
721
+ | 0.4893 | 123000 | 0.0173 | - |
722
+ | 0.4933 | 124000 | 0.0197 | - |
723
+ | 0.4972 | 125000 | 0.0148 | - |
724
+ | 0.5012 | 126000 | 0.014 | - |
725
+ | 0.5052 | 127000 | 0.0186 | - |
726
+ | 0.5092 | 128000 | 0.0129 | - |
727
+ | 0.5132 | 129000 | 0.0116 | - |
728
+ | 0.5171 | 130000 | 0.0186 | - |
729
+ | 0.5211 | 131000 | 0.0332 | - |
730
+ | 0.5251 | 132000 | 0.0195 | - |
731
+ | 0.5291 | 133000 | 0.0163 | - |
732
+ | 0.5331 | 134000 | 0.0145 | - |
733
+ | 0.5370 | 135000 | 0.0236 | - |
734
+ | 0.5410 | 136000 | 0.0169 | - |
735
+ | 0.5450 | 137000 | 0.0327 | - |
736
+ | 0.5490 | 138000 | 0.0332 | - |
737
+ | 0.5529 | 139000 | 0.034 | - |
738
+ | 0.5569 | 140000 | 0.0317 | - |
739
+ | 0.5609 | 141000 | 0.0372 | - |
740
+ | 0.5649 | 142000 | 0.0246 | - |
741
+ | 0.5689 | 143000 | 0.0278 | - |
742
+ | 0.5728 | 144000 | 0.0196 | - |
743
+ | 0.5768 | 145000 | 0.0217 | - |
744
+ | 0.5808 | 146000 | 0.0223 | - |
745
+ | 0.5848 | 147000 | 0.0138 | - |
746
+ | 0.5887 | 148000 | 0.0114 | - |
747
+ | 0.5927 | 149000 | 0.0122 | - |
748
+ | 0.5967 | 150000 | 0.0199 | - |
749
+ | 0.6007 | 151000 | 0.0204 | - |
750
+ | 0.6047 | 152000 | 0.0155 | - |
751
+ | 0.6086 | 153000 | 0.015 | - |
752
+ | 0.6126 | 154000 | 0.0196 | - |
753
+ | 0.6166 | 155000 | 0.0183 | - |
754
+ | 0.6206 | 156000 | 0.0225 | - |
755
+ | 0.6245 | 157000 | 0.0232 | - |
756
+ | 0.6285 | 158000 | 0.0389 | - |
757
+ | 0.6325 | 159000 | 0.0267 | - |
758
+ | 0.6365 | 160000 | 0.0264 | - |
759
+ | 0.6405 | 161000 | 0.0123 | - |
760
+ | 0.6444 | 162000 | 0.0144 | - |
761
+ | 0.6484 | 163000 | 0.018 | - |
762
+ | 0.6524 | 164000 | 0.0327 | - |
763
+ | 0.6564 | 165000 | 0.0283 | - |
764
+ | 0.6603 | 166000 | 0.0357 | - |
765
+ | 0.6643 | 167000 | 0.0148 | - |
766
+ | 0.6683 | 168000 | 0.0137 | - |
767
+ | 0.6723 | 169000 | 0.0165 | - |
768
+ | 0.6763 | 170000 | 0.0237 | - |
769
+ | 0.6802 | 171000 | 0.0218 | - |
770
+ | 0.6842 | 172000 | 0.0143 | - |
771
+ | 0.6882 | 173000 | 0.027 | - |
772
+ | 0.6922 | 174000 | 0.025 | - |
773
+ | 0.6961 | 175000 | 0.0211 | - |
774
+ | 0.7001 | 176000 | 0.0191 | - |
775
+ | 0.7041 | 177000 | 0.0213 | - |
776
+ | 0.7081 | 178000 | 0.0177 | - |
777
+ | 0.7121 | 179000 | 0.0178 | - |
778
+ | 0.7160 | 180000 | 0.0263 | - |
779
+ | 0.7200 | 181000 | 0.0263 | - |
780
+ | 0.7240 | 182000 | 0.0265 | - |
781
+ | 0.7280 | 183000 | 0.0236 | - |
782
+ | 0.7320 | 184000 | 0.0183 | - |
783
+ | 0.7359 | 185000 | 0.012 | - |
