add resource files
Browse files- config.json +25 -14
- configuration_cpmbee.py +132 -0
- modeling_cpmbee.py +1944 -0
- test_modeling_cpmbee.py +183 -0
- test_tokenization_cpmbee.py +187 -0
- tokenization_cpmbee.py +868 -0
- tokenizer_config.json +10 -0
config.json
CHANGED
|
@@ -1,15 +1,26 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
"
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
"
|
| 9 |
-
"
|
| 10 |
-
"
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"_name_or_path": "openbmb/cpm-bee-5b",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"CpmBeeForCausalLM"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_cpmbee.CpmBeeConfig",
|
| 9 |
+
"AutoModel": "modeling_cpmbee.CpmBeeForCausalLM",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_cpmbee.CpmBeeForCausalLM"
|
| 11 |
+
},
|
| 12 |
+
"vocab_size": 86583,
|
| 13 |
+
"hidden_size": 4096,
|
| 14 |
+
"dim_ff" : 10240,
|
| 15 |
+
"num_hidden_layers" : 48,
|
| 16 |
+
"num_attention_heads": 32,
|
| 17 |
+
"dim_head" : 128,
|
| 18 |
+
"dropout_p" : 0.0,
|
| 19 |
+
"position_bias_num_buckets" : 256,
|
| 20 |
+
"position_bias_num_segment_buckets": 256,
|
| 21 |
+
"position_bias_max_distance" : 2048,
|
| 22 |
+
"eps" : 1e-6,
|
| 23 |
+
"half" : true,
|
| 24 |
+
"model_type": "cpmbee",
|
| 25 |
+
"mask_modules": [[false, false], [true, false], [false, false], [true, false], [true, true], [true, false], [true, true], [true, true], [false, false], [false, false], [true, true], [true, false], [true, false], [true, true], [false, false], [true, true], [false, false], [false, true], [true, false], [true, true], [false, false], [false, true], [true, true], [true, true], [false, false], [true, true], [false, false], [true, true], [true, true], [false, false], [true, true], [false, false], [true, true], [false, false], [true, true], [true, false], [true, true], [true, true], [true, true], [false, false], [true, true], [false, false], [true, true], [true, true], [false, false], [true, true], [false, false], [false, false]]
|
| 26 |
+
}
|
configuration_cpmbee.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" CpmBee model configuration"""
|
| 16 |
+
|
| 17 |
+
from typing import List, Optional, Tuple, Union
|
| 18 |
+
|
| 19 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 20 |
+
from transformers.utils import logging
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
|
| 25 |
+
CPMBEE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 26 |
+
"openbmb/cpm-bee-10b": "https://huggingface.co/openbmb/cpm-bee-10b/resolve/main/config.json",
|
| 27 |
+
"openbmb/cpm-bee-5b": "https://huggingface.co/openbmb/cpm-bee-5b/resolve/main/config.json",
|
| 28 |
+
"openbmb/cpm-bee-2b": "https://huggingface.co/openbmb/cpm-bee-2b/resolve/main/config.json",
|
| 29 |
+
"openbmb/cpm-bee-1b": "https://huggingface.co/openbmb/cpm-bee-1b/resolve/main/config.json",
|
| 30 |
+
# See all CpmBee models at https://huggingface.co/models?filter=cpmbee
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class CpmBeeConfig(PretrainedConfig):
|
| 35 |
+
r"""
|
| 36 |
+
This is the configuration class to store the configuration of a [`CpmBeeModel`]. It is used to instbeeiate an
|
| 37 |
+
CPMBee model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 38 |
+
with the defaults will yield a similar configuration to that of the CPMBee
|
| 39 |
+
[openbmb/cpm-bee-10b](https://huggingface.co/openbmb/cpm-bee-10b) architecture.
|
| 40 |
+
|
| 41 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 42 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
vocab_size (`int`, *optional*, defaults to 30720):
|
| 46 |
+
Vocabulary size of the CPMBee model. Defines the number of different tokens that can be represented by the
|
| 47 |
+
`input` passed when calling [`CpmBeeModel`].
|
| 48 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 49 |
+
Dimension of the encoder layers.
|
| 50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 51 |
+
Number of attention heads in the Transformer encoder.
|
| 52 |
+
dim_head (`int`, *optional*, defaults to 128):
|
| 53 |
+
Dimension of attention heads for each attention layer in the Transformer encoder.
|
| 54 |
+
dim_ff (`int`, *optional*, defaults to 10240):
|
| 55 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 56 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
| 57 |
+
Number of layers of the Transformer encoder.
|
| 58 |
+
dropout_p (`float`, *optional*, defaults to 0.1):
|
| 59 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder.
|
| 60 |
+
position_bias_num_buckets (`int`, *optional*, defaults to 512):
|
| 61 |
+
The number of position_bias buckets.
|
| 62 |
+
position_bias_num_segment_buckets (`int`, *optional*, defaults to 32):
|
| 63 |
+
The number of segment buckets.
|
| 64 |
+
position_bias_max_distance (`int`, *optional*, defaults to 2048):
|
| 65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 67 |
+
eps (`float`, *optional*, defaults to 1e-6):
|
| 68 |
+
The epsilon used by the layer normalization layers.
|
| 69 |
+
init_std (`float`, *optional*, defaults to 1.0):
|
| 70 |
+
Initialize parameters with std = init_std.
|
| 71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 72 |
+
Whether to use cache.
|
| 73 |
+
distance_scale (`float` or `int`, *optional*, defaults to 16):
|
| 74 |
+
Scale the rotary embedding.
|
| 75 |
+
mask_modules (`list` or `tuple`, *optional*, defaults to None):
|
| 76 |
+
Decides which feedforward block or attention block is pruned.
|
| 77 |
+
half (`bool`, *optional*, defaults to `False`):
|
| 78 |
+
Decides the model parameters are half-precision or not.
|
| 79 |
+
|
| 80 |
+
Example:
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
>>> from transformers import CpmBeeModel, CpmBeeConfig
|
| 84 |
+
|
| 85 |
+
>>> # Initializing a CPMBee cpm-bee-10b style configuration
|
| 86 |
+
>>> configuration = CpmBeeConfig()
|
| 87 |
+
|
| 88 |
+
>>> # Initializing a model from the cpm-bee-10b style configuration
|
| 89 |
+
>>> model = CpmBeeModel(configuration)
|
| 90 |
+
|
| 91 |
+
>>> # Accessing the model configuration
|
| 92 |
+
>>> configuration = model.config
|
| 93 |
+
```"""
|
| 94 |
+
model_type = "cpmbee"
|
| 95 |
+
|
| 96 |
+
def __init__(
|
| 97 |
+
self,
|
| 98 |
+
vocab_size: int = 30720,
|
| 99 |
+
hidden_size: int = 4096,
|
| 100 |
+
num_attention_heads: int = 64,
|
| 101 |
+
dim_head: int = 64,
|
| 102 |
+
dim_ff: int = 10240,
|
| 103 |
+
num_hidden_layers: int = 32,
|
| 104 |
+
dropout_p: int = 0.0,
|
| 105 |
+
position_bias_num_buckets: int = 256,
|
| 106 |
+
position_bias_num_segment_buckets: int = 32,
|
| 107 |
+
position_bias_max_distance: int = 2048,
|
| 108 |
+
eps: int = 1e-6,
|
| 109 |
+
init_std: float = 1.0,
|
| 110 |
+
use_cache: bool = True,
|
| 111 |
+
distance_scale: Union[int, float] = 16,
|
| 112 |
+
mask_modules: Optional[Union[List, Tuple]] = None,
|
| 113 |
+
half: bool = False,
|
| 114 |
+
**kwargs,
|
| 115 |
+
):
|
| 116 |
+
super().__init__(**kwargs)
|
| 117 |
+
self.position_bias_num_segment_buckets = position_bias_num_segment_buckets
|
| 118 |
+
self.hidden_size = hidden_size
|
| 119 |
+
self.num_attention_heads = num_attention_heads
|
| 120 |
+
self.dim_head = dim_head
|
| 121 |
+
self.dim_ff = dim_ff
|
| 122 |
+
self.num_hidden_layers = num_hidden_layers
|
| 123 |
+
self.position_bias_num_buckets = position_bias_num_buckets
|
| 124 |
+
self.position_bias_max_distance = position_bias_max_distance
|
| 125 |
+
self.dropout_p = dropout_p
|
| 126 |
+
self.eps = eps
|
| 127 |
+
self.use_cache = use_cache
|
| 128 |
+
self.vocab_size = vocab_size
|
| 129 |
+
self.init_std = init_std
|
| 130 |
+
self.distance_scale = distance_scale
|
| 131 |
+
self.half = half
|
| 132 |
+
self.mask_modules = mask_modules
|
modeling_cpmbee.py
ADDED
|
@@ -0,0 +1,1944 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The OpenBMB Team The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" PyTorch CpmBee model."""
|
| 16 |
+
import copy
|
| 17 |
+
import math
|
| 18 |
+
from collections import UserDict
|
| 19 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.nn as nn
|
| 23 |
+
|
| 24 |
+
from transformers.generation.beam_search import BeamHypotheses, BeamSearchScorer
|
| 25 |
+
from transformers.generation.streamers import BaseStreamer
|
| 26 |
+
from transformers.generation.utils import (
|
| 27 |
+
GenerationConfig,
|
| 28 |
+
LogitsProcessorList,
|
| 29 |
+
StoppingCriteriaList,
|
| 30 |
+
dist,
|
| 31 |
+
inspect,
|
| 32 |
+
is_deepspeed_zero3_enabled,
|
| 33 |
+
warnings,
|
| 34 |
+
)
|
| 35 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput
|
| 36 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 37 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
| 38 |
+
from .configuration_cpmbee import CpmBeeConfig
|
| 39 |
+
from .tokenization_cpmbee import CpmBeeTokenizer
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
logger = logging.get_logger(__name__)
|
| 43 |
+
|
| 44 |
+
_CHECKPOINT_FOR_DOC = "openbmb/cpm-bee-10b"
|
| 45 |
+
_CONFIG_FOR_DOC = "CpmBeeConfig"
|
| 46 |
+
|
| 47 |
+
CPMBEE_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 48 |
+
"openbmb/cpm-bee-10b",
|
| 49 |
+
"openbmb/cpm-bee-5b",
|
| 50 |
+
"openbmb/cpm-bee-2b",
|
| 51 |
+
"openbmb/cpm-bee-1b",
|
| 52 |
+
# See all CPMBee models at https://huggingface.co/models?filter=cpmbee
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class CpmBeeLinear(nn.Linear):
|
| 57 |
+
def __init__(self, dim_in, dim_out, dtype):
|
| 58 |
+
"""
|
| 59 |
+
Construct a linear for CPMBee. It contains a scale operation.
|
| 60 |
+
"""
|
| 61 |
+
super().__init__(dim_in, dim_out, bias=False)
|
| 62 |
+
self.dim_in = self.in_features = dim_in
|
| 63 |
+
self.dim_out = self.out_features = dim_out
|
| 64 |
+
|
| 65 |
+
self.weight = torch.nn.parameter.Parameter(torch.empty((dim_out, dim_in), dtype=dtype))
|
| 66 |
+
|
| 67 |
+
def forward(self, x: torch.Tensor):
|
| 68 |
+
"""
|
| 69 |
+
Args:
|
| 70 |
+
x (`torch.Tensor` of shape `(batch, seq_len, dim_in)`): The input of linear layer
|
| 71 |
+
Returns:
|
| 72 |
+
`torch.Tensor` of shape `(batch, seq_len, dim_out)`: The output of the linear transform y.
|
| 73 |
+
"""
|
| 74 |
+
x = nn.functional.linear(x, self.weight)
|
| 75 |
+
x = x / math.sqrt(self.dim_in)
|
| 76 |
+
return x
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class CpmBeeLayerNorm(nn.Module):
|
| 80 |
+
"""
|
| 81 |
+
We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details."
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
def __init__(self, config: CpmBeeConfig):
|
| 85 |
+
super().__init__()
|
| 86 |
+
|
| 87 |
+
self.eps = config.eps
|
| 88 |
+
self.dim_norm = config.hidden_size
|
| 89 |
+
self.weight = nn.Parameter(torch.empty(config.hidden_size, dtype=config.torch_dtype))
|
| 90 |
+
|
| 91 |
+
def forward(self, hidden_states: torch.Tensor):
|
| 92 |
+
"""
|
| 93 |
+
Args:
|
| 94 |
+
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
|
| 95 |
+
"""
|
| 96 |
+
if hidden_states.size(-1) != self.dim_norm:
|
| 97 |
+
raise AssertionError("hidden_states.size(-1) != self.dim_norm")
|
| 98 |
+
old_dtype = hidden_states.dtype
|
| 99 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
|
| 100 |
+
hidden_states = (hidden_states * torch.rsqrt(variance + self.eps)).to(old_dtype) * self.weight
|
| 101 |
+
return hidden_states
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class CpmBeeAttention(nn.Module):
|
| 105 |
+
def __init__(self, config: CpmBeeConfig):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.dim_model = config.hidden_size
|
| 108 |
+
self.num_heads = config.num_attention_heads
|
| 109 |
+
self.dim_head = config.dim_head
|
| 110 |
+
|
| 111 |
+
self.project_q = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype)
|
| 112 |
+
self.project_k = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype)
|
| 113 |
+
self.project_v = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype)
|
| 114 |
+
|
| 115 |
+
self.attention_out = CpmBeeLinear(self.num_heads * self.dim_head, self.dim_model, dtype=config.torch_dtype)
|
| 116 |
+
|
| 117 |
+
self.softmax = torch.nn.Softmax(dim=-1)
|
| 118 |
+
|
| 119 |
+
if config.dropout_p is not None:
|
| 120 |
+
self.dropout = torch.nn.Dropout(p=config.dropout_p)
|
| 121 |
+
else:
|
| 122 |
+
self.dropout = None
|
| 123 |
+
|
| 124 |
+
def forward(
|
| 125 |
+
self,
|
| 126 |
+
hidden_q: torch.Tensor,
|
| 127 |
+
hidden_kv: torch.Tensor,
|
| 128 |
+
attention_mask: torch.BoolTensor,
|
| 129 |
+
position_bias: torch.Tensor,
|
| 130 |
+
output_attentions: Optional[bool] = False,
|
| 131 |
+
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 132 |
+
use_cache: Optional[bool] = None,
|
| 133 |
+
):
|
| 134 |
+
"""
|
| 135 |
+
Args:
|
| 136 |
+
hidden_q (`torch.Tensor`):
|
| 137 |
+
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
|
| 138 |
+
hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)):
|
| 139 |
+
Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)`
|
| 140 |
+
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
|
| 141 |
+
Avoid invalid areas to participate in the calculation of self-attention.
|
| 142 |
+
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
|
| 143 |
+
Provide positional information to self-attention block.
|
| 144 |
+
output_attentions (`bool`, *optional*):
|
| 145 |
+
Whether or not to return the attentions tensors of all attention layers.
|
| 146 |
+
past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*):
|
| 147 |
+
Cached past key and value projection states.
|
| 148 |
+
use_cache (`bool`, *optional*):
|
| 149 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 150 |
+
(see `past_key_values`).
|
| 151 |
+
"""
|
| 152 |
+
batch_size = hidden_q.size(0)
|
| 153 |
+
len_q = hidden_q.size(1)
|
| 154 |
+
len_k = hidden_kv.size(1)
|
| 155 |
+
|
| 156 |
+
query = self.project_q(hidden_q)
|
| 157 |
+
key = self.project_k(hidden_kv)
|
| 158 |
+
value = self.project_v(hidden_kv)
|
| 159 |
+
|
| 160 |
+
query = query.view(batch_size, len_q, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
|
| 161 |
+
key = key.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
|
| 162 |
+
value = value.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
|
| 163 |
+
|
| 164 |
+
if past_key_values is not None:
|
| 165 |
+
key = torch.cat([past_key_values[0], key], dim=-2)
|
| 166 |
+
value = torch.cat([past_key_values[1], value], dim=-2)
|
| 167 |
+
len_k = key.size(-2)
|
| 168 |
+
|
| 169 |
+
# (batch_size, num_heads, len_q, dim_head) @ (batch_size, num_heads, dim_head, len_k) -> (batch_size, num_heads, len_q, len_k)
|
| 170 |
+
score = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.dim_head)
|
| 171 |
+
score = score + position_bias
|
| 172 |
+
|
| 173 |
+
score = torch.masked_fill(
|
| 174 |
+
score,
|
| 175 |
+
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False),
|
| 176 |
+
torch.scalar_tensor(float("-inf"), device=score.device, dtype=score.dtype),
|
| 177 |
+
)
|
| 178 |
+
score = self.softmax(score)
|
| 179 |
+
|
| 180 |
+
score = torch.masked_fill(
|
| 181 |
+
score,
|
| 182 |
+
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False),
|
| 183 |
+
torch.scalar_tensor(0, device=score.device, dtype=score.dtype),
|
| 184 |
+
)
|
| 185 |
+
if output_attentions:
|
| 186 |
+
attn_weights = score
|
| 187 |
+
else:
|
| 188 |
+
attn_weights = None
|
| 189 |
+
|
| 190 |
+
if self.dropout is not None:
|
| 191 |
+
score = self.dropout(score)
|
| 192 |
+
|
| 193 |
+
# (batch_size, num_heads, len_q, len_k) @ (batch_size, num_heads, len_k, dim_head) -> (batch_size, num_heads, len_q, dim_head)
|
| 194 |
+
score = torch.matmul(score, value)
|
| 195 |
+
|
| 196 |
+
score = score.view(batch_size, self.num_heads, len_q, self.dim_head).permute(0, 2, 1, 3)
|
| 197 |
+
score = score.contiguous().view(batch_size, len_q, self.num_heads * self.dim_head)
|
| 198 |
+
|
| 199 |
+
score = self.attention_out(score)
|
| 200 |
+
|
| 201 |
+
past_key_values = None
|
| 202 |
+
if use_cache:
|
| 203 |
+
past_key_values = (key, value)
|
| 204 |
+
|
| 205 |
+
return score, attn_weights, past_key_values
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class CpmBeeSelfAttentionBlock(nn.Module):
|
| 209 |
+
def __init__(self, config: CpmBeeConfig):
|
| 210 |
+
super().__init__()
|
| 211 |
+
self.layernorm_before_attention = CpmBeeLayerNorm(config)
|
| 212 |
+
self.self_attention = CpmBeeAttention(config)
|
| 213 |
+
if config.dropout_p:
|
| 214 |
+
self.dropout = torch.nn.Dropout(config.dropout_p)
|
| 215 |
+
else:
|
| 216 |
+
self.dropout = None
|
| 217 |
+
|
| 218 |
+
def forward(
|
| 219 |
+
self,
|
| 220 |
+
hidden_states: torch.Tensor,
|
| 221 |
+
attention_mask: torch.Tensor,
|
| 222 |
+
position_bias: Optional[torch.Tensor] = None,
|
| 223 |
+
output_attentions: Optional[bool] = False,
|
| 224 |
+
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 225 |
+
use_cache: Optional[bool] = None,
|
| 226 |
+
):
|
| 227 |
+
"""
|
| 228 |
+
Args:
|
| 229 |
+
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
|
| 230 |
+
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
|
| 231 |
+
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
|
| 232 |
+
Avoid invalid areas to participate in the calculation of self-attention.
|
| 233 |
+
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
|
| 234 |
+
Provide positional information to self-attention block.
|
| 235 |
+
output_attentions (`bool`, *optional*):
|
| 236 |
+
Whether or not to return the attentions tensors of all attention layers.
|
| 237 |
+
past_key_values (`Tuple(torch.FloatTensor)`, *optional*):
|
| 238 |
+
Cached past key and value projection states.
