add model
Browse files- .gitattributes +1 -0
- added_tokens.json +3 -0
- chat_template.json +3 -0
- config.json +3 -0
- configuration_qwen2_5_vl.py +258 -0
- generation_config.json +3 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_qwen2_5_vl.py +0 -0
- preprocessor_config.json +3 -0
- processing_qwen2_5_vl.py +219 -0
- special_tokens_map.json +3 -0
- tokenizer.json +3 -0
- tokenizer_config.json +3 -0
- vocab.json +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fa54985b58718a8fdb4f4d97484c4bd908db114847675e4bf3afe3e1d5d7bd4
|
3 |
+
size 392
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94174d7176c52a7192f96fc34eb2cf23c7c2059d63cdbfadca1586ba89731fb7
|
3 |
+
size 1049
|
config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48b454873642fc802a58ae6aa8773836caa83b4e9e865bcd421ab72296217d67
|
3 |
+
size 2657
|
configuration_qwen2_5_vl.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_qwen2_5_vl.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
11 |
+
# and OPT implementations in this library. It has been modified from its
|
12 |
+
# original forms to accommodate minor architectural differences compared
|
13 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
14 |
+
#
|
15 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
16 |
+
# you may not use this file except in compliance with the License.
|
17 |
+
# You may obtain a copy of the License at
|
18 |
+
#
|
19 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
20 |
+
#
|
21 |
+
# Unless required by applicable law or agreed to in writing, software
|
22 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
23 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
24 |
+
# See the License for the specific language governing permissions and
|
25 |
+
# limitations under the License.
|
26 |
+
from transformers.configuration_utils import PretrainedConfig
|
27 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
28 |
+
|
29 |
+
|
30 |
+
class Qwen2_5_VLVisionConfig(PretrainedConfig):
|
31 |
+
model_type = "qwen2_5_vl"
|
32 |
+
base_config_key = "vision_config"
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
depth=32,
|
37 |
+
hidden_size=3584,
|
38 |
+
hidden_act="silu",
|
39 |
+
intermediate_size=3420,
|
40 |
+
num_heads=16,
|
41 |
+
in_channels=3,
|
42 |
+
patch_size=14,
|
43 |
+
spatial_merge_size=2,
|
44 |
+
temporal_patch_size=2,
|
45 |
+
tokens_per_second=4,
|
46 |
+
window_size=112,
|
47 |
+
out_hidden_size=3584,
|
48 |
+
fullatt_block_indexes=[7, 15, 23, 31],
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
super().__init__(**kwargs)
|
52 |
+
|
53 |
+
self.depth = depth
|
54 |
+
self.hidden_size = hidden_size
|
55 |
+
self.hidden_act = hidden_act
|
56 |
+
self.intermediate_size = intermediate_size
|
57 |
+
self.num_heads = num_heads
|
58 |
+
self.in_channels = in_channels
|
59 |
+
self.patch_size = patch_size
|
60 |
+
self.spatial_merge_size = spatial_merge_size
|
61 |
+
self.temporal_patch_size = temporal_patch_size
|
62 |
+
self.tokens_per_second = tokens_per_second
|
63 |
+
self.window_size = window_size
|
64 |
+
self.fullatt_block_indexes = fullatt_block_indexes
|
65 |
+
self.out_hidden_size = out_hidden_size
|
66 |
+
|
67 |
+
|
68 |
+
class Qwen2_5_VLConfig(PretrainedConfig):
|
69 |
+
r"""
|
70 |
+
This is the configuration class to store the configuration of a [`Qwen2_5_VLModel`]. It is used to instantiate a
|
71 |
+
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
72 |
+
with the defaults will yield a similar configuration to that of
|
73 |
+
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
|
74 |
+
|
75 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
76 |
+
documentation from [`PretrainedConfig`] for more information.
|
77 |
+
|
78 |
+
|
79 |
+
Args:
|
80 |
+
vocab_size (`int`, *optional*, defaults to 152064):
|
81 |
+
Vocabulary size of the Qwen2_5_VL model. Defines the number of different tokens that can be represented by the
|
82 |
+
`inputs_ids` passed when calling [`Qwen2_5_VLModel`]
|
83 |
+
hidden_size (`int`, *optional*, defaults to 8192):
|
84 |
+
Dimension of the hidden representations.