784
+ | 0.7399 | 186000 | 0.0192 | - |
785
+ | 0.7439 | 187000 | 0.0221 | - |
786
+ | 0.7479 | 188000 | 0.0223 | - |
787
+ | 0.7518 | 189000 | 0.021 | - |
788
+ | 0.7558 | 190000 | 0.0234 | - |
789
+ | 0.7598 | 191000 | 0.0221 | - |
790
+ | 0.7638 | 192000 | 0.0246 | - |
791
+ | 0.7678 | 193000 | 0.0212 | - |
792
+ | 0.7717 | 194000 | 0.0191 | - |
793
+ | 0.7757 | 195000 | 0.0122 | - |
794
+ | 0.7797 | 196000 | 0.0111 | - |
795
+ | 0.7837 | 197000 | 0.0094 | - |
796
+ | 0.7876 | 198000 | 0.0107 | - |
797
+ | 0.7916 | 199000 | 0.0103 | - |
798
+ | 0.7956 | 200000 | 0.0093 | - |
799
+ | 0.7996 | 201000 | 0.0128 | - |
800
+ | 0.8036 | 202000 | 0.0104 | - |
801
+ | 0.8075 | 203000 | 0.0161 | - |
802
+ | 0.8115 | 204000 | 0.0221 | - |
803
+ | 0.8155 | 205000 | 0.0243 | - |
804
+ | 0.8195 | 206000 | 0.0209 | - |
805
+ | 0.8234 | 207000 | 0.0241 | - |
806
+ | 0.8274 | 208000 | 0.0224 | - |
807
+ | 0.8314 | 209000 | 0.0131 | - |
808
+ | 0.8354 | 210000 | 0.0105 | - |
809
+ | 0.8394 | 211000 | 0.0118 | - |
810
+ | 0.8433 | 212000 | 0.0122 | - |
811
+ | 0.8473 | 213000 | 0.0112 | - |
812
+ | 0.8513 | 214000 | 0.0113 | - |
813
+ | 0.8553 | 215000 | 0.0108 | - |
814
+ | 0.8592 | 216000 | 0.0117 | - |
815
+ | 0.8632 | 217000 | 0.0111 | - |
816
+ | 0.8672 | 218000 | 0.0123 | - |
817
+ | 0.8712 | 219000 | 0.0112 | - |
818
+ | 0.8752 | 220000 | 0.0109 | - |
819
+ | 0.8791 | 221000 | 0.011 | - |
820
+ | 0.8831 | 222000 | 0.0122 | - |
821
+ | 0.8871 | 223000 | 0.0287 | - |
822
+ | 0.8911 | 224000 | 0.0234 | - |
823
+ | 0.8950 | 225000 | 0.0234 | - |
824
+ | 0.8990 | 226000 | 0.0222 | - |
825
+ | 0.9030 | 227000 | 0.0193 | - |
826
+ | 0.9070 | 228000 | 0.0166 | - |
827
+ | 0.9110 | 229000 | 0.0113 | - |
828
+ | 0.9149 | 230000 | 0.012 | - |
829
+ | 0.9189 | 231000 | 0.0108 | - |
830
+ | 0.9229 | 232000 | 0.0106 | - |
831
+ | 0.9269 | 233000 | 0.0107 | - |
832
+ | 0.9309 | 234000 | 0.0105 | - |
833
+ | 0.9348 | 235000 | 0.0091 | - |
834
+ | 0.9388 | 236000 | 0.0095 | - |
835
+ | 0.9428 | 237000 | 0.0066 | - |
836
+ | 0.9468 | 238000 | 0.0093 | - |
837
+ | 0.9507 | 239000 | 0.0049 | - |
838
+ | 0.9547 | 240000 | 0.0058 | - |
839
+ | 0.9587 | 241000 | 0.0065 | - |
840
+ | 0.9627 | 242000 | 0.0144 | - |
841
+ | 0.9667 | 243000 | 0.0181 | - |
842
+ | 0.9706 | 244000 | 0.0105 | - |
843
+ | 0.9746 | 245000 | 0.0066 | - |
844
+ | 0.9786 | 246000 | 0.0057 | - |
845
+ | 0.9826 | 247000 | 0.0053 | - |
846
+ | 0.9865 | 248000 | 0.005 | - |