|
| 239 |
+
use_cache (`bool`, *optional*):
|
| 240 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 241 |
+
(see `past_key_values`).
|
| 242 |
+
"""
|
| 243 |
+
outputs = self.layernorm_before_attention(hidden_states)
|
| 244 |
+
outputs = self.self_attention(
|
| 245 |
+
outputs, outputs, attention_mask, position_bias, output_attentions, past_key_values, use_cache
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
outputs, attn_weights, current_key_value = outputs
|
| 249 |
+
|
| 250 |
+
if self.dropout is not None:
|
| 251 |
+
outputs = self.dropout(outputs)
|
| 252 |
+
hidden_states = (hidden_states + outputs) / 1.05
|
| 253 |
+
|
| 254 |
+
return hidden_states, attn_weights, current_key_value
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
class CpmBeeDenseGatedACT(nn.Module):
|
| 258 |
+
def __init__(self, config: CpmBeeConfig):
|
| 259 |
+
super().__init__()
|
| 260 |
+
self.w_0 = CpmBeeLinear(config.hidden_size, config.dim_ff, dtype=config.torch_dtype)
|
| 261 |
+
self.w_1 = CpmBeeLinear(config.hidden_size, config.dim_ff, dtype=config.torch_dtype)
|
| 262 |
+
self.act = torch.nn.GELU()
|
| 263 |
+
|
| 264 |
+
def forward(self, hidden_states: torch.Tensor):
|
| 265 |
+
"""Transform an input tensor from one feature space to another via a nonlinear operation
|
| 266 |
+
|
| 267 |
+
Args:
|
| 268 |
+
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
|
| 269 |
+
"""
|
| 270 |
+
gate_score = self.act(self.w_0(hidden_states))
|
| 271 |
+
hidden_states = self.w_1(hidden_states)
|
| 272 |
+
|
| 273 |
+
hidden_states = gate_score * hidden_states
|
| 274 |
+
return hidden_states
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class CpmBeeFeedForward(nn.Module):
|
| 278 |
+
def __init__(self, config: CpmBeeConfig):
|
| 279 |
+
super().__init__()
|
| 280 |
+
self.w_in = CpmBeeDenseGatedACT(config)
|
| 281 |
+
if config.dropout_p is not None:
|
| 282 |
+
self.dropout = torch.nn.Dropout(config.dropout_p)
|
| 283 |
+
else:
|
| 284 |
+
self.dropout = None
|
| 285 |
+
|
| 286 |
+
self.w_out = CpmBeeLinear(config.dim_ff, config.hidden_size, dtype=config.torch_dtype)
|
| 287 |
+
|
| 288 |
+
def forward(self, hidden_states: torch.Tensor):
|
| 289 |
+
"""
|
| 290 |
+
Args:
|
| 291 |
+
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
|
| 292 |
+
"""
|
| 293 |
+
hidden_states = self.w_in(hidden_states)
|
| 294 |
+
|
| 295 |
+
if self.dropout is not None:
|
| 296 |
+
hidden_states = self.dropout(hidden_states)
|
| 297 |
+
|
| 298 |
+
hidden_states = self.w_out(hidden_states)
|
| 299 |
+
|
| 300 |
+
return hidden_states
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class CpmBeeFFNBlock(nn.Module):
|
| 304 |
+
def __init__(self, config: CpmBeeConfig):
|
| 305 |
+
super().__init__()
|
| 306 |
+
self.layernorm_before_ffn = CpmBeeLayerNorm(config)
|
| 307 |
+
self.ffn = CpmBeeFeedForward(config)
|
| 308 |
+
if config.dropout_p:
|
| 309 |
+
self.dropout = torch.nn.Dropout(config.dropout_p)
|
| 310 |
+
else:
|
| 311 |
+
self.dropout = None
|
| 312 |
+
|
| 313 |
+
def forward(
|
| 314 |
+
self,
|
| 315 |
+
hidden_states: torch.Tensor,
|
| 316 |
+
):
|
| 317 |
+
"""
|
| 318 |
+
Args:
|
| 319 |
+
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
|
| 320 |
+
Hidden states before feed forward layer.
|
| 321 |
+
"""
|
| 322 |
+
ln_outputs = self.layernorm_before_ffn(hidden_states)
|
| 323 |
+
outputs = self.ffn(ln_outputs)
|
| 324 |
+
if self.dropout is not None:
|
| 325 |
+
outputs = self.dropout(outputs)
|
| 326 |
+
hidden_states = (hidden_states + outputs) / 1.05
|
| 327 |
+
return hidden_states
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class CpmBeeTransformerBlock(nn.Module):
|
| 331 |
+
def __init__(self, config: CpmBeeConfig, mask_att: bool = False, mask_ffn: bool = False):
|
| 332 |
+
super().__init__()
|
| 333 |
+
self.mask_att = mask_att
|
| 334 |
+
self.mask_ffn = mask_ffn
|
| 335 |
+
|
| 336 |
+
if not self.mask_att:
|
| 337 |
+
self.self_att = CpmBeeSelfAttentionBlock(config)
|
| 338 |
+
if not self.mask_ffn:
|
| 339 |
+
self.ffn = CpmBeeFFNBlock(config)
|
| 340 |
+
|
| 341 |
+
def forward(
|
| 342 |
+
self,
|
| 343 |
+
hidden_states: torch.Tensor,
|
| 344 |
+
attention_mask: torch.Tensor,
|
| 345 |
+
position_bias: Optional[torch.Tensor] = None,
|
| 346 |
+
output_attentions: Optional[bool] = False,
|
| 347 |
+
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 348 |
+
use_cache: Optional[bool] = None,
|
| 349 |
+
):
|
| 350 |
+
"""
|
| 351 |
+
Args:
|
| 352 |
+
hidden_states (`torch.Tensor`):
|
| 353 |
+
Input to the layer of shape `(batch, seq_len, dim_model)`
|
| 354 |
+
attention_mask (`torch.Tensor`):
|
| 355 |
+
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
|
| 356 |
+
position_bias (`torch.Tensor`):
|
| 357 |
+
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
|
| 358 |
+
output_attentions (`bool`, *optional*):
|
| 359 |
+
Whether or not to return the attentions tensors of all attention layers.
|
| 360 |
+
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
|
| 361 |
+
Cached past key and value projection states
|
| 362 |
+
use_cache (`bool`, *optional*):
|
| 363 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 364 |
+
(see `past_key_values`).
|
| 365 |
+
"""
|
| 366 |
+
if not self.mask_att:
|
| 367 |
+
hidden_states = self.self_att(
|
| 368 |
+
hidden_states,
|
| 369 |
+
attention_mask=attention_mask,
|
| 370 |
+
position_bias=position_bias,
|
| 371 |
+
output_attentions=output_attentions,
|
| 372 |
+
past_key_values=past_key_values,
|
| 373 |
+
use_cache=use_cache,
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
hidden_states, attn_weights, current_key_value = hidden_states
|
| 377 |
+
else:
|
| 378 |
+
attn_weights, current_key_value = None, (None, None)
|
| 379 |
+
|
| 380 |
+
if not self.mask_ffn:
|
| 381 |
+
hidden_states = self.ffn(hidden_states)
|
| 382 |
+
|
| 383 |
+
return hidden_states, attn_weights, current_key_value
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
class CpmBeeEncoder(nn.Module):
|
| 387 |
+
def __init__(self, config: CpmBeeConfig):
|
| 388 |
+
super().__init__()
|
| 389 |
+
self.num_layers = config.num_hidden_layers
|
| 390 |
+
if config.mask_modules is not None:
|
| 391 |
+
assert len(config.mask_modules) == self.num_layers, "The total number of masks should equal to num_layers"
|
| 392 |
+
for mask_module in config.mask_modules:
|
| 393 |
+
assert len(mask_module) == 2, "For encoder, each mask should be (mask_att, mask_ffn)"
|
| 394 |
+
else:
|
| 395 |
+
config.mask_modules = [(False, False)] * self.num_layers
|
| 396 |
+
|
| 397 |
+
self.layers = nn.ModuleList(
|
| 398 |
+
[
|
| 399 |
+
CpmBeeTransformerBlock(
|
| 400 |
+
config, mask_att=config.mask_modules[ith][0], mask_ffn=config.mask_modules[ith][1]
|
| 401 |
+
)
|
| 402 |
+
for ith in range(self.num_layers)
|
| 403 |
+
]
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
self.output_layernorm = CpmBeeLayerNorm(config)
|
| 407 |
+
|
| 408 |
+
def forward(
|
| 409 |
+
self,
|
| 410 |
+
hidden_states: torch.Tensor,
|
| 411 |
+
attention_mask: torch.Tensor,
|
| 412 |
+
position_bias: torch.Tensor,
|
| 413 |
+
output_attentions: Optional[bool] = None,
|
| 414 |
+
output_hidden_states: Optional[bool] = None,
|
| 415 |
+
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 416 |
+
use_cache: Optional[bool] = None,
|
| 417 |
+
):
|
| 418 |
+
"""
|
| 419 |
+
Args:
|
| 420 |
+
hidden_states (`torch.Tensor`):
|
| 421 |
+
Input to the layer of shape `(batch, seq_len, dim_model)`
|
| 422 |
+
attention_mask (`torch.Tensor`):
|
| 423 |
+
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
|
| 424 |
+
position_bias (`torch.Tensor`):
|
| 425 |
+
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
|
| 426 |
+
output_attentions (`bool`, *optional*):
|
| 427 |
+
Whether or not to return the attentions tensors of all attention layers.
|
| 428 |
+
output_hidden_states (`bool`, *optional*):
|
| 429 |
+
Whether or not to return the hidden states of all layers.
|
| 430 |
+
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
|
| 431 |
+
Cached past key and value projection states
|
| 432 |
+
use_cache (`bool`, *optional*):
|
| 433 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 434 |
+
(see `past_key_values`).
|
| 435 |
+
"""
|
| 436 |
+
all_hidden_states = () if output_hidden_states else None
|
| 437 |
+
all_self_attns = () if output_attentions else None
|
| 438 |
+
current_key_values = () if use_cache else None
|
| 439 |
+
|
| 440 |
+
for i, layer in enumerate(self.layers):
|
| 441 |
+
if output_hidden_states:
|
| 442 |
+
all_hidden_states += (hidden_states,)
|
| 443 |
+
layer_outputs = layer(
|
| 444 |
+
hidden_states,
|
| 445 |
+
attention_mask,
|
| 446 |
+
position_bias,
|
| 447 |
+
output_attentions=output_attentions,
|
| 448 |
+
past_key_values=past_key_values[i] if past_key_values else None,
|
| 449 |
+
use_cache=use_cache,
|
| 450 |
+
)
|
| 451 |
+
hidden_states, attn_weights, current_key_value = layer_outputs
|
| 452 |
+
if output_attentions:
|
| 453 |
+
all_self_attns += (attn_weights,)
|
| 454 |
+
if current_key_value is not None:
|
| 455 |
+
current_key_values = current_key_values + (current_key_value,)
|
| 456 |
+
|
| 457 |
+
hidden_states = self.output_layernorm(hidden_states)
|
| 458 |
+
|
| 459 |
+
if output_hidden_states:
|
| 460 |
+
all_hidden_states += (hidden_states,)
|
| 461 |
+
|
| 462 |
+
return hidden_states, current_key_values, all_hidden_states, all_self_attns
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
class CpmBeeBucketPositionBias(nn.Module):
|
| 466 |
+
def __init__(self, config: CpmBeeConfig) -> None:
|
| 467 |
+
super().__init__()
|
| 468 |
+
|
| 469 |
+
self.num_heads = config.num_attention_heads
|
| 470 |
+
self.num_buckets = config.position_bias_num_buckets
|
| 471 |
+
self.num_segment_bucket = config.position_bias_num_segment_buckets
|
| 472 |
+
self.max_distance = config.position_bias_max_distance
|
| 473 |
+
|
| 474 |
+
self.relative_attention_bias = nn.Parameter(
|
| 475 |
+
torch.empty(
|
| 476 |
+
config.position_bias_num_buckets + config.position_bias_num_segment_buckets,
|
| 477 |
+
config.num_attention_heads,
|
| 478 |
+
dtype=config.torch_dtype,
|
| 479 |
+
),
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
def forward(self, query_pos: torch.Tensor, key_pos: torch.Tensor, rel_buckets: torch.Tensor):
|
| 483 |
+
with torch.no_grad():
|
| 484 |
+
batch = key_pos.size(0)
|
| 485 |
+
keylen = key_pos.size(1)
|
| 486 |
+
querylen = query_pos.size(1)
|
| 487 |
+
|
| 488 |
+
if key_pos.size(0) != query_pos.size(0):
|
| 489 |
+
raise AssertionError(
|
| 490 |
+
f"key_pos.size(0) should be equal to query_pos.size(0), but got {key_pos.size(0)} and {query_pos.size(0)}!"
|
| 491 |
+
)
|
| 492 |
+
if rel_buckets.size(0) != batch:
|
| 493 |
+
raise AssertionError(
|
| 494 |
+
f"rel_buckets.size(0) should be equal to batch, but got {rel_buckets.size(0)} and {batch}!"
|
| 495 |
+
)
|
| 496 |
+
if rel_buckets.size(1) != querylen:
|
| 497 |
+
raise AssertionError(
|
| 498 |
+
f"rel_buckets.size(1) should be equal to querylen, but got {rel_buckets.size(1)} and {querylen}!"
|
| 499 |
+
)
|
| 500 |
+
if rel_buckets.size(2) != keylen:
|
| 501 |
+
raise AssertionError(
|
| 502 |
+
f"rel_buckets.size(2) should be equal to keylen, but got {rel_buckets.size(2)} and {keylen}!"
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
relative_position_bucket = rel_buckets - 1 + self.num_buckets
|
| 506 |
+
|
| 507 |
+
inner_segment_bucket = self._position_bucket(
|
| 508 |
+
key_pos[..., None, :] - query_pos[..., :, None],
|
| 509 |
+
num_buckets=self.num_buckets,
|
| 510 |
+
max_distance=self.max_distance,
|
| 511 |
+
)
|
| 512 |
+
relative_position_bucket = torch.where(
|
| 513 |
+
rel_buckets == 0,
|
| 514 |
+
inner_segment_bucket,
|
| 515 |
+
relative_position_bucket,
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
embeds = nn.functional.embedding(relative_position_bucket, self.relative_attention_bias)
|
| 519 |
+
embeds = embeds.permute(0, 3, 1, 2).contiguous()
|
| 520 |
+
return embeds
|
| 521 |
+
|
| 522 |
+
def _position_bucket(self, relative_position, num_buckets=32, max_distance=128):
|
| 523 |
+
relative_buckets = 0
|
| 524 |
+
num_buckets //= 2
|
| 525 |
+
relative_buckets = (relative_position > 0).to(torch.int32) * num_buckets
|
| 526 |
+
relative_position = torch.abs(relative_position)
|
| 527 |
+
max_exact = num_buckets // 2
|
| 528 |
+
is_small = relative_position < max_exact
|
| 529 |
+
relative_postion_if_large = max_exact + (
|
| 530 |
+
torch.log(relative_position.float() / max_exact)
|
| 531 |
+
/ math.log(max_distance / max_exact)
|
| 532 |
+
* (num_buckets - max_exact)
|
| 533 |
+
).to(torch.int32)
|
| 534 |
+
relative_postion_if_large = torch.min(
|
| 535 |
+
relative_postion_if_large,
|
| 536 |
+
torch.full_like(relative_postion_if_large, num_buckets - 1),
|
| 537 |
+
)
|
| 538 |
+
relative_buckets += torch.where(is_small, relative_position.to(torch.int32), relative_postion_if_large)
|
| 539 |
+
return relative_buckets
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->CPMBee
|
| 543 |
+
class CpmBeeOutput(nn.Module):
|
| 544 |
+
def __init__(self, config):
|
| 545 |
+
super().__init__()
|
| 546 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 547 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 548 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 549 |
+
|
| 550 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 551 |
+
hidden_states = self.dense(hidden_states)
|
| 552 |
+
hidden_states = self.dropout(hidden_states)
|
| 553 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 554 |
+
return hidden_states
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
class CpmBeeRotaryEmbedding(nn.Module):
|
| 558 |
+
"""
|
| 559 |
+
RotaryEmbedding embeds the unk token and special token. It will embeds the "...<mask>...<mask>...<unk>...<unk>..."
|
| 560 |
+
to "...<mask_0>...<mask_1>...<unk_0>...<unk_1>..."" to help model to specify different special tokens and unk
|
| 561 |
+
tokens.
|
| 562 |
+
"""
|
| 563 |
+
|
| 564 |
+
def __init__(self, config: CpmBeeConfig):
|
| 565 |
+
super().__init__()
|
| 566 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, config.hidden_size, 2, dtype=torch.float32) / config.hidden_size))
|
| 567 |
+
self.distance_scale = config.distance_scale
|
| 568 |
+
self.dtype = config.torch_dtype
|
| 569 |
+
self.inv_freq = inv_freq.to(config.torch_dtype)
|
| 570 |
+
|
| 571 |
+
def forward(self, x: torch.Tensor, x_pos: torch.Tensor):
|
| 572 |
+
inv_freq = self.inv_freq.to(device=x.device, dtype=self.dtype)
|
| 573 |
+
|
| 574 |
+
x_pos = x_pos * self.distance_scale
|
| 575 |
+
freqs = x_pos[..., None].to(self.dtype) * inv_freq[None, :] # (..., dim/2)
|
| 576 |
+
|
| 577 |
+
emb = torch.cat((freqs, freqs), dim=-1) # (..., dim)
|
| 578 |
+
emb_cos = emb.cos() # (..., dim)
|
| 579 |
+
emb_sin = emb.sin() # (..., dim)
|
| 580 |
+
|
| 581 |
+
rotate_x = torch.cat([-x[..., x.size(-1) // 2 :], x[..., : x.size(-1) // 2]], dim=-1) # (..., dim)
|
| 582 |
+
|
| 583 |
+
return x * emb_cos + rotate_x * emb_sin
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
class CpmBeeEmbeddingExt(nn.Embedding):
|
| 587 |
+
"""
|
| 588 |
+
Contains a RotaryEmbedding.
|
| 589 |
+
"""
|
| 590 |
+
|
| 591 |
+
def __init__(self, config: CpmBeeConfig):
|
| 592 |
+
super().__init__(config.vocab_size, config.hidden_size, dtype=config.torch_dtype)
|
| 593 |
+
self.dim_model = config.hidden_size
|
| 594 |
+
self.rotary_emb = CpmBeeRotaryEmbedding(config)
|
| 595 |
+
|
| 596 |
+
def forward(self, ids: torch.Tensor, ids_sub: torch.Tensor):
|
| 597 |
+
embeds = super().forward(ids) / math.sqrt(self.dim_model)
|
| 598 |
+
return self.rotary_emb(embeds, ids_sub)
|
| 599 |
+
|
| 600 |
+
def projection(self, x: torch.Tensor, ext_table: Optional[torch.Tensor] = None):
|
| 601 |
+
logits = nn.functional.linear(x / math.sqrt(self.dim_model), self.weight)
|
| 602 |
+
if ext_table is not None:
|
| 603 |
+
logits_ext = nn.functional.linear(x, ext_table)
|
| 604 |
+
logits = torch.cat([logits, logits_ext], dim=-1)
|
| 605 |
+
return logits
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
class CpmBeePreTrainedModel(PreTrainedModel):
|
| 609 |
+
"""
|
| 610 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 611 |
+
models.