|
85 |
+
intermediate_size (`int`, *optional*, defaults to 29568):
|
86 |
+
Dimension of the MLP representations.
|
87 |
+
num_hidden_layers (`int`, *optional*, defaults to 80):
|
88 |
+
Number of hidden layers in the Transformer encoder.
|
89 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
90 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
91 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
92 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
93 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
94 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
95 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
96 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
97 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
98 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
99 |
+
The non-linear activation function (function or string) in the decoder.
|
100 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
101 |
+
The maximum sequence length that this model might ever be used with.
|
102 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
103 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
104 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
105 |
+
The epsilon used by the rms normalization layers.
|
106 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
107 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
108 |
+
relevant if `config.is_decoder=True`.
|
109 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
110 |
+
Whether the model's input and output word embeddings should be tied.
|
111 |
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
112 |
+
The base period of the RoPE embeddings.
|
113 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
114 |
+
Whether to use sliding window attention.
|
115 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
116 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
117 |
+
max_window_layers (`int`, *optional*, defaults to 80):
|
118 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
119 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
120 |
+
The dropout ratio for the attention probabilities.
|
121 |
+
vision_config (`Dict`, *optional*):
|
122 |
+
The config for the visual encoder initialization.
|
123 |
+
rope_scaling (`Dict`, *optional*):
|
124 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
125 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
126 |
+
accordingly.
|
127 |
+
Expected contents:
|
128 |
+
`rope_type` (`str`):
|
129 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
130 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
131 |
+
`factor` (`float`, *optional*):
|
132 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
133 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
134 |
+
original maximum pre-trained length.
|
135 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
136 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
137 |
+
pretraining.
|
138 |
+
`attention_factor` (`float`, *optional*):
|
139 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
140 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
141 |
+
`factor` field to infer the suggested value.
|
142 |
+
`beta_fast` (`float`, *optional*):
|
143 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
144 |
+
ramp function. If unspecified, it defaults to 32.
|
145 |
+
`beta_slow` (`float`, *optional*):
|
146 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
147 |
+
ramp function. If unspecified, it defaults to 1.
|
148 |
+
`short_factor` (`List[float]`, *optional*):
|
149 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
150 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
151 |
+
size divided by the number of attention heads divided by 2
|
152 |
+
`long_factor` (`List[float]`, *optional*):
|
153 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
154 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
155 |
+
size divided by the number of attention heads divided by 2
|
156 |
+
`low_freq_factor` (`float`, *optional*):
|
157 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
158 |
+
`high_freq_factor` (`float`, *optional*):
|
159 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
160 |
+
|
161 |
+
```python
|
162 |
+
>>> from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLConfig
|
163 |
+
|
164 |
+
>>> # Initializing a Qwen2_5_VL style configuration
|
165 |
+
>>> configuration = Qwen2_5_VLConfig()