847
+ | 0.9905 | 249000 | 0.006 | - |
848
+ | 0.9945 | 250000 | 0.0047 | - |
849
+ | 0.9985 | 251000 | 0.0055 | - |
850
+ | 1.0000 | 251382 | - | 0.0021 |
851
+ | 1.0025 | 252000 | 0.2602 | - |
852
+ | 1.0064 | 253000 | 0.0967 | - |
853
+ | 1.0104 | 254000 | 0.0643 | - |
854
+ | 1.0144 | 255000 | 0.057 | - |
855
+ | 1.0184 | 256000 | 0.0614 | - |
856
+ | 1.0223 | 257000 | 0.062 | - |
857
+ | 1.0263 | 258000 | 0.0471 | - |
858
+ | 1.0303 | 259000 | 0.0445 | - |
859
+ | 1.0343 | 260000 | 0.0439 | - |
860
+ | 1.0383 | 261000 | 0.0339 | - |
861
+ | 1.0422 | 262000 | 0.0376 | - |
862
+ | 1.0462 | 263000 | 0.0445 | - |
863
+ | 1.0502 | 264000 | 0.0331 | - |
864
+ | 1.0542 | 265000 | 0.0392 | - |
865
+ | 1.0581 | 266000 | 0.0539 | - |
866
+ | 1.0621 | 267000 | 0.0595 | - |
867
+ | 1.0661 | 268000 | 0.0595 | - |
868
+ | 1.0701 | 269000 | 0.0472 | - |
869
+ | 1.0741 | 270000 | 0.0421 | - |
870
+ | 1.0780 | 271000 | 0.0705 | - |
871
+ | 1.0820 | 272000 | 0.0343 | - |
872
+ | 1.0860 | 273000 | 0.0702 | - |
873
+ | 1.0900 | 274000 | 0.0385 | - |
874
+ | 1.0939 | 275000 | 0.0348 | - |
875
+ | 1.0979 | 276000 | 0.0338 | - |
876
+ | 1.1019 | 277000 | 0.065 | - |
877
+ | 1.1059 | 278000 | 0.032 | - |
878
+ | 1.1099 | 279000 | 0.0318 | - |
879
+ | 1.1138 | 280000 | 0.0768 | - |
880
+ | 1.1178 | 281000 | 0.0372 | - |
881
+ | 1.1218 | 282000 | 0.0771 | - |
882
+ | 1.1258 | 283000 | 0.0346 | - |
883
+ | 1.1298 | 284000 | 0.0781 | - |
884
+ | 1.1337 | 285000 | 0.0528 | - |
885
+ | 1.1377 | 286000 | 0.0282 | - |
886
+ | 1.1417 | 287000 | 0.0723 | - |
887
+ | 1.1457 | 288000 | 0.0286 | - |
888
+ | 1.1496 | 289000 | 0.0403 | - |
889
+ | 1.1536 | 290000 | 0.0439 | - |
890
+ | 1.1576 | 291000 | 0.0286 | - |
891
+ | 1.1616 | 292000 | 0.0517 | - |
892
+ | 1.1656 | 293000 | 0.0504 | - |
893
+ | 1.1695 | 294000 | 0.0348 | - |
894
+ | 1.1735 | 295000 | 0.0537 | - |
895
+ | 1.1775 | 296000 | 0.0364 | - |
896
+ | 1.1815 | 297000 | 0.04 | - |
897
+ | 1.1854 | 298000 | 0.0587 | - |
898
+ | 1.1894 | 299000 | 0.0332 | - |
899
+ | 1.1934 | 300000 | 0.0429 | - |
900
+ | 1.1974 | 301000 | 0.0522 | - |
901
+ | 1.2014 | 302000 | 0.0348 | - |
902
+ | 1.2053 | 303000 | 0.0305 | - |
903
+ | 1.2093 | 304000 | 0.0319 | - |
904
+ | 1.2133 | 305000 | 0.0493 | - |
905
+ | 1.2173 | 306000 | 0.0375 | - |
906
+ | 1.2212 | 307000 | 0.024 | - |
907
+ | 1.2252 | 308000 | 0.0327 | - |
908
+ | 1.2292 | 309000 | 0.0356 | - |
909
+ | 1.2332 | 310000 | 0.0296 | - |
910