|
| 612 |
+
"""
|
| 613 |
+
|
| 614 |
+
config_class = CpmBeeConfig
|
| 615 |
+
base_model_prefix = "cpmbee"
|
| 616 |
+
supports_gradient_checkpointing = True
|
| 617 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 618 |
+
|
| 619 |
+
def _init_weights(self, module):
|
| 620 |
+
"""Initialize the weights"""
|
| 621 |
+
if isinstance(module, nn.Linear):
|
| 622 |
+
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
|
| 623 |
+
if module.bias is not None:
|
| 624 |
+
module.bias.data.zero_()
|
| 625 |
+
# still needed
|
| 626 |
+
elif isinstance(module, CpmBeeEmbeddingExt):
|
| 627 |
+
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
|
| 628 |
+
elif isinstance(module, nn.LayerNorm):
|
| 629 |
+
module.bias.data.zero_()
|
| 630 |
+
module.weight.data.fill_(1.0)
|
| 631 |
+
elif isinstance(module, CpmBeeLayerNorm):
|
| 632 |
+
module.weight.data.fill_(1.0)
|
| 633 |
+
elif isinstance(module, CpmBeeBucketPositionBias):
|
| 634 |
+
module.relative_attention_bias.data.normal_(mean=0.0, std=self.config.init_std)
|
| 635 |
+
|
| 636 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 637 |
+
if isinstance(module, CpmBeeEncoder):
|
| 638 |
+
module.gradient_checkpointing = value
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
CPMBEE_START_DOCSTRING = r"""
|
| 642 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
| 643 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
| 644 |
+
behavior.
|
| 645 |
+
|
| 646 |
+
Parameters
|
| 647 |
+
config ([`~CpmBeeConfig`]): Model configuration class with all the parameters of the
|
| 648 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 649 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 650 |
+
"""
|
| 651 |
+
|
| 652 |
+
CPMBEE_INPUTS_DOCSTRING = r"""
|
| 653 |
+
Args:
|
| 654 |
+
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 655 |
+
Indices of input sequence tokens in the vocabulary.
|
| 656 |
+
|
| 657 |
+
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 658 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 659 |
+
|
| 660 |
+
[What are input IDs?](../glossary#input-ids)
|
| 661 |
+
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 662 |
+
Subscription of input sequence tokens in the vocabulary.
|
| 663 |
+
|
| 664 |
+
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2, ...
|
| 665 |
+
<ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to group
|
| 666 |
+
<mask>.
|
| 667 |
+
position (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 668 |
+
The position of input sequence tokens in the vocabulary for each segment. if segment1 is 0, 1, 2 and
|
| 669 |
+
segment2 is 0, 1, 2, 3, the position will be 0, 1, 2, 0, 1, 2, 3
|
| 670 |
+
context (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 671 |
+
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a token
|
| 672 |
+
id is context, it does not need to be predicted.
|
| 673 |
+
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 674 |
+
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample.
|
| 675 |
+
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 676 |
+
Total number of segments in the current input.
|
| 677 |
+
segment (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 678 |
+
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample.
|
| 679 |
+
|
| 680 |
+
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello, ",
|
| 681 |
+
"<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "".
|
| 682 |
+
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 683 |
+
The offset of segment rel.
|
| 684 |
+
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 685 |
+
The segment relevance. A relative implementation of measuring the importance of segments.
|
| 686 |
+
past_states (`Dict[str, Union[torch.Tensor, List]]`):
|
| 687 |
+
Store the history information including position, context, sample_ids, num_segments, segment and
|
| 688 |
+
past_key_values.
|
| 689 |
+
output_attentions (`bool`, *optional*):
|
| 690 |
+
Whether or not to return the attentions tensors of all attention layers.
|
| 691 |
+
output_hidden_states (`bool`, *optional*):
|
| 692 |
+
Whether or not to return the hidden states of all layers.
|
| 693 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 694 |
+
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in the
|
| 695 |
+
self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) and
|
| 696 |
+
other history arguments to speed up sequential decoding.
|
| 697 |
+
use_cache (`bool`, *optional*):
|
| 698 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 699 |
+
`past_key_values`).
|
| 700 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 701 |
+
Labels for computing the masked language modeling loss.
|
| 702 |
+
return_dict (`bool`, *optional*):
|
| 703 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 704 |
+
"""
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
@add_start_docstrings(
|
| 708 |
+
"The bare CPMBee Model outputting raw hidden-states without any specific head on top.",
|
| 709 |
+
CPMBEE_START_DOCSTRING,
|
| 710 |
+
)
|
| 711 |
+
class CpmBeeModel(CpmBeePreTrainedModel):
|
| 712 |
+
def __init__(self, config: CpmBeeConfig):
|
| 713 |
+
super().__init__(config)
|
| 714 |
+
if config.half:
|
| 715 |
+
config.torch_dtype = torch.half
|
| 716 |
+
else:
|
| 717 |
+
config.torch_dtype = torch.float
|
| 718 |
+
self.encoder = CpmBeeEncoder(config)
|
| 719 |
+
self.input_embedding = CpmBeeEmbeddingExt(config)
|
| 720 |
+
self.position_bias = CpmBeeBucketPositionBias(config)
|
| 721 |
+
self.vocab_size = config.vocab_size
|
| 722 |
+
self.post_init()
|
| 723 |
+
|
| 724 |
+
def get_input_embeddings(self):
|
| 725 |
+
return self.input_embedding
|
| 726 |
+
|
| 727 |
+
def set_input_embeddings(self, embeddings, **kwargs):
|
| 728 |
+
self.input_embedding = embeddings
|
| 729 |
+
|
| 730 |
+
@add_start_docstrings_to_model_forward(CPMBEE_INPUTS_DOCSTRING)
|
| 731 |
+
@add_code_sample_docstrings(
|
| 732 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 733 |
+
output_type=BaseModelOutputWithPast,
|
| 734 |
+
config_class=_CONFIG_FOR_DOC,
|
| 735 |
+
)
|
| 736 |
+
def forward(
|
| 737 |
+
self,
|
| 738 |
+
input_ids: torch.Tensor,
|
| 739 |
+
input_id_sub: Optional[torch.Tensor] = None,
|
| 740 |
+
position: Optional[torch.Tensor] = None,
|
| 741 |
+
context: Optional[torch.Tensor] = None,
|
| 742 |
+
sample_ids: Optional[torch.Tensor] = None,
|
| 743 |
+
num_segments: Optional[torch.Tensor] = None,
|
| 744 |
+
segment: Optional[torch.Tensor] = None,
|
| 745 |
+
segment_rel_offset: Optional[torch.Tensor] = None,
|
| 746 |
+
segment_rel: Optional[torch.Tensor] = None,
|
| 747 |
+
past_states: Optional[Dict] = None,
|
| 748 |
+
output_attentions: Optional[bool] = None,
|
| 749 |
+
output_hidden_states: Optional[bool] = None,
|
| 750 |
+
past_key_values: Optional[List] = None,
|
| 751 |
+
use_cache: Optional[bool] = None,
|
| 752 |
+
return_dict: Optional[bool] = None,
|
| 753 |
+
**kwargs,
|
| 754 |
+
):
|
| 755 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 756 |
+
output_hidden_states = (
|
| 757 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 758 |
+
)
|
| 759 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 760 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 761 |
+
|
| 762 |
+
# dummy setting for common tests
|
| 763 |
+
if input_id_sub is None:
|
| 764 |
+
dtype, device = input_ids.dtype, input_ids.device
|
| 765 |
+
batch, seq_length = input_ids.size()
|
| 766 |
+
segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device)
|
| 767 |
+
context = torch.full((batch, seq_length), 1, dtype=dtype, device=device)
|
| 768 |
+
position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)
|
| 769 |
+
input_id_sub = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
| 770 |
+
segment_rel_offset = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
| 771 |
+
segment_rel = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
| 772 |
+
num_segments = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
| 773 |
+
sample_ids = torch.zeros_like(input_ids)
|
| 774 |
+
|
| 775 |
+
with torch.no_grad():
|
| 776 |
+
if past_states is None:
|
| 777 |
+
present_position = position
|
| 778 |
+
present_context = context
|
| 779 |
+
present_sample_ids = sample_ids
|
| 780 |
+
present_num_segments = num_segments
|
| 781 |
+
present_segments = segment
|
| 782 |
+
present_buffer = None
|
| 783 |
+
else:
|
| 784 |
+
present_position = torch.cat([past_states["buffer_position"], position], dim=-1)
|
| 785 |
+
present_context = torch.cat([past_states["buffer_context"], context], dim=-1)
|
| 786 |
+
present_sample_ids = torch.cat([past_states["buffer_sample_ids"], sample_ids], dim=-1)
|
| 787 |
+
present_num_segments = torch.cat([past_states["buffer_num_segments"], num_segments], dim=-1)
|
| 788 |
+
present_segments = torch.cat([past_states["buffer_segments"], segment], dim=-1)
|
| 789 |
+
present_buffer = past_states["buffer"]
|
| 790 |
+
|
| 791 |
+
batch = input_ids.size(0)
|
| 792 |
+
len_q = input_ids.size(1)
|
| 793 |
+
len_buffer = present_position.size(1)
|
| 794 |
+
|
| 795 |
+
segment_rel_2d = torch.masked_fill(
|
| 796 |
+
segment[:, :, None] * num_segments[:, :, None]
|
| 797 |
+
+ present_segments[:, None, :]
|
| 798 |
+
+ segment_rel_offset[:, :, None],
|
| 799 |
+
~((sample_ids[:, :, None] == present_sample_ids[:, None, :])), # not in the same sample
|
| 800 |
+
0, # avoid torch.gather overflow
|
| 801 |
+
).view(batch, len_q * len_buffer)
|
| 802 |
+
|
| 803 |
+
segment_bucket = torch.gather(
|
| 804 |
+
input=segment_rel,
|
| 805 |
+
dim=1,
|
| 806 |
+
index=segment_rel_2d.long(),
|
| 807 |
+
).view(batch, len_q, len_buffer)
|
| 808 |
+
|
| 809 |
+
segment_bucket.masked_fill_(
|
| 810 |
+
~((sample_ids[:, :, None] == present_sample_ids[:, None, :])), # not in the same span or sample
|
| 811 |
+
1, # bucket is used for in-context samples
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
# directional mask
|
| 815 |
+
directional_mask_2d = present_position[:, None, :] <= position[:, :, None]
|
| 816 |
+
# sample mask
|
| 817 |
+
sample_mask_2d = (sample_ids[:, :, None] == 0) | (sample_ids[:, :, None] == present_sample_ids[:, None, :])
|
| 818 |
+
# context mask
|
| 819 |
+
attention_mask = present_context[:, None, :] | (
|
| 820 |
+
context[:, :, None].logical_not() & directional_mask_2d.view(batch, len_q, len_buffer)
|
| 821 |
+
)
|
| 822 |
+
# span mask
|
| 823 |
+
attention_mask = attention_mask & sample_mask_2d
|
| 824 |
+
# length mask
|
| 825 |
+
mask_1d = present_num_segments != 0
|
| 826 |
+
attention_mask = mask_1d.view(batch, 1, len_buffer) & attention_mask
|
| 827 |
+
|
| 828 |
+
hidden_states = self.input_embedding(input_ids, input_id_sub)
|
| 829 |
+
position_bias = self.position_bias(position, present_position, segment_bucket)
|
| 830 |
+
hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder(
|
| 831 |
+
hidden_states,
|
| 832 |
+
attention_mask,
|
| 833 |
+
position_bias,
|
| 834 |
+
output_attentions,
|
| 835 |
+
output_hidden_states,
|
| 836 |
+
present_buffer,
|
| 837 |
+
use_cache,
|
| 838 |
+
)
|
| 839 |
+
|
| 840 |
+
if not return_dict:
|
| 841 |
+
return tuple(
|
| 842 |
+
v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None
|
| 843 |
+
)
|
| 844 |
+
|
| 845 |
+
return BaseModelOutputWithPast(
|
| 846 |
+
last_hidden_state=hidden_states,
|
| 847 |
+
past_key_values=present_key_values,
|
| 848 |
+
hidden_states=all_hidden_states,
|
| 849 |
+
attentions=all_attentions,
|
| 850 |
+
)
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
class CpmBeeBeamHypotheses(BeamHypotheses):
|
| 854 |
+
def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None):
|
| 855 |
+
"""
|
| 856 |
+
Override BeamHypotheses for CpmBee. The hyp to add is list but not tensor.
|
| 857 |
+
"""
|
| 858 |
+
super().__init__(num_beams, length_penalty, early_stopping, max_length)
|
| 859 |
+
|
| 860 |
+
def add(self, hyp: List, sum_logprobs: float, beam_indices: Optional[torch.LongTensor] = None):
|
| 861 |
+
"""
|
| 862 |
+
Add a new hypothesis to the list.
|
| 863 |
+
"""
|
| 864 |
+
score = sum_logprobs / (len(hyp) ** self.length_penalty)
|
| 865 |
+
if len(self) < self.num_beams or score > self.worst_score:
|
| 866 |
+
self.beams.append((score, hyp, beam_indices))
|
| 867 |
+
if len(self) > self.num_beams:
|
| 868 |
+
sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)])
|
| 869 |
+
del self.beams[sorted_next_scores[0][1]]
|
| 870 |
+
self.worst_score = sorted_next_scores[1][0]
|
| 871 |
+
else:
|
| 872 |
+
self.worst_score = min(score, self.worst_score)
|
| 873 |
+
|
| 874 |
+
|
| 875 |
+
class CpmBeeBeamSearchScorer(BeamSearchScorer):
|
| 876 |
+
"""
|
| 877 |
+
Override BeamSearchScorer for CPMBee to support:
|
| 878 |
+
1. Replace beam_tokens by beam_states, containing `idx`, `ans`, `nx_token_id`...
|
| 879 |
+
2. The `process` will update the beam_states
|
| 880 |
+
3. The `finalize` will just return the best hypotheses as a list.
|
| 881 |
+
"""
|
| 882 |
+
|
| 883 |
+
def __init__(
|
| 884 |
+
self,
|
| 885 |
+
batch_size: int,
|
| 886 |
+
num_beams: int,
|
| 887 |
+
device: torch.device,
|
| 888 |
+
length_penalty: Optional[float] = 1.0,
|
| 889 |
+
do_early_stopping: Optional[Union[bool, str]] = False,
|
| 890 |
+
num_beam_hyps_to_keep: Optional[int] = 1,
|
| 891 |
+
num_beam_groups: Optional[int] = 1,
|
| 892 |
+
max_length: Optional[int] = None,
|
| 893 |
+
**model_kwargs,
|
| 894 |
+
):
|
| 895 |
+
self.num_beams = num_beams
|
| 896 |
+
self.device = device
|
| 897 |
+
self.length_penalty = length_penalty
|
| 898 |
+
self.do_early_stopping = do_early_stopping
|
| 899 |
+
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
|
| 900 |
+
self.num_beam_groups = num_beam_groups
|
| 901 |
+
self.group_size = self.num_beams // self.num_beam_groups
|
| 902 |
+
|
| 903 |
+
self._is_init = False
|
| 904 |
+
self._beam_hyps = [
|
| 905 |
+
CpmBeeBeamHypotheses(
|
| 906 |
+
num_beams=self.num_beams,
|
| 907 |
+
length_penalty=self.length_penalty,
|
| 908 |
+
early_stopping=self.do_early_stopping,
|
| 909 |
+
max_length=max_length,
|
| 910 |
+
)
|
| 911 |
+
for _ in range(batch_size)
|
| 912 |
+
]
|
| 913 |
+
self._done = torch.tensor([False for _ in range(batch_size)], dtype=torch.bool, device=self.device)
|
| 914 |
+
|
| 915 |
+
self.beam_states = []
|
| 916 |
+
for sent_id in range(batch_size):
|
| 917 |
+
instance_beam_states = []
|
| 918 |
+
|
| 919 |
+
for _ in range(self.num_beams):
|
| 920 |
+
instance_beam_states.append(
|
| 921 |
+
{
|
| 922 |
+
"idx": 0,
|
| 923 |
+
"ans": [],
|
| 924 |
+
"nx_token_id": 6,
|
| 925 |
+
"nx_token_sub": 0,
|
| 926 |
+
"nx_segment_id": model_kwargs["other_info"][sent_id]["predict_segments"][0][0],
|
| 927 |
+
"nx_position": 0,
|
| 928 |
+
}
|
| 929 |
+
)
|
| 930 |
+
self.beam_states.append(instance_beam_states)
|
| 931 |
+
|
| 932 |
+
def process(
|
| 933 |
+
self,
|
| 934 |
+
batch_size: int,
|
| 935 |
+
cur_len: int,
|
| 936 |
+
_next_scores: torch.FloatTensor,
|
| 937 |
+
next_scores: torch.FloatTensor,
|
| 938 |
+
next_tokens: torch.LongTensor,
|
| 939 |
+
vocab_size: Optional[int] = None,
|
| 940 |
+
pad_token_id: Optional[int] = None,
|
| 941 |
+
bos_token_id: Optional[int] = None,
|
| 942 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
| 943 |
+
max_length: Optional[int] = None,
|
| 944 |
+
ext_table_sub_cpu: Optional[torch.Tensor] = None,
|
| 945 |
+
ext_table_ids_cpu: Optional[torch.Tensor] = None,
|
| 946 |
+
**model_kwargs,
|
| 947 |
+
) -> Tuple[torch.Tensor]:
|
| 948 |
+
next_beam_state = []
|
| 949 |
+
for sent_id in range(batch_size):
|
| 950 |
+
self._done[sent_id] = self._done[sent_id] or self._beam_hyps[sent_id].is_done(
|
| 951 |
+
next_scores[sent_id].max().item(), cur_len
|
| 952 |
+
)
|
| 953 |
+
if self._done[sent_id]:
|
| 954 |
+
next_beam_state.append(
|
| 955 |
+
[
|
| 956 |
+
(
|
| 957 |
+
{
|
| 958 |
+
"idx": 0,
|
| 959 |
+
"ans": [],
|
| 960 |
+
"nx_token_id": pad_token_id,
|
| 961 |
+
"nx_token_sub": 0,
|
| 962 |
+
"nx_segment_id": 0,
|
| 963 |
+
"nx_position": 0,
|
| 964 |
+
},
|
| 965 |
+
0,
|
| 966 |
+
0,
|
| 967 |
+
)
|
| 968 |
+
]
|
| 969 |
+
* self.num_beams
|
| 970 |
+
)
|
| 971 |
+
continue
|
| 972 |
+
|
| 973 |
+
next_instance_beam_states = []
|
| 974 |
+
|
| 975 |
+
for idx, value in zip(next_tokens[sent_id], next_scores[sent_id]):
|
| 976 |
+
beam_id = torch.div(idx, _next_scores.size(-1), rounding_mode="floor").item()
|
| 977 |
+
word_id = (idx % _next_scores.size(-1)).item()
|
| 978 |
+
|
| 979 |
+
curr_info = self.beam_states[sent_id][beam_id]
|
| 980 |
+
if (
|
| 981 |
+
word_id == eos_token_id
|
| 982 |
+
and (curr_info["idx"] + 1 == len(model_kwargs["other_info"][sent_id]["predict_segments"]))
|
| 983 |
+
) or cur_len == max_length:
|
| 984 |
+
self._beam_hyps[sent_id].add(
|
| 985 |
+
self.beam_states[sent_id][beam_id]["ans"]
|
| 986 |
+
+ [
|
| 987 |
+
(
|
| 988 |
+
word_id,
|
| 989 |
+
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1],
|
| 990 |
+
)
|
| 991 |
+
],
|
| 992 |
+
value.item(),
|
| 993 |
+
)
|
| 994 |
+
elif word_id == eos_token_id:
|
| 995 |
+
next_instance_beam_states.append(
|
| 996 |
+
(
|
| 997 |
+
{
|
| 998 |
+
"idx": curr_info["idx"] + 1,
|
| 999 |
+
"ans": curr_info["ans"]
|
| 1000 |
+
+ [
|
| 1001 |
+
(
|
| 1002 |
+
word_id,
|
| 1003 |
+
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1],
|
| 1004 |
+
)
|
| 1005 |
+
],
|
| 1006 |
+
"nx_token_id": bos_token_id,
|
| 1007 |
+
"nx_token_sub": 0,
|
| 1008 |
+
"nx_segment_id": model_kwargs["other_info"][sent_id]["predict_segments"][
|
| 1009 |
+
curr_info["idx"] + 1
|
| 1010 |
+
][0],
|
| 1011 |
+
"nx_position": 0,
|
| 1012 |
+
},
|
| 1013 |
+
value.item(),
|
| 1014 |
+
sent_id * self.num_beams + beam_id,
|
| 1015 |
+
)
|
| 1016 |
+
)
|
| 1017 |
+
|
| 1018 |
+
else:
|
| 1019 |
+
raw_word_id = word_id
|
| 1020 |
+
word_id_sub = 0
|
| 1021 |
+
if word_id >= vocab_size:
|
| 1022 |
+
word_id -= vocab_size
|
| 1023 |
+
word_id_sub = int(ext_table_sub_cpu[word_id].item())
|
| 1024 |
+
word_id = int(ext_table_ids_cpu[word_id].item())
|
| 1025 |
+
|
| 1026 |
+
next_instance_beam_states.append(
|
| 1027 |
+
(
|
| 1028 |
+
{
|
| 1029 |
+
"idx": curr_info["idx"],
|
| 1030 |
+
"ans": curr_info["ans"]
|
| 1031 |
+
+ [
|
| 1032 |
+
(
|
| 1033 |
+
raw_word_id,
|
| 1034 |
+
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1],
|
| 1035 |
+
)
|
| 1036 |
+
],
|
| 1037 |
+
"nx_token_id": word_id,
|
| 1038 |
+
"nx_token_sub": word_id_sub,
|
| 1039 |
+
"nx_segment_id": curr_info["nx_segment_id"],
|
| 1040 |
+
"nx_position": curr_info["nx_position"] + 1,
|
| 1041 |
+
},
|
| 1042 |
+
value.item(),
|
| 1043 |
+
sent_id * self.num_beams + beam_id,
|
| 1044 |
+
)
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
if len(next_instance_beam_states) == self.num_beams:
|
| 1048 |
+
break
|
| 1049 |
+
assert len(next_instance_beam_states) == 0 if cur_len == max_length else self.num_beams
|
| 1050 |
+
next_beam_state.append(next_instance_beam_states)
|
| 1051 |
+
|
| 1052 |
+
if cur_len == max_length:
|
| 1053 |
+
return None
|
| 1054 |
+
|
| 1055 |
+
beam_reorder_idx = []
|
| 1056 |
+
beam_new_scores = []
|
| 1057 |
+
beam_states = []
|
| 1058 |
+
for sent_id in range(batch_size):
|
| 1059 |
+
instance_beam_states = []
|
| 1060 |
+
for beam_id in range(self.num_beams):
|
| 1061 |
+
state, value, beam_idx = next_beam_state[sent_id][beam_id]
|
| 1062 |
+
beam_reorder_idx.append(beam_idx)
|
| 1063 |
+
beam_new_scores.append(value)
|
| 1064 |
+
instance_beam_states.append(state)
|
| 1065 |
+
beam_states.append(instance_beam_states)
|
| 1066 |
+
self.beam_states = beam_states
|
| 1067 |
+
|
| 1068 |
+
return UserDict(
|
| 1069 |
+
{
|
| 1070 |
+
"next_beam_scores": torch.tensor(beam_new_scores, device=self.device).view(-1),
|
| 1071 |
+
"next_beam_states": beam_states,
|
| 1072 |
+
"next_beam_indices": torch.tensor(beam_reorder_idx, dtype=torch.int32, device=self.device).view(-1),
|
| 1073 |
+
}
|
| 1074 |
+
)
|
| 1075 |
+
|
| 1076 |
+
def finalize(self) -> Tuple[torch.LongTensor]:
|
| 1077 |
+
results = []
|
| 1078 |
+
for _, hypotheses in enumerate(self._beam_hyps):
|
| 1079 |
+
best_hyp = max(hypotheses.beams, key=lambda x: x[0])[1]
|
| 1080 |
+
results.append(best_hyp)
|
| 1081 |
+
return results
|
| 1082 |
+
|
| 1083 |
+
@staticmethod
|
| 1084 |
+
def apply_repetition_penalty(
|
| 1085 |
+
logits,
|
| 1086 |
+
batch_size,
|
| 1087 |
+
num_beams,
|
| 1088 |
+
prev_output_tokens,
|
| 1089 |
+
repetition_penalty,
|
| 1090 |
+
start_idx=None,
|
| 1091 |
+
end_idx=None,
|
| 1092 |
+
window_size=None,
|
| 1093 |
+
):
|
| 1094 |
+
# only conduct repetition penalty for the output
|
| 1095 |
+
assert repetition_penalty >= 1, "repetition penalty coefficient should >= 1"
|
| 1096 |
+
# repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
|
| 1097 |
+
for i in range(batch_size * num_beams):
|
| 1098 |
+
if start_idx is None or end_idx is None:
|
| 1099 |
+
output_tokens = prev_output_tokens[i].tolist()
|
| 1100 |
+
else:
|
| 1101 |
+
if end_idx >= start_idx:
|
| 1102 |
+
if window_size:
|
| 1103 |
+
output_tokens = prev_output_tokens[i][
|
| 1104 |
+
max(start_idx, end_idx + 1 - window_size) : end_idx + 1
|
| 1105 |
+
].tolist()
|
| 1106 |
+
else:
|
| 1107 |
+
output_tokens = prev_output_tokens[i][start_idx : end_idx + 1].tolist()
|
| 1108 |
+
else:
|
| 1109 |
+
output_tokens = []
|
| 1110 |
+
for previous_token in set(output_tokens):
|
| 1111 |
+
# if score < 0 then repetition penalty has to
|
| 1112 |
+
# multiplied to reduce the previous token probability
|
| 1113 |
+
if logits[i, previous_token] < 0:
|
| 1114 |
+
logits[i, previous_token] *= repetition_penalty
|
| 1115 |
+
else:
|
| 1116 |
+
logits[i, previous_token] /= repetition_penalty
|
| 1117 |
+
|
| 1118 |
+
|
| 1119 |
+
@add_start_docstrings(
|
| 1120 |
+
"""
|
| 1121 |
+
The CPMBee Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
|
| 1122 |
+
""",
|
| 1123 |
+
CPMBEE_START_DOCSTRING,
|
| 1124 |
+
)
|
| 1125 |
+
class CpmBeeForCausalLM(CpmBeePreTrainedModel):
|
| 1126 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
| 1127 |
+
|
| 1128 |
+
def __init__(self, config: CpmBeeConfig):
|
| 1129 |
+
super().__init__(config)
|
| 1130 |
+
self.cpmbee = CpmBeeModel(config)
|
| 1131 |
+
|
| 1132 |
+
# lm_head.weight is tied to cpmbee.input_embedding.weight
|
| 1133 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1134 |
+
self.post_init()
|
| 1135 |
+
|
| 1136 |
+
@add_start_docstrings_to_model_forward(CPMBEE_INPUTS_DOCSTRING)
|
| 1137 |
+
@add_code_sample_docstrings(
|
| 1138 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1139 |
+
output_type=CausalLMOutputWithPast,
|
| 1140 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1141 |
+
)
|
| 1142 |
+
def forward(
|
| 1143 |
+
self,
|
| 1144 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1145 |
+
input_id_sub: Optional[torch.Tensor] = None,
|
| 1146 |
+
position: Optional[torch.Tensor] = None,
|
| 1147 |
+
context: Optional[torch.Tensor] = None,
|
| 1148 |
+
sample_ids: Optional[torch.Tensor] = None,
|
| 1149 |
+
num_segments: Optional[torch.Tensor] = None,
|
| 1150 |
+
segment: Optional[torch.Tensor] = None,
|
| 1151 |
+
segment_rel_offset: Optional[torch.Tensor] = None,
|
| 1152 |
+
segment_rel: Optional[torch.Tensor] = None,
|
| 1153 |
+
past_states: Optional[Dict] = None,
|
| 1154 |
+
output_attentions: Optional[bool] = None,
|
| 1155 |
+
output_hidden_states: Optional[bool] = None,
|
| 1156 |
+
past_key_values: Optional[List] = None,
|
| 1157 |
+
use_cache: Optional[bool] = None,
|
| 1158 |
+
labels: Optional[torch.Tensor] = None,
|
| 1159 |
+
return_dict: Optional[bool] = None,
|
| 1160 |
+
ext_table_ids: Optional[torch.Tensor] = None, # (ext_table_size) int32
|
| 1161 |
+
ext_table_sub: Optional[torch.Tensor] = None, # (ext_table_size) int32
|
| 1162 |
+
**kwargs,
|
| 1163 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1164 |
+
r"""
|
| 1165 |
+
Args:
|
| 1166 |
+
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 1167 |
+
Indices of input sequence tokens in the vocabulary.
|
| 1168 |
+
|
| 1169 |
+
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1170 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1171 |
+
|
| 1172 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1173 |
+
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 1174 |
+
Subscription of input sequence tokens in the vocabulary.
|
| 1175 |
+
|
| 1176 |
+
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2,
|
| 1177 |
+
... <ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to
|
| 1178 |
+
group <mask>.
|
| 1179 |
+
position (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 1180 |
+
The position of input sequence tokens in the vocabulary for each segment. if segment1 is 0, 1, 2 and
|
| 1181 |
+
segment2 is 0, 1, 2, 3, the position will be 0, 1, 2, 0, 1, 2, 3
|
| 1182 |
+
context (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 1183 |
+
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a
|
| 1184 |
+
token id is context, it does not need to be predicted.
|
| 1185 |
+
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 1186 |
+
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample.
|
| 1187 |
+
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 1188 |
+
Total number of segments in the current input.
|
| 1189 |
+
segment (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 1190 |
+
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample.
|
| 1191 |
+
|
| 1192 |
+
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello,
|
| 1193 |
+
", "<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "".
|
| 1194 |
+
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 1195 |
+
The offset of segment rel.
|
| 1196 |
+
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
| 1197 |
+
The segment relevance. A relative implementation of measuring the importance of segments.
|
| 1198 |
+
past_states (`Dict[str, Union[torch.Tensor, List]]`):
|
| 1199 |
+
Store the history information including position, context, sample_ids, num_segments, segment and
|
| 1200 |
+
past_key_values.
|
| 1201 |
+
output_attentions (`bool`, *optional*):
|
| 1202 |
+
Whether or not to return the attentions tensors of all attention layers.
|
| 1203 |
+
output_hidden_states (`bool`, *optional*):
|
| 1204 |
+
Whether or not to return the hidden states of all layers.
|
| 1205 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 1206 |
+
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in
|
| 1207 |
+
the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values`
|
| 1208 |
+
input) and other history arguments to speed up sequential decoding.
|
| 1209 |
+
use_cache (`bool`, *optional*):
|
| 1210 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 1211 |
+
(see `past_key_values`).
|
| 1212 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1213 |
+
Labels for computing the masked language modeling loss.
|
| 1214 |
+
return_dict (`bool`, *optional*):
|
| 1215 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1216 |
+
ext_table_ids (`torch.Tensor`, *optional*):
|
| 1217 |
+
ext_table ids for embedding projection.
|
| 1218 |
+
ext_table_sub (`torch.Tensor`, *optional*):
|
| 1219 |
+
ext_table subscriptions for embedding projection.
|
| 1220 |
+
|
| 1221 |
+
Example:
|
| 1222 |
+
|
| 1223 |
+
Text Generation with CpmBeeForCausalLM.
|
| 1224 |
+
```python
|
| 1225 |
+
>>> from transformers import CpmBeeTokenizer, CpmBeeForCausalLM
|
| 1226 |
+
|
| 1227 |
+
>>> texts = {"input": "今天天气不错,", "<ans>": ""}
|
| 1228 |
+
>>> model = CpmBeeForCausalLM.from_pretrained("openbmb/cpm-bee-10b")
|
| 1229 |
+
>>> tokenizer = CPMBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b")
|
| 1230 |
+
>>> output_texts = model.generate({"input": "今天天气不错,", "<ans>": ""}, tokenizer)
|
| 1231 |
+
>>> print(output_texts)
|
| 1232 |
+
{'input': '今天天气不错,', '<ans>': '适合睡觉。'}
|
| 1233 |
+
```
|
| 1234 |
+
"""
|
| 1235 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1236 |
+
|
| 1237 |
+
model_output = self.cpmbee(
|
| 1238 |
+
input_ids,
|
| 1239 |
+
input_id_sub,
|
| 1240 |
+
position,
|
| 1241 |
+
context,
|
| 1242 |
+
sample_ids,
|
| 1243 |
+
num_segments,
|
| 1244 |
+
segment,
|
| 1245 |
+
segment_rel_offset,
|
| 1246 |
+
segment_rel,
|
| 1247 |
+
past_states,
|
| 1248 |
+
output_attentions,
|
| 1249 |
+
output_hidden_states,
|
| 1250 |
+
past_key_values,
|
| 1251 |
+
use_cache,
|
| 1252 |
+
return_dict,
|
| 1253 |
+
)
|
| 1254 |
+
hidden_states = model_output.last_hidden_state if return_dict else model_output[0]
|
| 1255 |
+
|
| 1256 |
+
if ext_table_ids is not None:
|
| 1257 |
+
ext_table = self.cpmbee.input_embedding(ext_table_ids, ext_table_sub)
|
| 1258 |
+
else:
|
| 1259 |
+
ext_table = None
|
| 1260 |
+
logits = self.cpmbee.input_embedding.projection(hidden_states, ext_table)
|
| 1261 |
+
|
| 1262 |
+
loss = None
|
| 1263 |
+
if labels is not None:
|
| 1264 |
+
loss_func = nn.CrossEntropyLoss()
|
| 1265 |
+
loss = loss_func(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 1266 |
+
|
| 1267 |
+
if not return_dict:
|
| 1268 |
+
output = (logits,) + model_output[1:]
|
| 1269 |
+
return ((loss,) + output) if loss is not None else output
|
| 1270 |
+
|
| 1271 |
+
return CausalLMOutputWithPast(
|
| 1272 |
+
loss=loss,
|
| 1273 |
+
logits=logits,
|
| 1274 |
+
past_key_values=model_output.past_key_values,
|
| 1275 |
+
hidden_states=model_output.hidden_states,
|
| 1276 |
+
attentions=model_output.attentions,
|
| 1277 |
+
)
|
| 1278 |
+
|
| 1279 |
+
def get_input_embeddings(self):
|
| 1280 |
+
return self.cpmbee.input_embedding
|
| 1281 |
+
|
| 1282 |
+
def set_input_embeddings(self, embeddings):
|
| 1283 |
+
self.cpmbee.input_embedding = embeddings
|
| 1284 |
+
|
| 1285 |
+
def get_output_embeddings(self):
|
| 1286 |
+
return self.lm_head
|
| 1287 |
+
|
| 1288 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1289 |
+
self.lm_head = new_embeddings
|
| 1290 |
+
|
| 1291 |
+
def prepare_inputs_for_generation(
|
| 1292 |
+
self,
|
| 1293 |
+
input_ids: torch.Tensor,
|
| 1294 |
+
batch_size: int,
|
| 1295 |
+
beam_scorer: CpmBeeBeamSearchScorer = None,
|
| 1296 |
+
input_id_subs: Optional[torch.Tensor] = None,
|
| 1297 |
+
input_pos: Optional[torch.Tensor] = None,
|
| 1298 |
+
segment_ids: Optional[torch.Tensor] = None,
|
| 1299 |
+
batch_ext_table_ids: Optional[torch.Tensor] = None,
|
| 1300 |
+
batch_ext_table_sub: Optional[torch.Tensor] = None,
|
| 1301 |
+
other_info: Optional[Dict] = None,
|
| 1302 |
+
**model_kwargs,
|
| 1303 |
+
):
|
| 1304 |
+
"""
|
| 1305 |
+
Choose the current input according to beam states.
|
| 1306 |
+
"""
|
| 1307 |
+
# init preparation
|
| 1308 |
+
context = model_kwargs.get("context")
|
| 1309 |
+
sample_ids = model_kwargs.get("sample_ids")
|
| 1310 |
+
segment_rel_offset = model_kwargs.get("segment_rel_offset")
|
| 1311 |
+
num_segments = model_kwargs.get("num_segments")
|
| 1312 |
+
segment_rel = model_kwargs.get("segment_rel")
|
| 1313 |
+
past_states = model_kwargs.get("past_states", None)
|
| 1314 |
+
past_key_values = model_kwargs.get("past_key_values", None)
|
| 1315 |
+
_input_ids = input_ids
|
| 1316 |
+
|
| 1317 |
+
# update input in generation
|
| 1318 |
+
if beam_scorer is not None:
|
| 1319 |
+
tmp_input = []
|
| 1320 |
+
tmp_input_sub = []
|
| 1321 |
+
tmp_position = []
|
| 1322 |
+
tmp_segment = []
|
| 1323 |
+
for sent_id in range(batch_size):
|
| 1324 |
+
for beam_id in range(beam_scorer.num_beams):
|
| 1325 |
+
tmp_input.append(beam_scorer.beam_states[sent_id][beam_id]["nx_token_id"])
|
| 1326 |
+
tmp_input_sub.append(beam_scorer.beam_states[sent_id][beam_id]["nx_token_sub"])
|
| 1327 |
+
tmp_position.append(beam_scorer.beam_states[sent_id][beam_id]["nx_position"])
|
| 1328 |
+
tmp_segment.append(beam_scorer.beam_states[sent_id][beam_id]["nx_segment_id"])
|
| 1329 |
+
|
| 1330 |
+
model_kwargs["input_id_subs"] = input_id_subs = torch.tensor(
|
| 1331 |
+
tmp_input_sub, dtype=torch.int32, device=self.device
|
| 1332 |
+
).view(batch_size * beam_scorer.num_beams, 1)
|
| 1333 |
+
model_kwargs["input_pos"] = input_pos = torch.tensor(
|
| 1334 |
+
tmp_position, dtype=torch.int32, device=self.device
|
| 1335 |
+
).view(batch_size * beam_scorer.num_beams, 1)
|
| 1336 |
+
model_kwargs["segment_ids"] = segment_ids = torch.tensor(
|
| 1337 |
+
tmp_segment, dtype=torch.int32, device=self.device
|
| 1338 |
+
).view(batch_size * beam_scorer.num_beams, 1)
|
| 1339 |
+
input_ids = torch.cat(
|
| 1340 |
+
[
|
| 1341 |
+
input_ids,
|
| 1342 |
+
torch.tensor(tmp_input, dtype=torch.int32, device=self.device).view(
|
| 1343 |
+
batch_size * beam_scorer.num_beams, 1
|
| 1344 |
+
),
|
| 1345 |
+
],
|
| 1346 |
+
dim=-1,
|
| 1347 |
+
)
|
| 1348 |
+
_input_ids = input_ids[:, -1:]
|
| 1349 |
+
|
| 1350 |
+
return {
|
| 1351 |
+
"input_ids": _input_ids,
|
| 1352 |
+
"input_id_sub": input_id_subs,
|
| 1353 |
+
"position": input_pos,
|
| 1354 |
+
"context": context,
|
| 1355 |
+
"sample_ids": sample_ids,
|
| 1356 |
+
"segment_rel_offset": segment_rel_offset,
|
| 1357 |
+
"segment": segment_ids,
|
| 1358 |
+
"num_segments": num_segments,
|
| 1359 |
+
"segment_rel": segment_rel,
|
| 1360 |
+
"use_cache": True,
|
| 1361 |
+
"past_key_values": past_key_values,
|
| 1362 |
+
"ext_table_ids": batch_ext_table_ids,
|
| 1363 |
+
"ext_table_sub": batch_ext_table_sub,
|
| 1364 |
+
"past_states": past_states,
|
| 1365 |
+
}, input_ids
|
| 1366 |
+
|
| 1367 |
+
def _update_model_kwargs_for_generation(
|
| 1368 |
+
self,
|
| 1369 |
+
outputs: ModelOutput,
|
| 1370 |
+
model_inputs=None,
|
| 1371 |
+
**model_kwargs,
|
| 1372 |
+
) -> Dict[str, Any]:
|
| 1373 |
+
"""
|
| 1374 |
+
Concatenate the history input and current input.