|
166 |
+
|
167 |
+
>>> # Initializing a model from the Qwen2-VL-7B style configuration
|
168 |
+
>>> model = Qwen2_5_VLForConditionalGeneration(configuration)
|
169 |
+
|
170 |
+
>>> # Accessing the model configuration
|
171 |
+
>>> configuration = model.config
|
172 |
+
```"""
|
173 |
+
|
174 |
+
model_type = "qwen2_5_vl"
|
175 |
+
sub_configs = {"vision_config": Qwen2_5_VLVisionConfig}
|
176 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
177 |
+
# Default tensor parallel plan for base model `Qwen2_5_VL`
|
178 |
+
base_model_tp_plan = {
|
179 |
+
"layers.*.self_attn.q_proj": "colwise",
|
180 |
+
"layers.*.self_attn.k_proj": "colwise",
|
181 |
+
"layers.*.self_attn.v_proj": "colwise",
|
182 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
183 |
+
"layers.*.mlp.gate_proj": "colwise",
|
184 |
+
"layers.*.mlp.up_proj": "colwise",
|
185 |
+
"layers.*.mlp.down_proj": "rowwise",
|
186 |
+
}
|
187 |
+
base_model_pp_plan = {
|
188 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
189 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
190 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
191 |
+
}
|
192 |
+
|
193 |
+
def __init__(
|
194 |
+
self,
|
195 |
+
vocab_size=152064,
|
196 |
+
hidden_size=8192,
|
197 |
+
intermediate_size=29568,
|
198 |
+
num_hidden_layers=80,
|
199 |
+
num_attention_heads=64,
|
200 |
+
num_key_value_heads=8,
|
201 |
+
hidden_act="silu",
|
202 |
+
max_position_embeddings=32768,
|
203 |
+
initializer_range=0.02,
|
204 |
+
rms_norm_eps=1e-05,
|
205 |
+
use_cache=True,
|
206 |
+
tie_word_embeddings=False,
|
207 |
+
rope_theta=1000000.0,
|
208 |
+
use_sliding_window=False,
|
209 |
+
sliding_window=4096,
|
210 |
+
max_window_layers=80,
|
211 |
+
attention_dropout=0.0,
|
212 |
+
vision_config=None,
|
213 |
+
rope_scaling=None,
|
214 |
+
**kwargs,
|
215 |
+
):
|
216 |
+
if isinstance(vision_config, dict):
|
217 |
+
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
218 |
+
elif vision_config is None:
|
219 |
+
self.vision_config = self.sub_configs["vision_config"]()
|
220 |
+
|
221 |
+
self.vocab_size = vocab_size
|
222 |
+
self.max_position_embeddings = max_position_embeddings
|
223 |
+
self.hidden_size = hidden_size
|
224 |
+
self.intermediate_size = intermediate_size
|
225 |
+
self.num_hidden_layers = num_hidden_layers
|
226 |
+
self.num_attention_heads = num_attention_heads
|
227 |
+
self.use_sliding_window = use_sliding_window
|
228 |
+
self.sliding_window = sliding_window
|
229 |
+
self.max_window_layers = max_window_layers
|
230 |
+
|
231 |
+
# for backward compatibility
|
232 |
+
if num_key_value_heads is None:
|
233 |
+
num_key_value_heads = num_attention_heads
|
234 |
+
|
235 |
+
self.num_key_value_heads = num_key_value_heads
|
236 |
+
self.hidden_act = hidden_act
|
237 |
+
self.initializer_range = initializer_range
|
238 |
+
self.rms_norm_eps = rms_norm_eps
|
239 |
+
self.use_cache = use_cache
|
240 |
+
self.rope_theta = rope_theta
|
241 |
+
self.attention_dropout = attention_dropout
|
242 |
+
self.rope_scaling = rope_scaling
|
243 |
+
|
244 |
+
# Validate the correctness of rotary position embeddings parameters
|
245 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
246 |
+
# and change type from 'mrope' to 'default' because `mrope` does defeault RoPE calculations
|
247 |
+
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE
|
248 |
+
# TODO: @raushan update config in the hub
|
249 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
250 |
+
if self.rope_scaling["type"] == "mrope":
|
251 |
+
self.rope_scaling["type"] = "default"
|
252 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
253 |
+
rope_config_validation(self, ignore_keys={"mrope_section"})
|
254 |
+
|
255 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
256 |
+
|
257 |
+
|
258 |
+
__all__ = ["Qwen2_5_VLConfig"]
|
generation_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55b2b4462aedccc5858edd8d7aa0fa7aebf8a3bf9245f9a095ddeba8a9a1650a
|
3 |
+
size 121
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06ee238aa6a4e71758c87d1cbaf67e460dda61adc15b14adbe7d524ce99c5c83
|
3 |
+
size 20962256
|
modeling_qwen2_5_vl.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e75a8a0ea4315702add896d4ad12215086e98735051c76613bf06e59c737d35
|
3 |
+
size 502
|
processing_qwen2_5_vl.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_qwen2_5_vl.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