+ | 1.2372 | 311000 | 0.0259 | - |
911
+ | 1.2411 | 312000 | 0.0358 | - |
912
+ | 1.2451 | 313000 | 0.0263 | - |
913
+ | 1.2491 | 314000 | 0.0252 | - |
914
+ | 1.2531 | 315000 | 0.0251 | - |
915
+ | 1.2570 | 316000 | 0.0298 | - |
916
+ | 1.2610 | 317000 | 0.0393 | - |
917
+ | 1.2650 | 318000 | 0.0261 | - |
918
+ | 1.2690 | 319000 | 0.0198 | - |
919
+ | 1.2730 | 320000 | 0.0271 | - |
920
+ | 1.2769 | 321000 | 0.048 | - |
921
+ | 1.2809 | 322000 | 0.0421 | - |
922
+ | 1.2849 | 323000 | 0.0483 | - |
923
+ | 1.2889 | 324000 | 0.0173 | - |
924
+ | 1.2928 | 325000 | 0.0174 | - |
925
+ | 1.2968 | 326000 | 0.0375 | - |
926
+ | 1.3008 | 327000 | 0.0261 | - |
927
+ | 1.3048 | 328000 | 0.0563 | - |
928
+ | 1.3088 | 329000 | 0.0238 | - |
929
+ | 1.3127 | 330000 | 0.02 | - |
930
+ | 1.3167 | 331000 | 0.0495 | - |
931
+ | 1.3207 | 332000 | 0.0218 | - |
932
+ | 1.3247 | 333000 | 0.031 | - |
933
+ | 1.3286 | 334000 | 0.0366 | - |
934
+ | 1.3326 | 335000 | 0.0188 | - |
935
+ | 1.3366 | 336000 | 0.0179 | - |
936
+ | 1.3406 | 337000 | 0.0547 | - |
937
+ | 1.3446 | 338000 | 0.0197 | - |
938
+ | 1.3485 | 339000 | 0.0372 | - |
939
+ | 1.3525 | 340000 | 0.0327 | - |
940
+ | 1.3565 | 341000 | 0.0131 | - |
941
+ | 1.3605 | 342000 | 0.019 | - |
942
+ | 1.3645 | 343000 | 0.0119 | - |
943
+ | 1.3684 | 344000 | 0.038 | - |
944
+ | 1.3724 | 345000 | 0.0324 | - |
945
+ | 1.3764 | 346000 | 0.0495 | - |
946
+ | 1.3804 | 347000 | 0.0196 | - |
947
+ | 1.3843 | 348000 | 0.0256 | - |
948
+ | 1.3883 | 349000 | 0.0176 | - |
949
+ | 1.3923 | 350000 | 0.0195 | - |
950
+ | 1.3963 | 351000 | 0.0157 | - |
951
+ | 1.4003 | 352000 | 0.0267 | - |
952
+ | 1.4042 | 353000 | 0.0285 | - |
953
+ | 1.4082 | 354000 | 0.0145 | - |
954
+ | 1.4122 | 355000 | 0.0183 | - |
955
+ | 1.4162 | 356000 | 0.012 | - |
956
+ | 1.4201 | 357000 | 0.0175 | - |
957
+ | 1.4241 | 358000 | 0.022 | - |
958
+ | 1.4281 | 359000 | 0.028 | - |
959
+ | 1.4321 | 360000 | 0.0319 | - |
960
+ | 1.4361 | 361000 | 0.0157 | - |
961
+ | 1.4400 | 362000 | 0.0107 | - |
962
+ | 1.4440 | 363000 | 0.0158 | - |
963
+ | 1.4480 | 364000 | 0.0209 | - |
964
+ | 1.4520 | 365000 | 0.0168 | - |
965
+ | 1.4559 | 366000 | 0.0125 | - |
966
+ | 1.4599 | 367000 | 0.0151 | - |
967
+ | 1.4639 | 368000 | 0.0106 | - |
968
+ | 1.4679 | 369000 | 0.0232 | - |
969
+ | 1.4719 | 370000 | 0.0318 | - |
970
+ | 1.4758 | 371000 | 0.031 | - |
971
+ | 1.4798 | 372000 | 0.0314 | - |
972
+ | 1.4838 | 373000 | 0.023 | - |
973