|
| 1375 |
+
"""
|
| 1376 |
+
|
| 1377 |
+
old_past_states = model_kwargs["past_states"]
|
| 1378 |
+
model_kwargs["past_states"] = {
|
| 1379 |
+
"buffer_position": torch.cat([old_past_states["buffer_position"], model_inputs["position"]], dim=-1),
|
| 1380 |
+
"buffer_context": torch.cat([old_past_states["buffer_context"], model_inputs["context"]], dim=-1),
|
| 1381 |
+
"buffer_sample_ids": torch.cat([old_past_states["buffer_sample_ids"], model_inputs["sample_ids"]], dim=-1),
|
| 1382 |
+
"buffer_num_segments": torch.cat(
|
| 1383 |
+
[old_past_states["buffer_num_segments"], model_inputs["num_segments"]], dim=-1
|
| 1384 |
+
),
|
| 1385 |
+
"buffer_segments": torch.cat([old_past_states["buffer_segments"], model_inputs["segment"]], dim=-1),
|
| 1386 |
+
"buffer": outputs.past_key_values,
|
| 1387 |
+
}
|
| 1388 |
+
|
| 1389 |
+
return model_kwargs
|
| 1390 |
+
|
| 1391 |
+
def _reorder_cache(self, past_key_values: Dict, beam_idx: torch.Tensor):
|
| 1392 |
+
beam_idx = beam_idx.tolist()
|
| 1393 |
+
for kw in past_key_values.keys():
|
| 1394 |
+
if kw == "buffer":
|
| 1395 |
+
buf_list = past_key_values[kw]
|
| 1396 |
+
nw_buf_list = []
|
| 1397 |
+
for buf in buf_list:
|
| 1398 |
+
if buf == (None, None):
|
| 1399 |
+
nw_buf_list.append((None, None))
|
| 1400 |
+
else:
|
| 1401 |
+
k_buf, v_buf = buf
|
| 1402 |
+
nw_buf_list.append((k_buf[beam_idx, :], v_buf[beam_idx, :]))
|
| 1403 |
+
past_key_values[kw] = nw_buf_list
|
| 1404 |
+
else:
|
| 1405 |
+
past_key_values[kw] = past_key_values[kw][beam_idx, :]
|
| 1406 |
+
|
| 1407 |
+
return past_key_values
|
| 1408 |
+
|
| 1409 |
+
@staticmethod
|
| 1410 |
+
def _expand_inputs_for_generation(
|
| 1411 |
+
expand_size: int = 1,
|
| 1412 |
+
is_encoder_decoder: bool = False,
|
| 1413 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1414 |
+
**model_kwargs,
|
| 1415 |
+
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
|
| 1416 |
+
"""Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
|
| 1417 |
+
|
| 1418 |
+
# do not expand ext_table_ids and ext_table_sub
|
| 1419 |
+
def _expand_dict_for_generation(dict_to_expand):
|
| 1420 |
+
for key in dict_to_expand:
|
| 1421 |
+
if (
|
| 1422 |
+
dict_to_expand[key] is not None
|
| 1423 |
+
and isinstance(dict_to_expand[key], torch.Tensor)
|
| 1424 |
+
and "ext_table" not in key
|
| 1425 |
+
):
|
| 1426 |
+
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
|
| 1427 |
+
return dict_to_expand
|
| 1428 |
+
|
| 1429 |
+
if input_ids is not None:
|
| 1430 |
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
| 1431 |
+
|
| 1432 |
+
model_kwargs = _expand_dict_for_generation(model_kwargs)
|
| 1433 |
+
|
| 1434 |
+
if is_encoder_decoder:
|
| 1435 |
+
if model_kwargs.get("encoder_outputs") is None:
|
| 1436 |
+
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
|
| 1437 |
+
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
|
| 1438 |
+
|
| 1439 |
+
return input_ids, model_kwargs
|
| 1440 |
+
|
| 1441 |
+
def adjust_logits_during_generation(
|
| 1442 |
+
self,
|
| 1443 |
+
logits: torch.FloatTensor,
|
| 1444 |
+
batch_size: int,
|
| 1445 |
+
beam_size: int,
|
| 1446 |
+
vocab_size: int,
|
| 1447 |
+
ext_table_ids: torch.Tensor,
|
| 1448 |
+
**model_kwargs,
|
| 1449 |
+
) -> torch.FloatTensor:
|
| 1450 |
+
"""
|
| 1451 |
+
Implement in subclasses of [`PreTrainedModel`] for custom behavior to adjust the logits in the generate method.
|
| 1452 |
+
"""
|
| 1453 |
+
for sent_id in range(batch_size):
|
| 1454 |
+
if 1 not in model_kwargs["other_info"][sent_id]["ext_table"]:
|
| 1455 |
+
# unk is not allowed, mask unk
|
| 1456 |
+
logits[sent_id * beam_size : (sent_id + 1) * beam_size, 1] = -10000
|
| 1457 |
+
ext_ids = set()
|
| 1458 |
+
for v in model_kwargs["other_info"][sent_id]["ext_table"].keys():
|
| 1459 |
+
ext_ids.add(v)
|
| 1460 |
+
for ext_id in range(vocab_size, vocab_size + ext_table_ids.size(0)):
|
| 1461 |
+
if ext_id not in ext_ids:
|
| 1462 |
+
logits[sent_id * beam_size : (sent_id + 1) * beam_size, ext_id] = -10000
|
| 1463 |
+
return logits
|
| 1464 |
+
|
| 1465 |
+
def beam_search(
|
| 1466 |
+
self,
|
| 1467 |
+
input_ids: torch.LongTensor,
|
| 1468 |
+
beam_scorer: CpmBeeBeamSearchScorer,
|
| 1469 |
+
repetition_penalty: Optional[float] = 1.0,
|
| 1470 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 1471 |
+
max_length: Optional[int] = None,
|
| 1472 |
+
pad_token_id: Optional[int] = None,
|
| 1473 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
| 1474 |
+
bos_token_id: Optional[Union[int, List[int]]] = None,
|
| 1475 |
+
output_attentions: Optional[bool] = None,
|
| 1476 |
+
output_hidden_states: Optional[bool] = None,
|
| 1477 |
+
output_scores: Optional[bool] = None,
|
| 1478 |
+
return_dict_in_generate: Optional[bool] = None,
|
| 1479 |
+
synced_gpus: bool = False,
|
| 1480 |
+
**model_kwargs,
|
| 1481 |
+
) -> List:
|
| 1482 |
+
"""
|
| 1483 |
+
Override the beam_search for CPMBee.
|
| 1484 |
+
"""
|
| 1485 |
+
# init values
|
| 1486 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
| 1487 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
| 1488 |
+
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
|
| 1489 |
+
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
|
| 1490 |
+
max_length = max_length if max_length is not None else self.generation_config.max_length
|
| 1491 |
+
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
| 1492 |
+
output_attentions = (
|
| 1493 |
+
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
| 1494 |
+
)
|
| 1495 |
+
output_hidden_states = (
|
| 1496 |
+
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
| 1497 |
+
)
|
| 1498 |
+
return_dict_in_generate = (
|
| 1499 |
+
return_dict_in_generate
|
| 1500 |
+
if return_dict_in_generate is not None
|
| 1501 |
+
else self.generation_config.return_dict_in_generate
|
| 1502 |
+
)
|
| 1503 |
+
|
| 1504 |
+
batch_size = len(beam_scorer._beam_hyps)
|
| 1505 |
+
num_beams = beam_scorer.num_beams
|
| 1506 |
+
|
| 1507 |
+
batch_beam_size, cur_len = input_ids.shape
|
| 1508 |
+
|
| 1509 |
+
if num_beams * batch_size != batch_beam_size:
|
| 1510 |
+
raise ValueError(
|
| 1511 |
+
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
|
| 1512 |
+
)
|
| 1513 |
+
|
| 1514 |
+
# init attention / hidden states / scores tuples
|
| 1515 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
| 1516 |
+
beam_indices = (
|
| 1517 |
+
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
|
| 1518 |
+
)
|
| 1519 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 1520 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 1521 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
| 1522 |
+
|
| 1523 |
+
# initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
|
| 1524 |
+
# of the first beam are considered to avoid sampling the exact same tokens across all beams.
|
| 1525 |
+
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=self.device)
|
| 1526 |
+
beam_scores[:, 1:] = -1e9
|
| 1527 |
+
beam_scores = beam_scores.view((batch_size * num_beams,))
|
| 1528 |
+
|
| 1529 |
+
this_peer_finished = False # used by synced_gpus only
|
| 1530 |
+
|
| 1531 |
+
# init inference
|
| 1532 |
+
model_inputs, input_ids = self.prepare_inputs_for_generation(input_ids, batch_size, **model_kwargs)
|
| 1533 |
+
pred_start_index = input_ids.size(-1)
|
| 1534 |
+
outputs = self(
|
| 1535 |
+
**model_inputs,
|
| 1536 |
+
return_dict=True,
|
| 1537 |
+
output_attentions=output_attentions,
|
| 1538 |
+
output_hidden_states=output_hidden_states,
|
| 1539 |
+
)
|
| 1540 |
+
|
| 1541 |
+
# update model_kwargs
|
| 1542 |
+
model_kwargs["past_states"] = {
|
| 1543 |
+
"buffer_position": model_inputs["position"],
|
| 1544 |
+
"buffer_context": model_inputs["context"],
|
| 1545 |
+
"buffer_sample_ids": model_inputs["sample_ids"],
|
| 1546 |
+
"buffer_num_segments": model_inputs["num_segments"],
|
| 1547 |
+
"buffer_segments": model_inputs["segment"],
|
| 1548 |
+
"buffer": outputs.past_key_values,
|
| 1549 |
+
}
|
| 1550 |
+
model_kwargs["context"] = torch.ones(batch_beam_size, dtype=torch.bool, device=self.device).view(
|
| 1551 |
+
batch_beam_size, 1
|
| 1552 |
+
)
|
| 1553 |
+
model_kwargs["sample_ids"] = torch.zeros(batch_beam_size, dtype=torch.int32, device=self.device).view(
|
| 1554 |
+
batch_beam_size, 1
|
| 1555 |
+
)
|
| 1556 |
+
model_kwargs["num_segments"] = model_kwargs["num_segments"][:, -1:]
|
| 1557 |
+
model_kwargs["segment_rel_offset"] = model_kwargs["segment_rel_offset"][:, -1:]
|
| 1558 |
+
model_kwargs["past_key_values"] = outputs.past_key_values
|
| 1559 |
+
|
| 1560 |
+
ext_table_ids_cpu = model_inputs["ext_table_ids"].cpu()
|
| 1561 |
+
ext_table_sub_cpu = model_inputs["ext_table_sub"].cpu()
|
| 1562 |
+
|
| 1563 |
+
cur_len = 0
|
| 1564 |
+
while True:
|
| 1565 |
+
if synced_gpus:
|
| 1566 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
| 1567 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
| 1568 |
+
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
|
| 1569 |
+
# send 0.0 if we finished, 1.0 otherwise
|
| 1570 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
| 1571 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
| 1572 |
+
if this_peer_finished_flag.item() == 0.0:
|
| 1573 |
+
break
|
| 1574 |
+
|
| 1575 |
+
model_inputs, input_ids = self.prepare_inputs_for_generation(
|
| 1576 |
+
input_ids, batch_size, beam_scorer, **model_kwargs
|
| 1577 |
+
)
|
| 1578 |
+
|
| 1579 |
+
outputs = self(
|
| 1580 |
+
**model_inputs,
|
| 1581 |
+
return_dict=True,
|
| 1582 |
+
output_attentions=output_attentions,
|
| 1583 |
+
output_hidden_states=output_hidden_states,
|
| 1584 |
+
)
|
| 1585 |
+
|
| 1586 |
+
next_token_logits = outputs.logits[:, -1, :]
|
| 1587 |
+
|
| 1588 |
+
if all(beam_scorer._done):
|
| 1589 |
+
break
|
| 1590 |
+
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
|
| 1591 |
+
# cannot be generated both before and after the `nn.functional.log_softmax` operation.
|
| 1592 |
+
vocab_size = next_token_logits.shape[-1]
|
| 1593 |
+
next_token_logits = self.adjust_logits_during_generation(
|
| 1594 |
+
next_token_logits, batch_size, num_beams, vocab_size, ext_table_ids_cpu, **model_kwargs
|
| 1595 |
+
)
|
| 1596 |
+
|
| 1597 |
+
# repetition_penalty
|
| 1598 |
+
beam_scorer.apply_repetition_penalty(
|
| 1599 |
+
next_token_logits,
|
| 1600 |
+
batch_size,
|
| 1601 |
+
num_beams,
|
| 1602 |
+
model_inputs["input_ids"],
|
| 1603 |
+
repetition_penalty,
|
| 1604 |
+
pred_start_index,
|
| 1605 |
+
model_inputs["input_ids"].size(-1) - 1,
|
| 1606 |
+
None,
|
| 1607 |
+
)
|
| 1608 |
+
|
| 1609 |
+
_next_token_scores = nn.functional.log_softmax(
|
| 1610 |
+
next_token_logits, dim=-1
|
| 1611 |
+
) # (batch_size * num_beams, vocab_size)
|
| 1612 |
+
|
| 1613 |
+
next_token_scores_processed = logits_processor(input_ids, _next_token_scores)
|
| 1614 |
+
# next_token_scores_processed = _next_token_scores
|
| 1615 |
+
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(_next_token_scores)
|
| 1616 |
+
|
| 1617 |
+
# Store scores, attentions and hidden_states when required
|
| 1618 |
+
if return_dict_in_generate:
|
| 1619 |
+
if output_scores:
|
| 1620 |
+
scores += (next_token_scores_processed,)
|
| 1621 |
+
if output_attentions:
|
| 1622 |
+
decoder_attentions += (
|
| 1623 |
+
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
|
| 1624 |
+
)
|
| 1625 |
+
if self.config.is_encoder_decoder:
|
| 1626 |
+
cross_attentions += (outputs.cross_attentions,)
|
| 1627 |
+
|
| 1628 |
+
if output_hidden_states:
|
| 1629 |
+
decoder_hidden_states += (
|
| 1630 |
+
(outputs.decoder_hidden_states,)
|
| 1631 |
+
if self.config.is_encoder_decoder
|
| 1632 |
+
else (outputs.hidden_states,)
|
| 1633 |
+
)
|
| 1634 |
+
|
| 1635 |
+
# reshape for beam search
|
| 1636 |
+
vocab_size = next_token_scores.shape[-1]
|
| 1637 |
+
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
|
| 1638 |
+
|
| 1639 |
+
# Sample 2 next tokens for each beam (so we have some spare tokens and match output of beam search)
|
| 1640 |
+
next_token_scores, next_tokens = torch.topk(
|
| 1641 |
+
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
|
| 1642 |
+
)
|
| 1643 |
+
|
| 1644 |
+
beam_outputs = beam_scorer.process(
|
| 1645 |
+
batch_size,
|
| 1646 |
+
cur_len,
|
| 1647 |
+
_next_token_scores,
|
| 1648 |
+
next_token_scores,
|
| 1649 |
+
next_tokens,
|
| 1650 |
+
vocab_size=vocab_size,
|
| 1651 |
+
pad_token_id=pad_token_id,
|
| 1652 |
+
bos_token_id=bos_token_id,
|
| 1653 |
+
eos_token_id=eos_token_id,
|
| 1654 |
+
max_length=max_length,
|
| 1655 |
+
ext_table_ids_cpu=ext_table_ids_cpu,
|
| 1656 |
+
ext_table_sub_cpu=ext_table_sub_cpu,
|
| 1657 |
+
**model_kwargs,
|
| 1658 |
+
)
|
| 1659 |
+
if beam_outputs is None:
|
| 1660 |
+
break
|
| 1661 |
+
beam_idx = beam_outputs["next_beam_indices"]
|
| 1662 |
+
beam_scores = beam_outputs["next_beam_scores"]
|
| 1663 |
+
|
| 1664 |
+
input_ids = input_ids[beam_idx.tolist(), :]
|
| 1665 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_inputs, **model_kwargs)
|
| 1666 |
+
if model_kwargs["past_states"] is not None:
|
| 1667 |
+
model_kwargs["past_states"] = self._reorder_cache(model_kwargs["past_states"], beam_idx)
|
| 1668 |
+
|
| 1669 |
+
if return_dict_in_generate and output_scores:
|
| 1670 |
+
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))
|
| 1671 |
+
|
| 1672 |
+
cur_len += 1
|
| 1673 |
+
|
| 1674 |
+
if beam_scorer.is_done or cur_len == max_length + 1:
|
| 1675 |
+
if not synced_gpus:
|
| 1676 |
+
break
|
| 1677 |
+
else:
|
| 1678 |
+
this_peer_finished = True
|
| 1679 |
+
|
| 1680 |
+
sequence_outputs = beam_scorer.finalize()
|
| 1681 |
+
|
| 1682 |
+
return sequence_outputs
|
| 1683 |
+
|
| 1684 |
+
def _generate(
|
| 1685 |
+
self,
|
| 1686 |
+
inputs: Optional[torch.Tensor] = None,
|
| 1687 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 1688 |
+
repetition_penalty: Optional[float] = 1.0,
|
| 1689 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 1690 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
| 1691 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
| 1692 |
+
synced_gpus: Optional[bool] = None,
|
| 1693 |
+
streamer: Optional["BaseStreamer"] = None,
|
| 1694 |
+
**kwargs,
|
| 1695 |
+
) -> List:
|
| 1696 |
+
r"""
|
| 1697 |
+
The generation of CPMBee.
|
| 1698 |
+
1. It will use beam search as generation strategy.
|
| 1699 |
+
2. It will use CpmBeeBeamSearchScorer as the beamsearch scorer.
|
| 1700 |
+
"""
|
| 1701 |
+
if synced_gpus is None:
|
| 1702 |
+
if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
|
| 1703 |
+
synced_gpus = True
|
| 1704 |
+
else:
|
| 1705 |
+
synced_gpus = False
|
| 1706 |
+
|
| 1707 |
+
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
| 1708 |
+
self._validate_model_class()
|
| 1709 |
+
|
| 1710 |
+
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
|
| 1711 |
+
if generation_config is None:
|
| 1712 |
+
# legacy: users may modify the model configuration to control generation -- update the generation config
|
| 1713 |
+
# model attribute accordingly, if it was created from the model config
|
| 1714 |
+
if self.generation_config._from_model_config:
|
| 1715 |
+
new_generation_config = GenerationConfig.from_model_config(self.config)
|
| 1716 |
+
if new_generation_config != self.generation_config:
|
| 1717 |
+
warnings.warn(
|
| 1718 |
+
"You have modified the pretrained model configuration to control generation. This is a"
|
| 1719 |
+
" deprecated strategy to control generation and will be removed soon, in a future version."