11 |
+
# and OPT implementations in this library. It has been modified from its
|
12 |
+
# original forms to accommodate minor architectural differences compared
|
13 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
14 |
+
#
|
15 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
16 |
+
# you may not use this file except in compliance with the License.
|
17 |
+
# You may obtain a copy of the License at
|
18 |
+
#
|
19 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
20 |
+
#
|
21 |
+
# Unless required by applicable law or agreed to in writing, software
|
22 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
23 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
24 |
+
# See the License for the specific language governing permissions and
|
25 |
+
# limitations under the License.
|
26 |
+
from typing import List, Union
|
27 |
+
|
28 |
+
from transformers.feature_extraction_utils import BatchFeature
|
29 |
+
from transformers.image_utils import ImageInput, VideoInput
|
30 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
|
31 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
32 |
+
|
33 |
+
|
34 |
+
class Qwen2_5_VLVideosProcessorKwargs(VideosKwargs, total=False):
|
35 |
+
fps: Union[List[float], float]
|
36 |
+
|
37 |
+
|
38 |
+
class Qwen2_5_VLProcessorKwargs(ProcessingKwargs, total=False):
|
39 |
+
videos_kwargs: Qwen2_5_VLVideosProcessorKwargs
|
40 |
+
_defaults = {
|
41 |
+
"text_kwargs": {
|
42 |
+
"padding": False,
|
43 |
+
},
|
44 |
+
"videos_kwargs": {"fps": 2.0},
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
class Qwen2_5_VLProcessor(ProcessorMixin):
|
49 |
+
r"""
|
50 |
+
Constructs a Qwen2.5-VL processor which wraps a Qwen2.5-VL image processor and a Qwen2 tokenizer into a single processor.
|
51 |
+
[`Qwen2_5_VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
|
52 |
+
[`~Qwen2_5_VLProcessor.__call__`] and [`~Qwen2_5_VLProcessor.decode`] for more information.
|
53 |
+
Args:
|
54 |
+
image_processor ([`Qwen2VLImageProcessor`], *optional*):
|
55 |
+
The image processor is a required input.
|
56 |
+
tokenizer ([`Qwen2TokenizerFast`], *optional*):
|
57 |
+
The tokenizer is a required input.
|
58 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
59 |
+
in a chat into a tokenizable string.
|
60 |
+
"""
|
61 |
+
|
62 |
+
attributes = ["image_processor", "tokenizer"]
|
63 |
+
valid_kwargs = ["chat_template"]
|
64 |
+
|
65 |
+
image_processor_class = "AutoImageProcessor"
|
66 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
67 |
+
|
68 |
+
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
|
69 |
+
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
|
70 |
+
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
|
71 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
72 |
+
|
73 |
+
def __call__(
|
74 |
+
self,
|
75 |
+
images: ImageInput = None,
|
76 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
77 |
+
videos: VideoInput = None,
|
78 |
+
**kwargs: Unpack[Qwen2_5_VLProcessorKwargs],
|
79 |
+
) -> BatchFeature:
|
80 |
+
"""
|
81 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
82 |
+
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
|
83 |
+
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
|
84 |
+
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
88 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
89 |
+
tensor. Both channels-first and channels-last formats are supported.
|
90 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
91 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
92 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
93 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
94 |
+
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
95 |
+
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
|
96 |
+
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
|
97 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
98 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
99 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
100 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
101 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
102 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
106 |
+
|
107 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
108 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
109 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
110 |
+
`None`).