+ | 1.4878 | 374000 | 0.0151 | - |
974
+ | 1.4917 | 375000 | 0.0144 | - |
975
+ | 1.4957 | 376000 | 0.0165 | - |
976
+ | 1.4997 | 377000 | 0.011 | - |
977
+ | 1.5037 | 378000 | 0.0138 | - |
978
+ | 1.5077 | 379000 | 0.0149 | - |
979
+ | 1.5116 | 380000 | 0.0087 | - |
980
+ | 1.5156 | 381000 | 0.0154 | - |
981
+ | 1.5196 | 382000 | 0.0245 | - |
982
+ | 1.5236 | 383000 | 0.0199 | - |
983
+ | 1.5275 | 384000 | 0.0174 | - |
984
+ | 1.5315 | 385000 | 0.0103 | - |
985
+ | 1.5355 | 386000 | 0.018 | - |
986
+ | 1.5395 | 387000 | 0.0166 | - |
987
+ | 1.5435 | 388000 | 0.0249 | - |
988
+ | 1.5474 | 389000 | 0.028 | - |
989
+ | 1.5514 | 390000 | 0.0306 | - |
990
+ | 1.5554 | 391000 | 0.0264 | - |
991
+ | 1.5594 | 392000 | 0.0325 | - |
992
+ | 1.5634 | 393000 | 0.0282 | - |
993
+ | 1.5673 | 394000 | 0.0189 | - |
994
+ | 1.5713 | 395000 | 0.0246 | - |
995
+ | 1.5753 | 396000 | 0.0189 | - |
996
+ | 1.5793 | 397000 | 0.0192 | - |
997
+ | 1.5832 | 398000 | 0.0155 | - |
998
+ | 1.5872 | 399000 | 0.0108 | - |
999
+ | 1.5912 | 400000 | 0.0085 | - |
1000
+ | 1.5952 | 401000 | 0.0171 | - |
1001
+ | 1.5992 | 402000 | 0.0176 | - |
1002
+ | 1.6031 | 403000 | 0.0159 | - |
1003
+ | 1.6071 | 404000 | 0.0127 | - |
1004
+ | 1.6111 | 405000 | 0.016 | - |
1005
+ | 1.6151 | 406000 | 0.0169 | - |
1006
+ | 1.6190 | 407000 | 0.0199 | - |
1007
+ | 1.6230 | 408000 | 0.0149 | - |
1008
+ | 1.6270 | 409000 | 0.0364 | - |
1009
+ | 1.6310 | 410000 | 0.0259 | - |
1010
+ | 1.6350 | 411000 | 0.0294 | - |
1011
+ | 1.6389 | 412000 | 0.0109 | - |
1012
+ | 1.6429 | 413000 | 0.0132 | - |
1013
+ | 1.6469 | 414000 | 0.0109 | - |
1014
+ | 1.6509 | 415000 | 0.0269 | - |
1015
+ | 1.6548 | 416000 | 0.0259 | - |
1016
+ | 1.6588 | 417000 | 0.0304 | - |
1017
+ | 1.6628 | 418000 | 0.0216 | - |
1018
+ | 1.6668 | 419000 | 0.0133 | - |
1019
+ | 1.6708 | 420000 | 0.0125 | - |
1020
+ | 1.6747 | 421000 | 0.0197 | - |
1021
+ | 1.6787 | 422000 | 0.0211 | - |
1022
+ | 1.6827 | 423000 | 0.015 | - |
1023
+ | 1.6867 | 424000 | 0.0183 | - |
1024
+ | 1.6906 | 425000 | 0.0262 | - |
1025
+ | 1.6946 | 426000 | 0.0217 | - |
1026
+ | 1.6986 | 427000 | 0.0163 | - |
1027
+ | 1.7026 | 428000 | 0.0201 | - |
1028
+ | 1.7066 | 429000 | 0.0188 | - |
1029
+ | 1.7105 | 430000 | 0.015 | - |
1030
+ | 1.7145 | 431000 | 0.019 | - |
1031
+ | 1.7185 | 432000 | 0.0271 | - |
1032
+ | 1.7225 | 433000 | 0.0236 | - |
1033
+ | 1.7264 | 434000 | 0.0239 | - |
1034
+ | 1.7304 | 435000 | 0.0173 | - |
1035
