{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2c68b32140>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 4030464, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673099971598583242, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGbxlrxSeJW76o8zvC2OijwPQAi98k9sPQAAgD8AAIA/M/0ovG4ogz8S5kk9FggAvyIRgr1JeCg+AAAAAAAAAACaGjc9hQu2P5VFhz5XCRy+gzdBPd6lPT4AAAAAAAAAAFrCpL2e06E/70YPv0OeIr8WC2u9fK2XvgAAAAAAAAAADRb3PYtJdD/GgB0+8pcBv1GXGz5gA6A9AAAAAAAAAADmL8A9rrGbulNf8Lr3rzy22HAeOnNaCToAAAAAAACAP4BwFz2PDnG6vL6POYSH3DRX1mi6u6imuAAAgD8AAIA/et0FPtcObDxkcJi+I8uzvkYO+b2g9VG9AACAPwAAAACzERU9SZNiP8btYD2xxuO+TzmEPYqUBj0AAAAAAAAAAM3SXjxyo68/OADkPruvGb9JIB68dlyXvAAAAAAAAAAAmnG7vctxOj/VMjk+I+z4vtV/dL2ewyQ+AAAAAAAAAADNzE05FGqOut7e1LxqU8A8SrYYuzgWpT0AAIA/AACAPzOrz7uEQbc+5UbgPSGu0L4YkQc9myj+PAAAAAAAAAAAzU2aPEM2TLylbZ+8Xv3kPFqMOr0ylEO8AACAPwAAgD8AVHC8SP+HumhvjjpC9kG2qj8/uxSPpbkAAIA/AACAP2YPOT3I9I286z/4PUAl9b25MsO9MPcAvwAAgD8AAIA/M5mRPAxEfz5NUPi8Y27Dvt1yWD3D9RA8AAAAAAAAAABti4a+KEdAP+PVNb53b9S+mA7LvvKtkL0AAAAAAAAAADOlfTzDnTG63d2Tu6JOtriHGxG7cMgmOAAAgD8AAIA/zYxhO6TUabtFA4i8GnaYPFCNtrw0S4I9AACAPwAAgD8NJaQ9wxltuvaYUjkiaDc0NVniut7odrgAAAAAAACAP4DPtL2vAVo/KoTcPUIF9b6tvxW+kmQ+PgAAAAAAAAAArSQsPgNOvz/bsiM/D9kdvrytcD6boMw+AAAAAAAAAADmXBI9FX8EP3Jn0z16vbu+R1fjPRkYyz0AAAAAAAAAABqB5b281h8/syh5Pn8X6L4xUOi7w05cPgAAAAAAAAAAmu3vvI+OcrrgQC64y64ys4nFy7h9/0o3AACAPwAAgD8a4AC9Uy5NPwZliz3qOcS+SscdvStYzD0AAAAAAAAAAJqRhLt72rC6hpGGOPp2aTNHhuW5Vt6ZtwAAgD8AAIA/TfgCPQ2HXD7Fozy8i9XTvpwjDjx2fnI9AAAAAAAAAABmvvA79sRZumv0ADncv4M04+wcOtscFLgAAIA/AACAP2aCHz1PtVc9LxKOPT5zwr6l8aE92PJQvAAAAAAAAAAAmkxUPXF8Pjz6a4A890OvvgUcij0i04e9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVSRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+G2I8RqNcUCUhpRSlIwBbJRL+IwBdJRHQKnj0z67/XJ1fZQoaAZoCWgPQwh72AsF7HZyQJSGlFKUaBVNCQFoFkdAqePZkupS8HV9lChoBmgJaA9DCLgDdcqj+lBAlIaUUpRoFUucaBZHQKnkAn2qT8p1fZQoaAZoCWgPQwhDc51GGhRxQJSGlFKUaBVL8WgWR0Cp5AhRqGlAdX2UKGgGaAloD0MIIlFoWfeYcECUhpRSlGgVS+ZoFkdAqeQkSZjQRnV9lChoBmgJaA9DCBxEa0VblnBAlIaUUpRoFU0UAWgWR0Cp5Cs5wOvudX2UKGgGaAloD0MI9kArMOTIcUCUhpRSlGgVTUwBaBZHQKnkX0Qsf7t1fZQoaAZoCWgPQwjU78LWbCJwQJSGlFKUaBVNEgFoFkdAqeSxOBUaQ3V9lChoBmgJaA9DCN/98V61dXFAlIaUUpRoFU0WAWgWR0Cp5TlvqC6IdX2UKGgGaAloD0MIdt1bkZidcUCUhpRSlGgVS/xoFkdAqeU/h4t6HHV9lChoBmgJaA9DCEvqBDSRSHFAlIaUUpRoFU0WAWgWR0Cp5YI86mwadX2UKGgGaAloD0MI5MCr5Y7Tc0CUhpRSlGgVS8ZoFkdAqeW7INmUW3V9lChoBmgJaA9DCNHP1OuW6HBAlIaUUpRoFUvMaBZHQKnl5yiEg4h1fZQoaAZoCWgPQwiCcAUUKrtxQJSGlFKUaBVL4mgWR0Cp5e2eQMhHdX2UKGgGaAloD0MIotPzbiz8Q0CUhpRSlGgVS5NoFkdAqeYx9kSVW3V9lChoBmgJaA9DCOIDO/4LAlBAlIaUUpRoFUuFaBZHQKnm5ygf2bp1fZQoaAZoCWgPQwiwcJLmDxBwQJSGlFKUaBVL6GgWR0Cp50VkUbkwdX2UKGgGaAloD0MIms5OBscxb0CUhpRSlGgVS91oFkdAqeeZigCfYnV9lChoBmgJaA9DCPRTHAdeKXJAlIaUUpRoFUvgaBZHQKnnoANoak11fZQoaAZoCWgPQwgGD9O+Od5xQJSGlFKUaBVL9mgWR0Cp580+s5n2dX2UKGgGaAloD0MISyAldq2ecUCUhpRSlGgVTT4BaBZHQKnn5o/zJ6p1fZQoaAZoCWgPQwizB1qB4Up0QJSGlFKUaBVNOgFoFkdAqeg6zzErG3V9lChoBmgJaA9DCFaeQNjphnBAlIaUUpRoFUv2aBZHQKnolHXmNip1fZQoaAZoCWgPQwi5xfzc0AxzQJSGlFKUaBVL1mgWR0Cp6LSo4uK5dX2UKGgGaAloD0MI/z147VKZcUCUhpRSlGgVTQQBaBZHQKnpIrKeTV51fZQoaAZoCWgPQwg/x0eLMy9oQJSGlFKUaBVN6ANoFkdAqek9fJFLFnV9lChoBmgJaA9DCJpbIayG4XFAlIaUUpRoFU1WAWgWR0Cp6V5jpcHGdX2UKGgGaAloD0MIH6FmSJWpckCUhpRSlGgVTTIBaBZHQKnpZScbzbx1fZQoaAZoCWgPQwhJY7SOqkNuQJSGlFKUaBVL6WgWR0Cp6YoxYaHcdX2UKGgGaAloD0MIF/TeGIJxcECUhpRSlGgVS9JoFkdAqemisny/bnV9lChoBmgJaA9DCGHEPgEUtXNAlIaUUpRoFUv+aBZHQKnpr5CWu5l1fZQoaAZoCWgPQwhz2H3HMMRwQJSGlFKUaBVNKQFoFkdAqen/vSc9XHV9lChoBmgJaA9DCJG6nX1lZnFAlIaUUpRoFU0PAWgWR0Cp6kqQzUI+dX2UKGgGaAloD0MIA1slWBzkcUCUhpRSlGgVTTIBaBZHQKnqbZM+NcZ1fZQoaAZoCWgPQwijA5Kwb45mQJSGlFKUaBVN6ANoFkdAqeqKEg4ffXV9lChoBmgJaA9DCDcAGxCh0XFAlIaUUpRoFU0PAWgWR0Cp6q3aJyhjdX2UKGgGaAloD0MIou4DkNpNckCUhpRSlGgVS/poFkdAqesfEZR8+nV9lChoBmgJaA9DCFTGv894eHFAlIaUUpRoFUvzaBZHQKnrQna37UJ1fZQoaAZoCWgPQwjBVDNrKdxyQJSGlFKUaBVL4WgWR0Cp6039rGipdX2UKGgGaAloD0MIuLHZkWrxbUCUhpRSlGgVTWgBaBZHQKnrY4Ia99N1fZQoaAZoCWgPQwjzOXe73l9wQJSGlFKUaBVL3WgWR0Cp63yd4FA3dX2UKGgGaAloD0MIYAZjRKIZc0CUhpRSlGgVTU8BaBZHQKnri+kgwGp1fZQoaAZoCWgPQwhJaTaPw1pxQJSGlFKUaBVNSQFoFkdAqeu5AnlXBHV9lChoBmgJaA9DCIkkehlFp3FAlIaUUpRoFU2+AWgWR0Cp6/CO3lS1dX2UKGgGaAloD0MIGeQuwtSucUCUhpRSlGgVTSEBaBZHQKnr9gflp491fZQoaAZoCWgPQwjlfLH3YjtxQJSGlFKUaBVNEgFoFkdAqexJWBBiTnV9lChoBmgJaA9DCPoK0owFt3BAlIaUUpRoFU0aAWgWR0Cp7Elm4AjqdX2UKGgGaAloD0MIj1N0JBenc0CUhpRSlGgVS+toFkdAqexkFOfukXV9lChoBmgJaA9DCPq2YKmuPG5AlIaUUpRoFUvYaBZHQKnslKXfIjp1fZQoaAZoCWgPQwiKO97kdytxQJSGlFKUaBVL22gWR0Cp7KAY51eTdX2UKGgGaAloD0MIjDGwjuMKU0CUhpRSlGgVS51oFkdAqe0Q00m+kHV9lChoBmgJaA9DCJtUNNb+zm9AlIaUUpRoFUvtaBZHQKntJm5lOGl1fZQoaAZoCWgPQwgsZoS3R+ZyQJSGlFKUaBVNCAFoFkdAqe1GmDUVjHV9lChoBmgJaA9DCL0A++gUeXNAlIaUUpRoFUvKaBZHQKnto4Wk8A91fZQoaAZoCWgPQwh9PsqIC0BzQJSGlFKUaBVNBAFoFkdAqe266J66a3V9lChoBmgJaA9DCHTsoBLXPUlAlIaUUpRoFUudaBZHQKnt29WZJCl1fZQoaAZoCWgPQwhgArfu5sByQJSGlFKUaBVLzWgWR0Cp7mlRgqmTdX2UKGgGaAloD0MINdO9Tur2cUCUhpRSlGgVTREBaBZHQKnusCGvfTF1fZQoaAZoCWgPQwgzUu+pXNxwQJSGlFKUaBVL/mgWR0Cp7sKeK8+SdX2UKGgGaAloD0MI9E9wsWIedECUhpRSlGgVS+toFkdAqe7I4VARkHV9lChoBmgJaA9DCD81XrrJvHJAlIaUUpRoFUv7aBZHQKnu5npSrHV1fZQoaAZoCWgPQwilEp7Qa+9vQJSGlFKUaBVL+WgWR0Cp7wNQj2SMdX2UKGgGaAloD0MIU84Xey93cUCUhpRSlGgVTQcBaBZHQKnvMLeANG51fZQoaAZoCWgPQwjKw0KtaWpNQJSGlFKUaBVLs2gWR0Cp7+bxmTTwdX2UKGgGaAloD0MI4ba28HyAc0CUhpRSlGgVS8doFkdAqfAbvsqrinV9lChoBmgJaA9DCIKo+wCkYHNAlIaUUpRoFUv6aBZHQKnwL1aGHpN1fZQoaAZoCWgPQwhj0Amhw8RxQJSGlFKUaBVL3GgWR0Cp8Dw3gk1NdX2UKGgGaAloD0MIXI5XIPqUcECUhpRSlGgVS9loFkdAqfBauU2UCHV9lChoBmgJaA9DCHxFt14TkHNAlIaUUpRoFUv5aBZHQKnwySwnpjd1fZQoaAZoCWgPQwjmJJS+0HhzQJSGlFKUaBVNIgFoFkdAqfDie2/i53V9lChoBmgJaA9DCJ89l6lJ+DhAlIaUUpRoFUucaBZHQKnw6NCJGfB1fZQoaAZoCWgPQwhhVFInoM5xQJSGlFKUaBVNgwFoFkdAqfEPe3x4IXV9lChoBmgJaA9DCA+4rpgRiVFAlIaUUpRoFUuYaBZHQKnxU9ic5Kh1fZQoaAZoCWgPQwiUZ14Ou/FxQJSGlFKUaBVNEQFoFkdAqfGlxbSql3V9lChoBmgJaA9DCKwahLnd5G5AlIaUUpRoFU0IAWgWR0Cp8f0YsNDudX2UKGgGaAloD0MIyuGTTuTYcUCUhpRSlGgVS9RoFkdAqfIR3zMA3nV9lChoBmgJaA9DCJ2+nq+ZGnJAlIaUUpRoFU1aAWgWR0Cp8iXcgyM2dX2UKGgGaAloD0MI2H3H8Fgdc0CUhpRSlGgVTaIBaBZHQKnyU3Zwn6V1fZQoaAZoCWgPQwjtDikGCGhyQJSGlFKUaBVNCAFoFkdAqfJstXgccXV9lChoBmgJaA9DCCZuFcRAlnJAlIaUUpRoFU0FAWgWR0Cp8r/SH/LldX2UKGgGaAloD0MIfJkoQurhc0CUhpRSlGgVTSgBaBZHQKnzON+b3Gp1fZQoaAZoCWgPQwgkQiPYuHRxQJSGlFKUaBVNJAFoFkdAqfN8UVSGanV9lChoBmgJaA9DCJUNaypLcHFAlIaUUpRoFUv0aBZHQKnzkUi6g/V1fZQoaAZoCWgPQwgl5llJK0lzQJSGlFKUaBVNDwFoFkdAqfOspRXOnnV9lChoBmgJaA9DCE88ZwtIu3JAlIaUUpRoFUvRaBZHQKnz5hCMPz51fZQoaAZoCWgPQwhXXYdqintxQJSGlFKUaBVNPwFoFkdAqfPzkCFK03V9lChoBmgJaA9DCBb7y+6JS3JAlIaUUpRoFU0IAWgWR0Cp9FFgtvn9dX2UKGgGaAloD0MIXfksz8M3cUCUhpRSlGgVS+5oFkdAqfTkxASnL3V9lChoBmgJaA9DCBxg5ju4uXBAlIaUUpRoFUv9aBZHQKn1Br5ZbIN1fZQoaAZoCWgPQwgMQKN0qflyQJSGlFKUaBVNEwFoFkdAqfU2lyimEXV9lChoBmgJaA9DCOymlNcK9HBAlIaUUpRoFUvPaBZHQKn1Zfek56t1fZQoaAZoCWgPQwgLfEW3XmlyQJSGlFKUaBVL3mgWR0Cp9YCTMaCMdX2UKGgGaAloD0MIBW1y+ORWc0CUhpRSlGgVTQgBaBZHQKn1yeV9nbt1fZQoaAZoCWgPQwiiQ+BIoAtSQJSGlFKUaBVLlWgWR0Cp9fKaw2VFdX2UKGgGaAloD0MI1lWBWsxzckCUhpRSlGgVS+ZoFkdAqfYOW6bvw3V9lChoBmgJaA9DCLpnXaPllXBAlIaUUpRoFUvwaBZHQKn2L4ptrKx1fZQoaAZoCWgPQwiiemtgKzhzQJSGlFKUaBVL5WgWR0Cp9sPsiSq3dX2UKGgGaAloD0MIqRWm73VccUCUhpRSlGgVTUwBaBZHQKn3AuB+Wnl1fZQoaAZoCWgPQwgcCMkCJs9xQJSGlFKUaBVL8WgWR0Cp9xCEQGwBdX2UKGgGaAloD0MIkQw5tp7acUCUhpRSlGgVS/9oFkdAqfdRhOP/73VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-1026-aws-x86_64-with-glibc2.35 #30-Ubuntu SMP Wed Nov 23 14:15:21 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}