Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- fr
|
5 |
+
- ro
|
6 |
+
- de
|
7 |
+
datasets:
|
8 |
+
- c4
|
9 |
+
tags:
|
10 |
+
- summarization
|
11 |
+
- translation
|
12 |
+
|
13 |
license: apache-2.0
|
14 |
---
|
15 |
+
|
16 |
+
# ONNX convert of t5-small
|
17 |
+
|
18 |
+
## Conversion of [t5-small](https://huggingface.co/t5-small)
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
You can use this model with Transformers *pipeline*.
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import AutoTokenizer, pipeline
|
30 |
+
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained("optimum/t5-small")
|
32 |
+
model = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")
|
33 |
+
translator = pipeline("translation_en_to_de", model=model, tokenizer=tokenizer)
|
34 |
+
example = "My name is Wolfgang and I live in Berlin"
|
35 |
+
results = translator(example)
|
36 |
+
print(results)
|
37 |
+
```
|