+ | 1.7344 | 436000 | 0.0159 | - |
1036
+ | 1.7384 | 437000 | 0.0143 | - |
1037
+ | 1.7424 | 438000 | 0.0176 | - |
1038
+ | 1.7463 | 439000 | 0.0183 | - |
1039
+ | 1.7503 | 440000 | 0.0204 | - |
1040
+ | 1.7543 | 441000 | 0.0216 | - |
1041
+ | 1.7583 | 442000 | 0.0196 | - |
1042
+ | 1.7623 | 443000 | 0.0215 | - |
1043
+ | 1.7662 | 444000 | 0.021 | - |
1044
+ | 1.7702 | 445000 | 0.0197 | - |
1045
+ | 1.7742 | 446000 | 0.0131 | - |
1046
+ | 1.7782 | 447000 | 0.0107 | - |
1047
+ | 1.7821 | 448000 | 0.0079 | - |
1048
+ | 1.7861 | 449000 | 0.01 | - |
1049
+ | 1.7901 | 450000 | 0.0097 | - |
1050
+ | 1.7941 | 451000 | 0.0079 | - |
1051
+ | 1.7981 | 452000 | 0.0105 | - |
1052
+ | 1.8020 | 453000 | 0.01 | - |
1053
+ | 1.8060 | 454000 | 0.0103 | - |
1054
+ | 1.8100 | 455000 | 0.0217 | - |
1055
+ | 1.8140 | 456000 | 0.0204 | - |
1056
+ | 1.8179 | 457000 | 0.0206 | - |
1057
+ | 1.8219 | 458000 | 0.0218 | - |
1058
+ | 1.8259 | 459000 | 0.0207 | - |
1059
+ | 1.8299 | 460000 | 0.0187 | - |
1060
+ | 1.8339 | 461000 | 0.0083 | - |
1061
+ | 1.8378 | 462000 | 0.0104 | - |
1062
+ | 1.8418 | 463000 | 0.0119 | - |
1063
+ | 1.8458 | 464000 | 0.01 | - |
1064
+ | 1.8498 | 465000 | 0.0108 | - |
1065
+ | 1.8537 | 466000 | 0.0101 | - |
1066
+ | 1.8577 | 467000 | 0.0106 | - |
1067
+ | 1.8617 | 468000 | 0.0098 | - |
1068
+ | 1.8657 | 469000 | 0.0108 | - |
1069
+ | 1.8697 | 470000 | 0.0109 | - |
1070
+ | 1.8736 | 471000 | 0.0104 | - |
1071
+ | 1.8776 | 472000 | 0.0098 | - |
1072
+ | 1.8816 | 473000 | 0.0097 | - |
1073
+ | 1.8856 | 474000 | 0.0244 | - |
1074
+ | 1.8895 | 475000 | 0.019 | - |
1075
+ | 1.8935 | 476000 | 0.0238 | - |
1076
+ | 1.8975 | 477000 | 0.0207 | - |
1077
+ | 1.9015 | 478000 | 0.0198 | - |
1078
+ | 1.9055 | 479000 | 0.0184 | - |
1079
+ | 1.9094 | 480000 | 0.0124 | - |
1080
+ | 1.9134 | 481000 | 0.0106 | - |
1081
+ | 1.9174 | 482000 | 0.0113 | - |
1082
+ | 1.9214 | 483000 | 0.0095 | - |
1083
+ | 1.9253 | 484000 | 0.0106 | - |
1084
+ | 1.9293 | 485000 | 0.0097 | - |
1085
+ | 1.9333 | 486000 | 0.0094 | - |
1086
+ | 1.9373 | 487000 | 0.0088 | - |
1087
+ | 1.9413 | 488000 | 0.0076 | - |
1088
+ | 1.9452 | 489000 | 0.0095 | - |
1089
+ | 1.9492 | 490000 | 0.005 | - |
1090
+ | 1.9532 | 491000 | 0.0048 | - |
1091
+ | 1.9572 | 492000 | 0.0063 | - |
1092
+ | 1.9612 | 493000 | 0.0088 | - |
1093
+ | 1.9651 | 494000 | 0.0191 | - |
1094
+ | 1.9691 | 495000 | 0.0137 | - |
1095
+ | 1.9731 | 496000 | 0.0067 | - |
1096
+ | 1.9771 | 497000 | 0.0062 | - |
