File size: 6,568 Bytes
ab3ac0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df7998f
ab3ac0c
df7998f
 
 
 
 
 
ab3ac0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df7998f
 
 
 
 
 
 
 
 
 
 
ab3ac0c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-Synthetic-only
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-Synthetic-only

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9766
- Eader: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57}
- Nswer: {'precision': 0.07159353348729793, 'recall': 0.2198581560283688, 'f1': 0.10801393728222997, 'number': 141}
- Uestion: {'precision': 0.1038135593220339, 'recall': 0.30434782608695654, 'f1': 0.15481832543443919, 'number': 161}
- Overall Precision: 0.0880
- Overall Recall: 0.2228
- Overall F1: 0.1262
- Overall Accuracy: 0.6103

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 9
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Eader                                                                                        | Nswer                                                                                                         | Uestion                                                                                                        | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.3476        | 1.0   | 4    | 1.3017          | {'precision': 0.01, 'recall': 0.05263157894736842, 'f1': 0.016806722689075633, 'number': 57} | {'precision': 0.012711864406779662, 'recall': 0.0425531914893617, 'f1': 0.019575856443719414, 'number': 141}  | {'precision': 0.015772870662460567, 'recall': 0.062111801242236024, 'f1': 0.025157232704402514, 'number': 161} | 0.0135            | 0.0529         | 0.0215     | 0.3592           |
| 1.0607        | 2.0   | 8    | 1.2217          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57}                                   | {'precision': 0.015384615384615385, 'recall': 0.02127659574468085, 'f1': 0.017857142857142856, 'number': 141} | {'precision': 0.010050251256281407, 'recall': 0.012422360248447204, 'f1': 0.011111111111111113, 'number': 161} | 0.0127            | 0.0139         | 0.0133     | 0.3607           |
| 0.8532        | 3.0   | 12   | 1.1632          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57}                                   | {'precision': 0.034375, 'recall': 0.07801418439716312, 'f1': 0.047722342733188726, 'number': 141}             | {'precision': 0.021671826625386997, 'recall': 0.043478260869565216, 'f1': 0.02892561983471074, 'number': 161}  | 0.0280            | 0.0501         | 0.0359     | 0.3963           |
| 0.7208        | 4.0   | 16   | 1.1060          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57}                                   | {'precision': 0.02895752895752896, 'recall': 0.10638297872340426, 'f1': 0.04552352048558422, 'number': 141}   | {'precision': 0.0380952380952381, 'recall': 0.12422360248447205, 'f1': 0.05830903790087465, 'number': 161}     | 0.0336            | 0.0975         | 0.0499     | 0.4848           |
| 0.6082        | 5.0   | 20   | 1.0625          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57}                                   | {'precision': 0.040229885057471264, 'recall': 0.14893617021276595, 'f1': 0.06334841628959276, 'number': 141}  | {'precision': 0.06554307116104868, 'recall': 0.21739130434782608, 'f1': 0.10071942446043164, 'number': 161}    | 0.0530            | 0.1560         | 0.0792     | 0.5349           |
| 0.4981        | 6.0   | 24   | 1.0294          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57}                                   | {'precision': 0.04573804573804574, 'recall': 0.15602836879432624, 'f1': 0.0707395498392283, 'number': 141}    | {'precision': 0.08695652173913043, 'recall': 0.2732919254658385, 'f1': 0.13193403298350825, 'number': 161}     | 0.0667            | 0.1838         | 0.0979     | 0.5663           |
| 0.416         | 7.0   | 28   | 1.0031          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57}                                   | {'precision': 0.05908096280087528, 'recall': 0.19148936170212766, 'f1': 0.09030100334448161, 'number': 141}   | {'precision': 0.09475806451612903, 'recall': 0.2919254658385093, 'f1': 0.1430745814307458, 'number': 161}      | 0.0774            | 0.2061         | 0.1125     | 0.5868           |
| 0.3618        | 8.0   | 32   | 0.9854          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57}                                   | {'precision': 0.06919642857142858, 'recall': 0.2198581560283688, 'f1': 0.10526315789473685, 'number': 141}    | {'precision': 0.10103092783505155, 'recall': 0.30434782608695654, 'f1': 0.15170278637770898, 'number': 161}    | 0.0855            | 0.2228         | 0.1236     | 0.6034           |
| 0.3256        | 9.0   | 36   | 0.9766          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 57}                                   | {'precision': 0.07159353348729793, 'recall': 0.2198581560283688, 'f1': 0.10801393728222997, 'number': 141}    | {'precision': 0.1038135593220339, 'recall': 0.30434782608695654, 'f1': 0.15481832543443919, 'number': 161}     | 0.0880            | 0.2228         | 0.1262     | 0.6103           |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0