|
| 1720 |
+
" Please use a generation configuration file (see"
|
| 1721 |
+
" https://huggingface.co/docs/transformers/main_classes/text_generation)"
|
| 1722 |
+
)
|
| 1723 |
+
self.generation_config = new_generation_config
|
| 1724 |
+
generation_config = self.generation_config
|
| 1725 |
+
|
| 1726 |
+
generation_config = copy.deepcopy(generation_config)
|
| 1727 |
+
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
|
| 1728 |
+
generation_config.validate()
|
| 1729 |
+
self._validate_model_kwargs(model_kwargs.copy())
|
| 1730 |
+
|
| 1731 |
+
# 2. Set generation parameters if not already defined
|
| 1732 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
| 1733 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
| 1734 |
+
|
| 1735 |
+
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
|
| 1736 |
+
if model_kwargs.get("attention_mask", None) is None:
|
| 1737 |
+
logger.warning(
|
| 1738 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe "
|
| 1739 |
+
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
|
| 1740 |
+
)
|
| 1741 |
+
eos_token_id = generation_config.eos_token_id
|
| 1742 |
+
if isinstance(eos_token_id, list):
|
| 1743 |
+
eos_token_id = eos_token_id[0]
|
| 1744 |
+
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
|
| 1745 |
+
generation_config.pad_token_id = eos_token_id
|
| 1746 |
+
|
| 1747 |
+
# 3. Define model inputs
|
| 1748 |
+
# inputs_tensor has to be defined
|
| 1749 |
+
# model_input_name is defined if model-specific keyword input is passed
|
| 1750 |
+
# otherwise model_input_name is None
|
| 1751 |
+
# all model-specific keyword inputs are removed from `model_kwargs`
|
| 1752 |
+
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
| 1753 |
+
inputs, generation_config.bos_token_id, model_kwargs
|
| 1754 |
+
)
|
| 1755 |
+
batch_size = inputs_tensor.shape[0]
|
| 1756 |
+
|
| 1757 |
+
# 4. Define other model kwargs
|
| 1758 |
+
model_kwargs["output_attentions"] = generation_config.output_attentions
|
| 1759 |
+
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
|
| 1760 |
+
model_kwargs["use_cache"] = generation_config.use_cache
|
| 1761 |
+
|
| 1762 |
+
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
|
| 1763 |
+
requires_attention_mask = "encoder_outputs" not in model_kwargs
|
| 1764 |
+
|
| 1765 |
+
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
|
| 1766 |
+
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
|
| 1767 |
+
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
|
| 1768 |
+
)
|
| 1769 |
+
|
| 1770 |
+
# decoder-only models should use left-padding for generation
|
| 1771 |
+
if not self.config.is_encoder_decoder:
|
| 1772 |
+
# If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
|
| 1773 |
+
# Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
|
| 1774 |
+
if (
|
| 1775 |
+
generation_config.pad_token_id is not None
|
| 1776 |
+
and len(inputs_tensor.shape) == 2
|
| 1777 |
+
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
|
| 1778 |
+
):
|
| 1779 |
+
logger.warning(
|
| 1780 |
+
"A decoder-only architecture is being used, but right-padding was detected! For correct "
|
| 1781 |
+
"generation results, please set `padding_side='left'` when initializing the tokenizer."
|
| 1782 |
+
)
|
| 1783 |
+
|
| 1784 |
+
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
| 1785 |
+
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
|
| 1786 |
+
|
| 1787 |
+
if streamer is not None:
|
| 1788 |
+
streamer.put(input_ids.cpu())
|
| 1789 |
+
|
| 1790 |
+
# 6. Prepare `max_length` depending on other stopping criteria.
|
| 1791 |
+
input_ids_seq_length = input_ids.shape[-1]
|
| 1792 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
| 1793 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
| 1794 |
+
warnings.warn(
|
| 1795 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
| 1796 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
| 1797 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
| 1798 |
+
UserWarning,
|
| 1799 |
+
)
|
| 1800 |
+
elif generation_config.max_new_tokens is not None:
|
| 1801 |
+
if not has_default_max_length:
|
| 1802 |
+
logger.warning(
|
| 1803 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
| 1804 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
| 1805 |
+
"Please refer to the documentation for more information. "
|
| 1806 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
|
| 1807 |
+
)
|
| 1808 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
| 1809 |
+
|
| 1810 |
+
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
|
| 1811 |
+
raise ValueError(
|
| 1812 |
+
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
|
| 1813 |
+
f" the maximum length ({generation_config.max_length})"
|
| 1814 |
+
)
|
| 1815 |
+
if input_ids_seq_length >= generation_config.max_length:
|
| 1816 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
| 1817 |
+
logger.warning(
|
| 1818 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
| 1819 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
| 1820 |
+
" increasing `max_new_tokens`."
|
| 1821 |
+
)
|
| 1822 |
+
|
| 1823 |
+
if streamer is not None and (generation_config.num_beams > 1):
|
| 1824 |
+
raise ValueError(
|
| 1825 |
+
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
|
| 1826 |
+
)
|
| 1827 |
+
|
| 1828 |
+
if self.device.type != input_ids.device.type:
|
| 1829 |
+
warnings.warn(
|
| 1830 |
+
"You are calling .generate() with the `input_ids` being on a device type different"
|
| 1831 |
+
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
|
| 1832 |
+
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
|
| 1833 |
+
" Please make sure that you have put `input_ids` to the"
|
| 1834 |
+
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
|
| 1835 |
+
" running `.generate()`.",
|
| 1836 |
+
UserWarning,
|
| 1837 |
+
)
|
| 1838 |
+
|
| 1839 |
+
# 7. prepare distribution pre_processing samplers
|
| 1840 |
+
logits_processor = self._get_logits_processor(
|
| 1841 |
+
generation_config=generation_config,
|
| 1842 |
+
input_ids_seq_length=input_ids_seq_length,
|
| 1843 |
+
encoder_input_ids=inputs_tensor,
|
| 1844 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
| 1845 |
+
logits_processor=logits_processor,
|
| 1846 |
+
)
|
| 1847 |
+
|
| 1848 |
+
# 8. prepare beam search scorer
|
| 1849 |
+
beam_scorer = CpmBeeBeamSearchScorer(
|
| 1850 |
+
batch_size=batch_size,
|
| 1851 |
+
num_beams=generation_config.num_beams,
|
| 1852 |
+
device=inputs_tensor.device,
|
| 1853 |
+
length_penalty=generation_config.length_penalty,
|
| 1854 |
+
do_early_stopping=generation_config.early_stopping,
|
| 1855 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
| 1856 |
+
max_length=generation_config.max_length,
|
| 1857 |
+
**kwargs,
|
| 1858 |
+
)
|
| 1859 |
+
# 9. interleave input_ids with `num_beams` additional sequences per batch
|
| 1860 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
| 1861 |
+
input_ids=input_ids,
|
| 1862 |
+
expand_size=generation_config.num_beams,
|
| 1863 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
| 1864 |
+
**model_kwargs,
|
| 1865 |
+
)
|
| 1866 |
+
# 10. run beam search
|
| 1867 |
+
return self.beam_search(
|
| 1868 |
+
input_ids,
|
| 1869 |
+
beam_scorer,
|
| 1870 |
+
repetition_penalty=repetition_penalty,
|
| 1871 |
+
logits_processor=logits_processor,
|
| 1872 |
+
pad_token_id=generation_config.pad_token_id,
|
| 1873 |
+
eos_token_id=generation_config.eos_token_id,
|
| 1874 |
+
output_scores=generation_config.output_scores,
|
| 1875 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
| 1876 |
+
synced_gpus=synced_gpus,
|
| 1877 |
+
**model_kwargs,
|
| 1878 |
+
)
|
| 1879 |
+
|
| 1880 |
+
@torch.no_grad()
|
| 1881 |
+
def generate(
|
| 1882 |
+
self,
|
| 1883 |
+
data_list: Union[Dict, List[Dict]],
|
| 1884 |
+
tokenizer: CpmBeeTokenizer,
|
| 1885 |
+
generation_config=None,
|
| 1886 |
+
**kwargs,
|
| 1887 |
+
):
|
| 1888 |
+
"""
|
| 1889 |
+
Override the generate for CPMBee. It will accept dict or list(dict) as input and returns dict or list(dict)
|
| 1890 |
+
with `<ans>` filled.
|
| 1891 |
+
|
| 1892 |
+
Parameters:
|
| 1893 |
+
data_list (`dict` or `list(dict)`):
|
| 1894 |
+
The sequence used as a prompt for the generation or as model inputs to the encoder. If dict, data_list
|
| 1895 |
+
will be wrapped as a list.
|
| 1896 |
+
tokenizer: (`CpmBeeTokenizer`):
|
| 1897 |
+
The tokenizer.
|
| 1898 |
+
generation_config (`~generation.GenerationConfig`, *optional*):
|
| 1899 |
+
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
| 1900 |
+
passed to generate matching the attributes of `generation_config` will override them. If
|
| 1901 |
+
`generation_config` is not provided, the default will be used, which had the following loading
|
| 1902 |
+
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
| 1903 |
+
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
|
| 1904 |
+
default values, whose documentation should be checked to parameterize generation.
|
| 1905 |
+
"""
|
| 1906 |
+
if isinstance(data_list, dict):
|
| 1907 |
+
data_list = [data_list]
|
| 1908 |
+
input_encoded = tokenizer(data_list, return_tensors="pt", padding=True, device=self.device)
|
| 1909 |
+
input_encoded.update(kwargs)
|
| 1910 |
+
input_encoded["generation_config"] = generation_config
|
| 1911 |
+
|
| 1912 |
+
decode_res = self._generate(**input_encoded)
|
| 1913 |
+
|
| 1914 |
+
for sent_id, result in enumerate(decode_res):
|
| 1915 |
+
ans_result_map: Dict[int, List[int]] = {}
|
| 1916 |
+
for raw_word_id, ans_id in result:
|
| 1917 |
+
if ans_id not in ans_result_map:
|
| 1918 |
+
ans_result_map[ans_id] = []
|
| 1919 |
+
ans_result_map[ans_id].append(raw_word_id)
|
| 1920 |
+
|
| 1921 |
+
answer_placeholders = input_encoded["other_info"][sent_id]["answer_placeholders"]
|
| 1922 |
+
ext_table = input_encoded["other_info"][sent_id]["ext_table"]
|
| 1923 |
+
data = data_list[sent_id]
|
| 1924 |
+
for ans_id, token_ids in ans_result_map.items():
|
| 1925 |
+
if token_ids[-1] == tokenizer.eos_token_id:
|
| 1926 |
+
token_ids = token_ids[:-1]
|
| 1927 |
+
text = tokenizer.decode(token_ids, ext_table)
|
| 1928 |
+
path = answer_placeholders[ans_id - 1]
|
| 1929 |
+
|
| 1930 |
+
if len(path) > 0:
|
| 1931 |
+
p = data["<ans>"]
|
| 1932 |
+
for part in path[:-1]:
|
| 1933 |
+
p = p[part]
|
| 1934 |
+
p[path[-1]] = text
|
| 1935 |
+
else:
|
| 1936 |
+
data["<ans>"] = text
|
| 1937 |
+
for ans_id in range(len(answer_placeholders)):
|
| 1938 |
+
if (ans_id + 1) not in ans_result_map:
|
| 1939 |
+
path = answer_placeholders[ans_id]
|
| 1940 |
+
p = data["<ans>"]
|
| 1941 |
+
for part in path[:-1]:
|
| 1942 |
+
p = p[part]
|
| 1943 |
+
p[path[-1]] = None
|
| 1944 |
+
return data_list
|
test_modeling_cpmbee.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" Testing suite for the PyTorch CpmBee model. """
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import unittest
|
| 19 |
+
|
| 20 |
+
from transformers.testing_utils import is_torch_available, require_torch, tooslow
|
| 21 |
+
|
| 22 |
+
from ...generation.test_utils import torch_device
|
| 23 |
+
from ...test_configuration_common import ConfigTester
|
| 24 |
+
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
| 25 |
+
from ...test_pipeline_mixin import PipelineTesterMixin
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
if is_torch_available():
|
| 29 |
+
import torch
|
| 30 |
+
|
| 31 |
+
from transformers import (
|
| 32 |
+
CpmBeeConfig,
|
| 33 |
+
CpmBeeForCausalLM,
|
| 34 |
+
CpmBeeModel,
|
| 35 |
+
CpmBeeTokenizer,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@require_torch
|
| 40 |
+
class CpmBeeModelTester:
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
parent,
|
| 44 |
+
batch_size=2,
|
| 45 |
+
seq_length=8,
|
| 46 |
+
is_training=True,
|
| 47 |
+
use_token_type_ids=False,
|
| 48 |
+
use_input_mask=False,
|
| 49 |
+
use_labels=False,
|
| 50 |
+
use_mc_token_ids=False,
|
| 51 |
+
vocab_size=99,
|
| 52 |
+
hidden_size=32,
|
| 53 |
+
num_hidden_layers=3,
|
| 54 |
+
num_attention_heads=4,
|
| 55 |
+
intermediate_size=37,
|
| 56 |
+
num_buckets=32,
|
| 57 |
+
max_distance=128,
|
| 58 |
+
position_bias_num_segment_buckets=32,
|
| 59 |
+
init_std=1.0,
|
| 60 |
+
return_dict=True,
|
| 61 |
+
):
|
| 62 |
+
self.parent = parent
|
| 63 |
+
self.batch_size = batch_size
|
| 64 |
+
self.seq_length = seq_length
|
| 65 |
+
self.is_training = is_training
|
| 66 |
+
self.use_token_type_ids = use_token_type_ids
|
| 67 |
+
self.use_input_mask = use_input_mask
|
| 68 |
+
self.use_labels = use_labels
|
| 69 |
+
self.use_mc_token_ids = use_mc_token_ids
|
| 70 |
+
self.vocab_size = vocab_size
|
| 71 |
+
self.hidden_size = hidden_size
|
| 72 |
+
self.num_hidden_layers = num_hidden_layers
|
| 73 |
+
self.num_attention_heads = num_attention_heads
|
| 74 |
+
self.intermediate_size = intermediate_size
|
| 75 |
+
self.num_buckets = num_buckets
|
| 76 |
+
self.max_distance = max_distance
|
| 77 |
+
self.position_bias_num_segment_buckets = position_bias_num_segment_buckets
|
| 78 |
+
self.init_std = init_std
|
| 79 |
+
self.return_dict = return_dict
|
| 80 |
+
|
| 81 |
+
def prepare_config_and_inputs(self):
|
| 82 |
+
input_ids = {}
|
| 83 |
+
input_ids["input_ids"] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).type(torch.int32)
|
| 84 |
+
input_ids["use_cache"] = False
|
| 85 |
+
|
| 86 |
+
config = self.get_config()
|
| 87 |
+
|
| 88 |
+
return (config, input_ids)
|
| 89 |
+
|
| 90 |
+
def get_config(self):
|
| 91 |
+
return CpmBeeConfig(
|
| 92 |
+
vocab_size=self.vocab_size,
|
| 93 |
+
hidden_size=self.hidden_size,
|
| 94 |
+
num_hidden_layers=self.num_hidden_layers,
|
| 95 |
+
num_attention_heads=self.num_attention_heads,
|
| 96 |
+
dim_ff=self.intermediate_size,
|
| 97 |
+
position_bias_num_buckets=self.num_buckets,
|
| 98 |
+
position_bias_max_distance=self.max_distance,
|
| 99 |
+
position_bias_num_segment_buckets=self.position_bias_num_segment_buckets,
|
| 100 |
+
use_cache=True,
|
| 101 |
+
init_std=self.init_std,
|
| 102 |
+
return_dict=self.return_dict,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
def create_and_check_cpmbee_model(self, config, input_ids, *args):
|
| 106 |
+
model = CpmBeeModel(config=config)
|
| 107 |
+
model.to(torch_device)
|
| 108 |
+
model.eval()
|
| 109 |
+
|
| 110 |
+
hidden_states = model(**input_ids).last_hidden_state
|
| 111 |
+
|
| 112 |
+
self.parent.assertEqual(hidden_states.shape, (self.batch_size, self.seq_length, config.hidden_size))
|
| 113 |
+
|
| 114 |
+
def create_and_check_lm_head_model(self, config, input_ids, *args):
|
| 115 |
+
model = CpmBeeForCausalLM(config)
|
| 116 |
+
model.to(torch_device)
|
| 117 |
+
input_ids["input_ids"] = input_ids["input_ids"].to(torch_device)
|
| 118 |
+
model.eval()
|
| 119 |
+
|
| 120 |
+
model_output = model(**input_ids)
|
| 121 |
+
self.parent.assertEqual(
|
| 122 |
+
model_output.logits.shape,
|
| 123 |
+
(self.batch_size, self.seq_length, config.vocab_size),
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
def prepare_config_and_inputs_for_common(self):
|
| 127 |
+
config, inputs_dict = self.prepare_config_and_inputs()
|
| 128 |
+
return config, inputs_dict
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@require_torch
|
| 132 |
+
class CpmBeeModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
| 133 |
+
all_model_classes = (CpmBeeModel, CpmBeeForCausalLM) if is_torch_available() else ()
|
| 134 |
+
pipeline_model_mapping = (
|
| 135 |
+
{"feature-extraction": CpmBeeModel, "text-generation": CpmBeeForCausalLM} if is_torch_available() else {}
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
test_pruning = False
|
| 139 |
+
test_missing_keys = False
|
| 140 |
+
test_mismatched_shapes = False
|
| 141 |
+
test_head_masking = False
|
| 142 |
+
test_resize_embeddings = False
|
| 143 |
+
|
| 144 |
+
def setUp(self):
|
| 145 |
+
self.model_tester = CpmBeeModelTester(self)
|
| 146 |
+
self.config_tester = ConfigTester(self, config_class=CpmBeeConfig)
|
| 147 |
+
|
| 148 |
+
def test_config(self):
|
| 149 |
+
self.config_tester.create_and_test_config_common_properties()
|
| 150 |
+
self.config_tester.create_and_test_config_to_json_string()
|
| 151 |
+
self.config_tester.create_and_test_config_to_json_file()
|
| 152 |
+
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
| 153 |
+
self.config_tester.check_config_can_be_init_without_params()
|
| 154 |
+
self.config_tester.check_config_arguments_init()
|
| 155 |
+
|
| 156 |
+
def test_inputs_embeds(self):
|
| 157 |
+
unittest.skip("CPMBee doesn't support input_embeds.")(self.test_inputs_embeds)
|
| 158 |
+
|
| 159 |
+
def test_retain_grad_hidden_states_attentions(self):
|
| 160 |
+
unittest.skip(
|
| 161 |
+
"CPMBee doesn't support retain grad in hidden_states or attentions, because prompt management will peel off the output.hidden_states from graph.\
|
| 162 |
+
So is attentions. We strongly recommand you use loss to tune model."
|
| 163 |
+
)(self.test_retain_grad_hidden_states_attentions)
|
| 164 |
+
|
| 165 |
+
def test_cpmbee_model(self):
|
| 166 |
+
config, inputs = self.model_tester.prepare_config_and_inputs()
|
| 167 |
+
self.model_tester.create_and_check_cpmbee_model(config, inputs)
|
| 168 |
+
|
| 169 |
+
def test_cpmbee_lm_head_model(self):
|
| 170 |
+
config, inputs = self.model_tester.prepare_config_and_inputs()
|
| 171 |
+
self.model_tester.create_and_check_lm_head_model(config, inputs)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
@require_torch
|
| 175 |
+
class CpmBeeForCausalLMlIntegrationTest(unittest.TestCase):
|
| 176 |
+
@tooslow
|
| 177 |
+
def test_simple_generation(self):
|
| 178 |
+
texts = {"input": "今天天气不错,", "<ans>": ""}
|
| 179 |
+
model = CpmBeeForCausalLM.from_pretrained("openbmb/cpm-bee-10b")
|
| 180 |
+
tokenizer = CpmBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b")
|
| 181 |
+
output_texts = model.generate(texts, tokenizer)
|
| 182 |
+
expected_output = {"input": "今天天气不错,", "<ans>": "适合睡觉。"}
|
| 183 |
+
self.assertEqual(expected_output["<ans>"], output_texts["<ans>"])
|
test_tokenization_cpmbee.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" Testing suite for the PyTorch CpmBee tokenizer. """
|
| 16 |
+
|
| 17 |
+
import os
|
| 18 |
+
import unittest
|
| 19 |
+
|
| 20 |
+
from transformers.models.cpmbee.tokenization_cpmbee import VOCAB_FILES_NAMES, CpmBeeTokenizer
|
| 21 |
+
from transformers.tokenization_utils import AddedToken
|
| 22 |
+
|
| 23 |
+
from ...test_tokenization_common import TokenizerTesterMixin
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class CPMBeeTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
| 27 |
+
tokenizer_class = CpmBeeTokenizer
|
| 28 |
+
test_rust_tokenizer = False
|
| 29 |
+
|
| 30 |
+
def setUp(self):
|
| 31 |
+
super().setUp()
|
| 32 |
+
|
| 33 |
+
vocab_tokens = [
|
| 34 |
+
"<d>",
|
| 35 |
+
"</d>",
|
| 36 |
+
"<s>",
|
| 37 |
+
"</s>",
|
| 38 |
+
"</_>",
|
| 39 |
+
"<unk>",
|
| 40 |
+
"<pad>",
|
| 41 |
+
"<mask>",
|
| 42 |
+
"</n>",
|
| 43 |
+
"我",
|
| 44 |
+
"是",
|
| 45 |
+
"C",
|
| 46 |
+
"P",
|
| 47 |
+
"M",
|
| 48 |
+
"B",
|
| 49 |
+
"e",
|
| 50 |
+
"e",
|
| 51 |
+
]
|
| 52 |
+
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
| 53 |
+
vocab_tokens = list(set(vocab_tokens))
|
| 54 |
+
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
|
| 55 |
+
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
|
| 56 |
+
|
| 57 |
+
# override test_add_tokens_tokenizer because <...> is special token in CpmBeeTokenizer.
|
| 58 |
+
def test_add_tokens_tokenizer(self):
|
| 59 |
+
tokenizers = self.get_tokenizers(do_lower_case=False)
|
| 60 |
+
for tokenizer in tokenizers:
|
| 61 |
+
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
| 62 |
+
vocab_size = tokenizer.vocab_size
|
| 63 |
+
all_size = len(tokenizer)
|
| 64 |
+
|
| 65 |
+
self.assertNotEqual(vocab_size, 0)
|
| 66 |
+
|
| 67 |
+
# We usually have added tokens from the start in tests because our vocab fixtures are
|
| 68 |
+
# smaller than the original vocabs - let's not assert this
|
| 69 |
+
# self.assertEqual(vocab_size, all_size)
|
| 70 |
+
|
| 71 |
+
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
|
| 72 |
+
added_toks = tokenizer.add_tokens(new_toks)
|
| 73 |
+
vocab_size_2 = tokenizer.vocab_size
|
| 74 |
+
all_size_2 = len(tokenizer)
|
| 75 |
+
|
| 76 |
+
self.assertNotEqual(vocab_size_2, 0)
|
| 77 |
+
self.assertEqual(vocab_size, vocab_size_2)
|
| 78 |
+
self.assertEqual(added_toks, len(new_toks))
|
| 79 |
+
self.assertEqual(all_size_2, all_size + len(new_toks))
|
| 80 |
+
|
| 81 |
+
tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
|
| 82 |
+
|
| 83 |
+
self.assertGreaterEqual(len(tokens), 4)
|
| 84 |
+
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
|
| 85 |
+
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
|
| 86 |
+
|
| 87 |
+
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||;;;||;"}
|
| 88 |
+
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
|
| 89 |
+
vocab_size_3 = tokenizer.vocab_size
|
| 90 |
+
all_size_3 = len(tokenizer)
|
| 91 |
+
|
| 92 |
+
self.assertNotEqual(vocab_size_3, 0)
|
| 93 |
+
self.assertEqual(vocab_size, vocab_size_3)
|
| 94 |
+
self.assertEqual(added_toks_2, len(new_toks_2))
|
| 95 |
+
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
|
| 96 |
+
|
| 97 |
+
tokens = tokenizer.encode(
|
| 98 |
+
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||;;;||; l", add_special_tokens=False
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
self.assertGreaterEqual(len(tokens), 6)
|
| 102 |
+
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
|
| 103 |
+
self.assertGreater(tokens[0], tokens[1])
|
| 104 |
+
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
|
| 105 |
+
self.assertGreater(tokens[-2], tokens[-3])
|
| 106 |
+
self.assertEqual(tokens[0], tokenizer.eos_token_id)
|
| 107 |
+
self.assertEqual(tokens[-2], tokenizer.pad_token_id)
|
| 108 |
+
|
| 109 |
+
def test_added_tokens_do_lower_case(self):
|
| 110 |
+
tokenizers = self.get_tokenizers(do_lower_case=True)
|
| 111 |
+
for tokenizer in tokenizers:
|
| 112 |
+
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
| 113 |
+
if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case:
|
| 114 |
+
continue
|
| 115 |
+
|
| 116 |
+
special_token = tokenizer.all_special_tokens[0]
|
| 117 |
+
|
| 118 |
+
text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
|
| 119 |
+
text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
|
| 120 |
+
|
| 121 |
+
toks_before_adding = tokenizer.tokenize(text) # toks before adding new_toks
|
| 122 |
+
|
| 123 |
+
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
|
| 124 |
+
added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
|
| 125 |
+
|
| 126 |
+
toks_after_adding = tokenizer.tokenize(text)
|
| 127 |
+
toks_after_adding2 = tokenizer.tokenize(text2)
|
| 128 |
+
|
| 129 |
+
# Rust tokenizers dont't lowercase added tokens at the time calling `tokenizer.add_tokens`,
|
| 130 |
+
# while python tokenizers do, so new_toks 0 and 2 would be treated as the same, so do new_toks 1 and 3.
|
| 131 |
+
self.assertIn(added, [2, 4])
|
| 132 |
+
|
| 133 |
+
self.assertListEqual(toks_after_adding, toks_after_adding2)
|
| 134 |
+
self.assertTrue(
|
| 135 |
+
len(toks_before_adding) > len(toks_after_adding), # toks_before_adding should be longer
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Check that none of the special tokens are lowercased
|
| 139 |
+
sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
|
| 140 |
+
# Convert the tokenized list to str as some special tokens are tokenized like normal tokens
|
| 141 |
+
# which have a prefix spacee e.g. the mask token of Albert, and cannot match the original
|
| 142 |
+
# special tokens exactly.
|
| 143 |
+
tokenized_sequence = "".join(tokenizer.tokenize(sequence_with_special_tokens))
|
| 144 |
+
|
| 145 |
+
for special_token in tokenizer.all_special_tokens:
|
| 146 |
+
self.assertTrue(special_token in tokenized_sequence)
|
| 147 |
+
|
| 148 |
+
tokenizers = self.get_tokenizers(do_lower_case=True)
|
| 149 |
+
for tokenizer in tokenizers:
|
| 150 |
+
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
| 151 |
+
if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case:
|
| 152 |
+
continue
|
| 153 |
+
|
| 154 |
+
special_token = tokenizer.all_special_tokens[0]
|
| 155 |
+
|
| 156 |
+
text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
|
| 157 |
+
text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
|
| 158 |
+
|
| 159 |
+
toks_before_adding = tokenizer.tokenize(text) # toks before adding new_toks
|
| 160 |
+
|
| 161 |
+
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
|
| 162 |
+
added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
|
| 163 |
+
self.assertIn(added, [2, 4])
|
| 164 |
+
|
| 165 |
+
toks_after_adding = tokenizer.tokenize(text)
|
| 166 |
+
toks_after_adding2 = tokenizer.tokenize(text2)
|
| 167 |
+
|
| 168 |
+
self.assertEqual(len(toks_after_adding), len(toks_after_adding2)) # Length should still be the same
|
| 169 |
+
self.assertNotEqual(
|
| 170 |
+
toks_after_adding[1], toks_after_adding2[1]
|
| 171 |
+
) # But at least the first non-special tokens should differ
|
| 172 |
+
self.assertTrue(
|
| 173 |
+
len(toks_before_adding) > len(toks_after_adding), # toks_before_adding should be longer
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
def test_pre_tokenization(self):
|
| 177 |
+
tokenizer = CpmBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b")
|
| 178 |
+
texts = {"input": "你好,", "<ans>": ""}
|
| 179 |
+
tokens = tokenizer(texts)
|
| 180 |
+
tokens = tokens["input_ids"][0]
|
| 181 |
+
|
| 182 |
+
input_tokens = [6, 8, 7, 6, 65678, 7, 6, 10273, 246, 7, 6, 9, 7]
|
| 183 |
+
self.assertListEqual(tokens, input_tokens)
|
| 184 |
+
|
| 185 |
+
normalized_text = "<s><root></s><s>input</s><s>你好,</s><s><ans></s>"
|
| 186 |
+
reconstructed_text = tokenizer.decode(tokens)
|
| 187 |
+
self.assertEqual(reconstructed_text, normalized_text)
|
tokenization_cpmbee.py
ADDED
|
@@ -0,0 +1,868 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Tokenization classes for CpmBee."""
|
| 16 |
+
import json
|
| 17 |
+
import os
|
| 18 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
from typing_extensions import TypedDict
|
| 22 |
+
|
| 23 |
+
from transformers.tokenization_utils import PaddingStrategy, PreTrainedTokenizer, TensorType
|
| 24 |
+
from transformers.tokenization_utils_base import AddedToken, BatchEncoding, TextInput, TruncationStrategy
|
| 25 |
+
from transformers.utils import logging
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
logger = logging.get_logger(__name__)
|
| 29 |
+
|
| 30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
| 31 |
+
|
| 32 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
| 33 |
+
"vocab_file": {
|
| 34 |
+
"openbmb/cpm-bee-10b": "https://huggingface.co/openbmb/cpm-bee-10b/blob/main/vocab.txt",
|
| 35 |
+
"openbmb/cpm-bee-5b": "https://huggingface.co/openbmb/cpm-bee-5b/blob/main/vocab.txt",
|
| 36 |
+
"openbmb/cpm-bee-2b": "https://huggingface.co/openbmb/cpm-bee-2b/blob/main/vocab.txt",
|
| 37 |
+
"openbmb/cpm-bee-1b": "https://huggingface.co/openbmb/cpm-bee-1b/blob/main/vocab.txt",
|
| 38 |
+
},
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
| 42 |
+
"openbmb/cpm-bee-10b": 4096,
|
| 43 |
+
"openbmb/cpm-bee-5b": 4096,
|
| 44 |
+
"openbmb/cpm-bee-2b": 4096,
|
| 45 |
+
"openbmb/cpm-bee-1b": 4096,
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class _PrevExtTableStates(TypedDict):
|
| 50 |
+
ext_table: Dict[int, str]
|
| 51 |
+
token_id_table: Dict[str, Dict[int, int]]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
CPMBeeInputType = Union[str, Dict[str, "CPMBeeInputType"]]
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def rel_to_bucket(n_up: int, n_down: int, max_depth: int = 8):
|
| 58 |
+
ret = n_up * max_depth + n_down
|
| 59 |
+
if ret == 0:
|
| 60 |
+
return ret
|
| 61 |
+
else:
|
| 62 |
+
# bucket 1 is reserved for incontext samples
|
| 63 |
+
return ret + 1
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class _DictTree(TypedDict):
|
| 67 |
+
value: str
|
| 68 |
+
children: List["_DictTree"]
|
| 69 |
+
depth: int
|
| 70 |
+
segment_id: int
|
| 71 |
+
need_predict: bool
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class CpmBeeTokenizer(PreTrainedTokenizer):
|
| 75 |
+
"""
|
| 76 |
+
Construct a CPMBee tokenizer.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
vocab_file (`str`):
|
| 80 |
+
Path to the vocabulary file.
|
| 81 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
| 82 |
+
The beginning of sequence token.
|
| 83 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
| 84 |
+
The end of sequence token.
|
| 85 |
+
line_token (`str`, *optional*, defaults to `"\n"`):
|
| 86 |
+
The line token.
|
| 87 |
+
space_token (`str`, *optional*, defaults to `" "`):
|
| 88 |
+
The space token.
|
| 89 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
| 90 |
+
The unknown token.
|
| 91 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
| 92 |
+
The mask token.
|
| 93 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
| 94 |
+
The token used for padding.
|
| 95 |
+
padding_side (`str`, *optional*, defaults to `"left"`):
|
| 96 |
+
The padding side. CPM-Bee will use left padding by default.
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 100 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 101 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
| 102 |
+
model_input_names: List[str] = [
|
| 103 |
+
"input_ids",
|
| 104 |
+
"attention_mask",
|
| 105 |
+
"input_id_sub",
|
| 106 |
+
"position",
|
| 107 |
+
"context",
|
| 108 |
+
"sample_ids",
|
| 109 |
+
"num_segments",
|
| 110 |
+
"segment",
|
| 111 |
+
"segment_rel_offset",
|
| 112 |
+
"segment_rel",
|
| 113 |
+
]
|
| 114 |
+
add_prefix_space = False
|
| 115 |
+
|
| 116 |
+
def __init__(
|
| 117 |
+
self,
|
| 118 |
+
vocab_file,
|
| 119 |
+
bos_token="<s>",
|
| 120 |
+
eos_token="</s>",
|
| 121 |
+
line_token="\n",
|
| 122 |
+
space_token=" ",
|
| 123 |
+
unk_token="<unk>",
|
| 124 |
+
mask_token="<mask>",
|
| 125 |
+
pad_token="<pad>",
|
| 126 |
+
padding_side="left",
|
| 127 |
+
**kwargs,
|
| 128 |
+
):
|
| 129 |
+
super().__init__(
|
| 130 |
+
bos_token=bos_token,
|
| 131 |
+
eos_token=eos_token,
|
| 132 |
+
line_token=line_token,
|
| 133 |
+
space_token=space_token,
|
| 134 |
+
unk_token=unk_token,
|
| 135 |
+
mask_token=mask_token,
|
| 136 |
+
pad_token=pad_token,
|
| 137 |
+
padding_side=padding_side,
|
| 138 |
+
**kwargs,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
self.encoder: Dict[str, int] = {}
|
| 142 |
+
|
| 143 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
| 144 |
+
for token in reader.readlines():
|
| 145 |
+
token = token.rstrip("\n")
|
| 146 |
+
if len(token) == 0:
|
| 147 |
+
continue
|
| 148 |
+
self.encoder[token] = len(self.encoder)
|
| 149 |
+
|
| 150 |
+
self.encoder[" "] = self.encoder["</_>"]
|
| 151 |
+
self.encoder["\n"] = self.encoder["</n>"]
|
| 152 |
+
del self.encoder["</_>"]
|
| 153 |
+
del self.encoder["</n>"]
|
| 154 |
+
|
| 155 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 156 |
+
|
| 157 |
+
self._max_word_len = max([len(x) for x in self.encoder.keys()])
|
| 158 |
+
self.cpmbee_special_tokens = {k: v for k, v in self.encoder.items() if k.startswith("<") and k.endswith(">")}
|
| 159 |
+
|
| 160 |
+
self.ext_table: Dict[int, str] = {}
|
| 161 |
+
self.ext_table_rev: Dict[str, int] = {}
|
| 162 |
+
|
| 163 |
+
self.token_id_table: Dict[str, Dict[int, int]] = {}
|
| 164 |
+
self.ext_special_tokens = []
|
| 165 |
+
|
| 166 |
+
self.ext_args_for_model = [
|
| 167 |
+
"input_id_subs",
|
| 168 |
+
"input_pos",
|
| 169 |
+
"context",
|
| 170 |
+
"segment_ids",
|
| 171 |
+
"segment_rel_offset",
|
| 172 |
+
"segment_rel",
|
| 173 |
+
"sample_ids",
|
| 174 |
+
"num_segments",
|
| 175 |
+
"predict_segments",
|
| 176 |
+
"answer_placeholders",
|
| 177 |
+
"ext_table",
|
| 178 |
+
"token_id_table",
|
| 179 |
+
]
|
| 180 |
+
|
| 181 |
+
@property
|
| 182 |
+
def bod_token_id(self):
|
| 183 |
+
return self.encoder[self.bod_token]
|
| 184 |
+
|
| 185 |
+
@property
|
| 186 |
+
def eod_token_id(self):
|
| 187 |
+
return self.encoder[self.eod_token]
|
| 188 |
+
|
| 189 |
+
@property
|
| 190 |
+
def newline_id(self):
|
| 191 |
+
return self.encoder[self.line_token]
|
| 192 |
+
|
| 193 |
+
@property
|
| 194 |
+
def vocab_size(self) -> int:
|
| 195 |
+
return len(self.encoder)
|
| 196 |
+
|
| 197 |
+
def __len__(self):
|
| 198 |
+
"""
|
| 199 |
+
Size of the full vocabulary with the added tokens.
|
| 200 |
+
"""
|
| 201 |
+
return self.vocab_size + len(self.added_tokens_encoder)
|
| 202 |
+
|
| 203 |
+
def get_vocab(self):
|
| 204 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
| 205 |
+
|
| 206 |
+
def get_piece(self, text: str) -> str:
|
| 207 |
+
"""
|
| 208 |
+
Match with maximum length.