1097
+ | 1.9810 | 498000 | 0.0056 | - |
1098
+ | 1.9850 | 499000 | 0.0049 | - |
1099
+ | 1.9890 | 500000 | 0.0064 | - |
1100
+ | 1.9930 | 501000 | 0.0047 | - |
1101
+ | 1.9970 | 502000 | 0.0051 | - |
1102
+ | 2.0000 | 502764 | - | 0.0012 |
1103
+
1104
+ </details>
1105
+
1106
+ ### Framework Versions
1107
+ - Python: 3.11.11
1108
+ - Sentence Transformers: 3.4.1
1109
+ - Transformers: 4.48.2
1110
+ - PyTorch: 2.6.0+cu124
1111
+ - Accelerate: 1.3.0
1112
+ - Datasets: 3.2.0
1113
+ - Tokenizers: 0.21.0
1114
+
1115
+ ## Citation
1116
+
1117
+ ### BibTeX
1118
+
1119
+ #### Sentence Transformers
1120
+ ```bibtex
1121
+ @inproceedings{reimers-2019-sentence-bert,
1122
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1123
+ author = "Reimers, Nils and Gurevych, Iryna",
1124
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1125
+ month = "11",
1126
+ year = "2019",
1127
+ publisher = "Association for Computational Linguistics",
1128
+ url = "https://arxiv.org/abs/1908.10084",
1129
+ }
1130
+ ```
1131
+
1132
+ #### MultipleNegativesRankingLoss
1133
+ ```bibtex
1134
+ @misc{henderson2017efficient,
1135
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1136
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1137
+ year={2017},
1138
+ eprint={1705.00652},
1139
+ archivePrefix={arXiv},
1140
+ primaryClass={cs.CL}
1141
+ }
1142
+ ```
1143
+
1144
+ <!--
1145
+ ## Glossary
1146
+
1147
+ *Clearly define terms in order to be accessible across audiences.*
1148
+ -->
1149
+
1150
+ <!--
1151
+ ## Model Card Authors
1152
+
1153
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1154
+ -->
1155
+
1156
+ <!--
1157
+ ## Model Card Contact
1158
+
1159
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1160
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/aronow/pankaj/Embeddings/scripts/data/Bioformer-16L-UMLS-Pubmed_PMC-Forward_TCE/Bioformer-16L-UMLS-Pubmed_PMC-Forward_TCE-Epoch-3",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 1024,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 6,
17
+ "num_hidden_layers": 16,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.45.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32768
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5070870b97247ca36b70358be47f7b77fe02430767c9b059fbed94cffaf0beb
3
+ size 166097144
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 1024,
51
+ "model_max_length": 1024,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff