File size: 1,430 Bytes
251df0e b96114c d012f12 b96114c 251df0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: unknown
language:
- en
tags:
- wine
- ner
widget:
- text: 'Heitz Cabernet Sauvignon California Napa Valley Napa US'
example_title: 'California Cab'
---
# Wineberto labels
Pretrained model on on wine labels only for named entity recognition that uses bert-base-uncased as the base model.
## Model description
## How to use
You can use this model directly for named entity recognition like so
```python
>>> from transformers import pipeline
>>> ner = pipeline('ner', model='winberto-labels')
>>> tokens = ner("Heitz Cabernet Sauvignon California Napa Valley Napa US")
>>> for t in toks:
>>> print(f"{t['word']}: {t['entity_group']}: {t['score']:.5}")
heitz: producer: 0.99758
cabernet: wine: 0.92263
sauvignon: wine: 0.92472
california: region: 0.53502
napa valley: subregion: 0.79638
us: country: 0.93675
```
## Training data
The BERT model was trained on 50K wine labels derived from https://www.liv-ex.com/wwd/lwin/ and manually annotated to capture the following tokens
```
"1": "B-classification",
"2": "B-country",
"3": "B-producer",
"4": "B-region",
"5": "B-subregion",
"6": "B-vintage",
"7": "B-wine"
```
## Training procedure
```
model_id = 'bert-base-uncased'
arguments = TrainingArguments(
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=5,
weight_decay=0.01,
)
...
trainer.train()
```
|