|
111 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
112 |
+
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
|
113 |
+
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
|
114 |
+
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
|
115 |
+
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
|
116 |
+
"""
|
117 |
+
output_kwargs = self._merge_kwargs(
|
118 |
+
Qwen2_5_VLProcessorKwargs,
|
119 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
120 |
+
**kwargs,
|
121 |
+
)
|
122 |
+
if images is not None:
|
123 |
+
image_inputs = self.image_processor(images=images, videos=None, **output_kwargs["images_kwargs"])
|
124 |
+
image_grid_thw = image_inputs["image_grid_thw"]
|
125 |
+
else:
|
126 |
+
image_inputs = {}
|
127 |
+
image_grid_thw = None
|
128 |
+
|
129 |
+
if videos is not None:
|
130 |
+
videos_inputs = self.image_processor(images=None, videos=videos, **output_kwargs["images_kwargs"])
|
131 |
+
video_grid_thw = videos_inputs["video_grid_thw"]
|
132 |
+
|
133 |
+
fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
|
134 |
+
if isinstance(fps, (int, float)):
|
135 |
+
second_per_grid_ts = [self.image_processor.temporal_patch_size / fps] * len(video_grid_thw)
|
136 |
+
elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
|
137 |
+
second_per_grid_ts = [self.image_processor.temporal_patch_size / tmp for tmp in fps]
|
138 |
+
else:
|
139 |
+
raise ValueError(
|
140 |
+
f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
|
141 |
+
)
|
142 |
+
videos_inputs.update({"second_per_grid_ts": second_per_grid_ts})
|
143 |
+
|
144 |
+
else:
|
145 |
+
videos_inputs = {}
|
146 |
+
video_grid_thw = None
|
147 |
+
|
148 |
+
if not isinstance(text, list):
|
149 |
+
text = [text]
|
150 |
+
|
151 |
+
if image_grid_thw is not None:
|
152 |
+
merge_length = self.image_processor.merge_size**2
|
153 |
+
index = 0
|
154 |
+
for i in range(len(text)):
|
155 |
+
while self.image_token in text[i]:
|
156 |
+
text[i] = text[i].replace(
|
157 |
+
self.image_token,
|
158 |
+
"<|placeholder|>" * (image_grid_thw[index].prod() // merge_length),
|
159 |
+
1,
|
160 |
+
)
|
161 |
+
index += 1
|
162 |
+
text[i] = text[i].replace("<|placeholder|>", self.image_token)
|
163 |
+
|
164 |
+
if video_grid_thw is not None:
|
165 |
+
merge_length = self.image_processor.merge_size**2
|
166 |
+
index = 0
|
167 |
+
for i in range(len(text)):
|
168 |
+
while self.video_token in text[i]:
|
169 |
+
text[i] = text[i].replace(
|
170 |
+
self.video_token,
|
171 |
+
"<|placeholder|>" * (video_grid_thw[index].prod() // merge_length),
|
172 |
+
1,
|
173 |
+
)
|
174 |
+
index += 1
|
175 |
+
text[i] = text[i].replace("<|placeholder|>", self.video_token)
|
176 |
+
|
177 |
+
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
178 |
+
|
179 |
+
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
|
180 |
+
|
181 |
+
def batch_decode(self, *args, **kwargs):
|
182 |
+
"""
|
183 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
184 |
+
refer to the docstring of this method for more information.
|
185 |
+
"""
|
186 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
187 |
+
|
188 |
+
def decode(self, *args, **kwargs):
|
189 |
+
"""
|
190 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
191 |
+
the docstring of this method for more information.
|
192 |
+
"""
|
193 |
+
return self.tokenizer.decode(*args, **kwargs)
|
194 |
+
|
195 |
+
def post_process_image_text_to_text(self, generated_outputs):
|
196 |
+
"""
|
197 |
+
Post-process the output of the model to decode the text.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
generated_outputs (`torch.Tensor` or `np.ndarray`):
|
201 |
+
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
|
202 |
+
or `(sequence_length,)`.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
`List[str]`: The decoded text.
|
206 |
+
"""
|
207 |
+
return self.tokenizer.batch_decode(
|
208 |
+
generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
209 |
+
)
|
210 |
+
|
211 |
+
@property
|
212 |
+
def model_input_names(self):
|
213 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
214 |
+
image_processor_input_names = self.image_processor.model_input_names
|
215 |
+
names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
216 |
+
return names_from_processor + ["second_per_grid_ts"]
|
217 |
+
|
218 |
+
|
219 |
+
__all__ = ["Qwen2_5_VLProcessor"]
|
special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76862e765266b85aa9459767e33cbaf13970f327a0e88d1c65846c2ddd3a1ecd
|
3 |
+
size 613
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
|
3 |
+
size 11420371
|
tokenizer_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb3c5a310899d7d65feec0dee4dff9067d7bc4ad2a17e2005bc9163f1ace0531
|
3 |
+
size 4297
|
vocab.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca10d7e9fb3ed18575dd1e277a2579c16d108e32f27439684afa0e10b1440910
|
3 |
+
size 2776833
|