|
| 209 |
+
"""
|
| 210 |
+
len_text = len(text)
|
| 211 |
+
for i in range(len(text)):
|
| 212 |
+
sub = text[: len_text - i]
|
| 213 |
+
if (sub in self.encoder) or (sub in self.added_tokens_encoder):
|
| 214 |
+
return sub
|
| 215 |
+
return text[0]
|
| 216 |
+
|
| 217 |
+
def tokenize(self, text: TextInput, **kwargs) -> List[str]:
|
| 218 |
+
r"""
|
| 219 |
+
Override the `tokenize` to meet the needs of CPMBee:
|
| 220 |
+
1. Mark the special token with `<` and `>`. The `<>` will be ignored.
|
| 221 |
+
2. Split sentences by the marked special tokens.
|
| 222 |
+
3. Record the marked special token by `ext_table` and `ext_table_rev`.
|
| 223 |
+
4. Tokenize the sentence without special tokens.
|
| 224 |
+
"""
|
| 225 |
+
for_cpmbee = kwargs.get("for_cpmbee", False)
|
| 226 |
+
all_special_tokens_extended = {
|
| 227 |
+
str(t): t for t in self.all_special_tokens_extended if isinstance(t, AddedToken)
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
sentence_split = [""]
|
| 231 |
+
is_special_token = False
|
| 232 |
+
for i, c in enumerate(text):
|
| 233 |
+
if is_special_token:
|
| 234 |
+
if c == "<":
|
| 235 |
+
tail = sentence_split.pop(-1)
|
| 236 |
+
sentence_split[-1] += tail
|
| 237 |
+
sentence_split.append(c)
|
| 238 |
+
elif c == ">":
|
| 239 |
+
# end of special token
|
| 240 |
+
sentence_split[-1] += c
|
| 241 |
+
if sentence_split[-1] == "<>":
|
| 242 |
+
continue
|
| 243 |
+
is_special_token = False
|
| 244 |
+
sentence_split.append("")
|
| 245 |
+
else:
|
| 246 |
+
sentence_split[-1] += c
|
| 247 |
+
else:
|
| 248 |
+
if c == "<":
|
| 249 |
+
is_special_token = True
|
| 250 |
+
sentence_split.append(c)
|
| 251 |
+
else:
|
| 252 |
+
sentence_split[-1] += c
|
| 253 |
+
if is_special_token:
|
| 254 |
+
tail = sentence_split.pop(-1)
|
| 255 |
+
sentence_split[-1] += tail
|
| 256 |
+
|
| 257 |
+
output_tokens = []
|
| 258 |
+
for i, part in enumerate(sentence_split):
|
| 259 |
+
if (i & 1) == 1:
|
| 260 |
+
# special token
|
| 261 |
+
output_tokens.append(part)
|
| 262 |
+
if for_cpmbee and (part not in self.encoder) and (part not in self.ext_table_rev):
|
| 263 |
+
self.ext_table_rev[part] = len(self.ext_table_rev) + self.vocab_size
|
| 264 |
+
self.ext_table[self.ext_table_rev[part]] = part
|
| 265 |
+
else:
|
| 266 |
+
output_tokens.extend(self._tokenize(part, for_cpmbee=for_cpmbee))
|
| 267 |
+
|
| 268 |
+
# drop spaces
|
| 269 |
+
for i, token in enumerate(output_tokens):
|
| 270 |
+
if token in self.added_tokens_encoder:
|
| 271 |
+
token = all_special_tokens_extended.get(token, None)
|
| 272 |
+
left = output_tokens[i - 1] if i > 0 else None
|
| 273 |
+
right = output_tokens[i + 1] if i < len(output_tokens) - 1 else None
|
| 274 |
+
if isinstance(token, AddedToken):
|
| 275 |
+
if token.rstrip and right:
|
| 276 |
+
# A bit counter-intuitive but we strip the left of the string
|
| 277 |
+
# since tok_extended.rstrip means the special token is eating all white spaces on its right
|
| 278 |
+
output_tokens[i + 1] = right.lstrip()
|
| 279 |
+
# Strip white spaces on the left
|
| 280 |
+
if token.lstrip and left:
|
| 281 |
+
output_tokens[i - 1] = left.rstrip() # Opposite here
|
| 282 |
+
else:
|
| 283 |
+
if right:
|
| 284 |
+
output_tokens[i + 1] = right.lstrip()
|
| 285 |
+
if left:
|
| 286 |
+
output_tokens[i - 1] = left.rstrip()
|
| 287 |
+
|
| 288 |
+
skipped_tokens = []
|
| 289 |
+
for token in output_tokens:
|
| 290 |
+
if not token:
|
| 291 |
+
continue
|
| 292 |
+
else:
|
| 293 |
+
skipped_tokens.append(token)
|
| 294 |
+
|
| 295 |
+
return skipped_tokens
|
| 296 |
+
|
| 297 |
+
def _tokenize(self, text, **kwargs):
|
| 298 |
+
"""
|
| 299 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
| 300 |
+
vocabulary.
|
| 301 |
+
|
| 302 |
+
Do NOT take care of added tokens. Record the unk tokens and special tokens in `ext_table` and `ext_table_rev`.
|
| 303 |
+
"""
|
| 304 |
+
for_cpmbee = kwargs.get("for_cpmbee", False)
|
| 305 |
+
output_tokens = []
|
| 306 |
+
|
| 307 |
+
part_st = 0
|
| 308 |
+
last_unk = None
|
| 309 |
+
while part_st < len(text):
|
| 310 |
+
piece = self.get_piece(text[part_st:])
|
| 311 |
+
if piece in self.encoder or self.added_tokens_encoder:
|
| 312 |
+
if last_unk is None:
|
| 313 |
+
output_tokens.append(piece)
|
| 314 |
+
else:
|
| 315 |
+
if for_cpmbee and (last_unk not in self.ext_table_rev):
|
| 316 |
+
self.ext_table_rev[last_unk] = len(self.ext_table_rev) + self.vocab_size
|
| 317 |
+
self.ext_table[self.ext_table_rev[last_unk]] = last_unk
|
| 318 |
+
output_tokens.append(last_unk)
|
| 319 |
+
output_tokens.append(piece)
|
| 320 |
+
last_unk = None
|
| 321 |
+
else:
|
| 322 |
+
if last_unk is None:
|
| 323 |
+
last_unk = piece
|
| 324 |
+
else:
|
| 325 |
+
last_unk += piece
|
| 326 |
+
part_st += len(piece)
|
| 327 |
+
if last_unk is not None:
|
| 328 |
+
# part end with UNK
|
| 329 |
+
if for_cpmbee and (last_unk not in self.ext_table_rev):
|
| 330 |
+
self.ext_table_rev[last_unk] = len(self.ext_table_rev) + self.vocab_size
|
| 331 |
+
self.ext_table[self.ext_table_rev[last_unk]] = last_unk
|
| 332 |
+
output_tokens.append(last_unk)
|
| 333 |
+
|
| 334 |
+
return output_tokens
|
| 335 |
+
|
| 336 |
+
def check(self, token):
|
| 337 |
+
return token in self.encoder
|
| 338 |
+
|
| 339 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 340 |
+
return "".join(tokens)
|
| 341 |
+
|
| 342 |
+
def _convert_token_to_id(self, token: str):
|
| 343 |
+
"""Converts a token (str) in an id using the vocab and ext_table."""
|
| 344 |
+
if token in self.encoder:
|
| 345 |
+
return self.encoder.get(token)
|
| 346 |
+
elif token in self.ext_table_rev:
|
| 347 |
+
return self.ext_table_rev[token]
|
| 348 |
+
elif token in self.added_tokens_encoder:
|
| 349 |
+
return self.added_tokens_encoder[token]
|
| 350 |
+
else:
|
| 351 |
+
return self.unk_token_id
|
| 352 |
+
|
| 353 |
+
def _convert_id_to_token(self, index):
|
| 354 |
+
"""Converts an index (integer) in a token (str) using the vocab and ext_table."""
|
| 355 |
+
if index in self.ext_table:
|
| 356 |
+
return self.ext_table[index]
|
| 357 |
+
elif index in self.added_tokens_decoder:
|
| 358 |
+
return self.added_tokens_decoder[index]
|
| 359 |
+
else:
|
| 360 |
+
if index >= 0:
|
| 361 |
+
return self.decoder[index]
|
| 362 |
+
|
| 363 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 364 |
+
if os.path.isdir(save_directory):
|
| 365 |
+
vocab_file = os.path.join(
|
| 366 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 367 |
+
)
|
| 368 |
+
else:
|
| 369 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
| 370 |
+
index = 0
|
| 371 |
+
self.encoder["</n>"] = self.encoder["\n"]
|
| 372 |
+
del self.encoder["\n"]
|
| 373 |
+
self.encoder["</_>"] = self.encoder[" "]
|
| 374 |
+
del self.encoder[" "]
|
| 375 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
| 376 |
+
for token, token_index in sorted(self.encoder.items(), key=lambda x: x[1]):
|
| 377 |
+
if index != token_index:
|
| 378 |
+
logger.warning(
|
| 379 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
| 380 |
+
" Please check that the vocabulary is not corrupted!"
|
| 381 |
+
)
|
| 382 |
+
index = token_index
|
| 383 |
+
writer.write(token + "\n")
|
| 384 |
+
index += 1
|
| 385 |
+
return (vocab_file,)
|
| 386 |
+
|
| 387 |
+
def __call__(self, text, *args, **kwargs):
|
| 388 |
+
r"""
|
| 389 |
+
CPMBee `call` method will use `_tokenize_cpmbee` when the input type is dict.
|
| 390 |
+
"""
|
| 391 |
+
if isinstance(text, dict):
|
| 392 |
+
return self._batch_tokenize_cpmbee([text], *args, **kwargs)
|
| 393 |
+
elif isinstance(text, (list, tuple)):
|
| 394 |
+
if isinstance(text[0], dict):
|
| 395 |
+
return self._batch_tokenize_cpmbee(text, *args, **kwargs)
|
| 396 |
+
else:
|
| 397 |
+
return super().__call__(text, *args, **kwargs)
|
| 398 |
+
else:
|
| 399 |
+
return super().__call__(text, *args, **kwargs)
|
| 400 |
+
|
| 401 |
+
# 分词
|
| 402 |
+
def _tokenize_cpmbee(self, data: TextInput, *args, **kwargs) -> List[str]:
|
| 403 |
+
"""
|
| 404 |
+
A tokenize method to process dict data. Exclusive for CPMBee.
|
| 405 |
+
"""
|
| 406 |
+
if isinstance(data, str):
|
| 407 |
+
data = json.loads(data)
|
| 408 |
+
if not isinstance(data, Dict):
|
| 409 |
+
raise TypeError(
|
| 410 |
+
"CpmBeeTokenizer input data should be dict or str in dict format, but got {}".format(type(data))
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
# 1. prepare answer placeholder
|
| 414 |
+
answer_placeholders = []
|
| 415 |
+
|
| 416 |
+
def _put_placeholder(data: Any, path: List[str] = []):
|
| 417 |
+
if isinstance(data, dict):
|
| 418 |
+
ret = {}
|
| 419 |
+
for k, v in data.items():
|
| 420 |
+
ret[k] = _put_placeholder(v, path + [k])
|
| 421 |
+
return ret
|
| 422 |
+
else:
|
| 423 |
+
answer_placeholders.append(path)
|
| 424 |
+
return "<ans_{}>".format(len(answer_placeholders))
|
| 425 |
+
|
| 426 |
+
data["<ans>"] = _put_placeholder(data["<ans>"])
|
| 427 |
+
|
| 428 |
+
(
|
| 429 |
+
input_ids,
|
| 430 |
+
input_id_subs,
|
| 431 |
+
context,
|
| 432 |
+
segment_ids,
|
| 433 |
+
segment_rel,
|
| 434 |
+
n_segments,
|
| 435 |
+
table_states,
|
| 436 |
+
) = self.convert_data_to_id(data, shuffle_answer=False, max_depth=8)
|
| 437 |
+
|
| 438 |
+
# <ans> mapping from sub to id
|
| 439 |
+
sub_ans_map: Dict[int, int] = {}
|
| 440 |
+
for fake_id, token_sub in table_states["token_id_table"]["<ans>"].items():
|
| 441 |
+
token = table_states["ext_table"][fake_id]
|
| 442 |
+
if token.startswith("<ans_") and token.endswith(">"):
|
| 443 |
+
ans_id = int(token[5:-1])
|
| 444 |
+
sub_ans_map[token_sub] = ans_id
|
| 445 |
+
|
| 446 |
+
tmp_input_ids = []
|
| 447 |
+
tmp_input_sub = []
|
| 448 |
+
tmp_input_seg = []
|
| 449 |
+
|
| 450 |
+
# get predict segments
|
| 451 |
+
predict_segments: List[Tuple[int, int]] = []
|
| 452 |
+
for i in range(input_ids.shape[0]):
|
| 453 |
+
if context[i] == 0:
|
| 454 |
+
if input_ids[i] == self.encoder["<ans>"]:
|
| 455 |
+
# is ans
|
| 456 |
+
# (segment_id, ans_id)
|
| 457 |
+
predict_segments.append((segment_ids[i], sub_ans_map[input_id_subs[i]]))
|
| 458 |
+
else:
|
| 459 |
+
tmp_input_ids.append(input_ids[i])
|
| 460 |
+
tmp_input_sub.append(input_id_subs[i])
|
| 461 |
+
tmp_input_seg.append(segment_ids[i])
|
| 462 |
+
|
| 463 |
+
if len(predict_segments) == 0:
|
| 464 |
+
raise ValueError("No answer to predict")
|
| 465 |
+
|
| 466 |
+
input_ids = np.array(tmp_input_ids, dtype=np.int32) # all context
|
| 467 |
+
input_id_subs = np.array(tmp_input_sub, dtype=np.int32) # [0, 0, 0, 0, 1, 0, 0, 2, 0, ...]
|
| 468 |
+
context = np.full_like(tmp_input_ids, 1, dtype=np.int8) # [1, 1, 1, ...]
|
| 469 |
+
segment_ids = np.array(tmp_input_seg, dtype=np.int32) # [0, 0, 0, 1, 1, 1, 2, 2, 2, 2, ...]
|
| 470 |
+
sample_ids = np.zeros(input_ids.shape, dtype=np.int32) # [0, 0, 0, 0, ...]
|
| 471 |
+
segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32) # [0, 0, 0, ...]
|
| 472 |
+
num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32) # [n_seg, n_seg, n_seg, ...]
|
| 473 |
+
input_pos = np.arange(input_ids.shape[0], dtype=np.int32) # [0, 1, 2, 3, 4, ...]
|
| 474 |
+
|
| 475 |
+
return (
|
| 476 |
+
self.prepare_for_model(
|
| 477 |
+
input_ids.tolist(),
|
| 478 |
+
input_id_subs=input_id_subs.tolist(),
|
| 479 |
+
input_pos=input_pos.tolist(),
|
| 480 |
+
context=context.tolist(),
|
| 481 |
+
segment_ids=segment_ids.tolist(),
|
| 482 |
+
segment_rel_offset=segment_rel_offset.tolist(),
|
| 483 |
+
segment_rel=segment_rel.tolist(),
|
| 484 |
+
sample_ids=sample_ids.tolist(),
|
| 485 |
+
num_segments=num_segments.tolist(),
|
| 486 |
+
**kwargs,
|
| 487 |
+
),
|
| 488 |
+
predict_segments,
|
| 489 |
+
answer_placeholders,
|
| 490 |
+
table_states["ext_table"],
|
| 491 |
+
table_states["token_id_table"],
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
def _batch_tokenize_cpmbee(self, data_lst, *args, **kwargs):
|
| 495 |
+
"""
|
| 496 |
+
Batched _token_cpmbee.
|
| 497 |
+
"""
|
| 498 |
+
device = kwargs.get("device", "cpu")
|
| 499 |
+
return_tensors = kwargs.get("return_tensors", None)
|
| 500 |
+
batch_outputs = {}
|
| 501 |
+
segment_rel_pack = []
|
| 502 |
+
other_info = []
|
| 503 |
+
|
| 504 |
+
batch_ext_table_map: Dict[Tuple[int, int], int] = {}
|
| 505 |
+
batch_ext_table_ids: List[int] = []
|
| 506 |
+
batch_ext_table_sub: List[int] = []
|
| 507 |
+
|
| 508 |
+
for data in data_lst:
|
| 509 |
+
self.ext_table = {}
|
| 510 |
+
self.ext_table_rev = {}
|
| 511 |
+
self.token_id_table = {}
|
| 512 |
+
(outputs, predict_segments, answer_placeholders, ext_table, token_id_table) = self._tokenize_cpmbee(
|
| 513 |
+
data,
|
| 514 |
+
truncation=None,
|
| 515 |
+
padding=PaddingStrategy.DO_NOT_PAD.value,
|
| 516 |
+
max_length=None,
|
| 517 |
+
pad_to_multiple_of=None,
|
| 518 |
+
return_attention_mask=False,
|
| 519 |
+
return_tensors=None,
|
| 520 |
+
)
|
| 521 |
+
rev_ext_table = {}
|
| 522 |
+
for token, mp in token_id_table.items():
|
| 523 |
+
if token == "<ans>":
|
| 524 |
+
continue
|
| 525 |
+
token_id = self.encoder[token]
|
| 526 |
+
for fake_id, token_sub in mp.items():
|
| 527 |
+
if token_sub > 0:
|
| 528 |
+
if (token_id, token_sub) not in batch_ext_table_map:
|
| 529 |
+
batch_ext_table_map[(token_id, token_sub)] = len(batch_ext_table_ids) + self.vocab_size
|
| 530 |
+
batch_ext_table_ids.append(token_id)
|
| 531 |
+
batch_ext_table_sub.append(token_sub)
|
| 532 |
+
rev_ext_table[batch_ext_table_map[(token_id, token_sub)]] = ext_table[fake_id]
|
| 533 |
+
else:
|
| 534 |
+
rev_ext_table[token_id] = ext_table[fake_id]
|
| 535 |
+
|
| 536 |
+
segment_rel_pack.append(np.array(outputs.pop("segment_rel")))
|
| 537 |
+
other_info.append(
|
| 538 |
+
{
|
| 539 |
+
"predict_segments": predict_segments,
|
| 540 |
+
"answer_placeholders": answer_placeholders,
|
| 541 |
+
"ext_table": rev_ext_table,
|
| 542 |
+
}
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
for key, value in outputs.items():
|
| 546 |
+
if key not in batch_outputs:
|
| 547 |
+
batch_outputs[key] = []
|
| 548 |
+
batch_outputs[key].append(value)
|
| 549 |
+
|
| 550 |
+
max_length = max([len(item) for item in batch_outputs[self.model_input_names[0]]])
|
| 551 |
+
batch_size = len(batch_outputs[self.model_input_names[0]])
|
| 552 |
+
for i in range(batch_size):
|
| 553 |
+
inputs = {k: v[i] for k, v in batch_outputs.items()}
|
| 554 |
+
|
| 555 |
+
for k, v in inputs.items():
|
| 556 |
+
required_input = v
|
| 557 |
+
|
| 558 |
+
needs_to_be_padded = len(required_input) != max_length
|
| 559 |
+
|
| 560 |
+
if needs_to_be_padded:
|
| 561 |
+
difference = max_length - len(required_input)
|
| 562 |
+
batch_outputs[k][i] = [self.pad_token_id] * difference + required_input
|
| 563 |
+
|
| 564 |
+
max_num_rels = 0
|
| 565 |
+
for rel in segment_rel_pack:
|
| 566 |
+
max_num_rels = max(max_num_rels, rel.shape[0])
|
| 567 |
+
padded_rels = np.zeros((len(segment_rel_pack), max_num_rels), dtype=np.int32)
|
| 568 |
+
for i, rel in enumerate(segment_rel_pack):
|
| 569 |
+
padded_rels[i, : rel.shape[0]] = rel
|
| 570 |
+
batch_outputs["segment_rel"] = padded_rels
|
| 571 |
+
batch_outputs["batch_ext_table_ids"] = np.array(batch_ext_table_ids, dtype=np.int32)
|
| 572 |
+
batch_outputs["batch_ext_table_sub"] = np.array(batch_ext_table_sub, dtype=np.int32)
|
| 573 |
+
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
| 574 |
+
if return_tensors == "pt":
|
| 575 |
+
batch_outputs = batch_outputs.to(device=device)
|
| 576 |
+
batch_outputs["other_info"] = other_info
|
| 577 |
+
|
| 578 |
+
return batch_outputs
|
| 579 |
+
|
| 580 |
+
def convert_data_to_id(
|
| 581 |
+
self,
|
| 582 |
+
data: Any,
|
| 583 |
+
prev_ext_states: Optional[_PrevExtTableStates] = None,
|
| 584 |
+
shuffle_answer: bool = True,
|
| 585 |
+
max_depth: int = 8,
|
| 586 |
+
):
|
| 587 |
+
"""
|
| 588 |
+
Parse a dict to data ids. Exclusive for CPMBee. It will
|
| 589 |
+
1. parse the dict to segments and get segment_rel, which for calculating of position_bias.
|
| 590 |
+
2. tokenize every segment.
|
| 591 |
+
"""
|
| 592 |
+
root: _DictTree = {
|
| 593 |
+
"value": "<root>",
|
| 594 |
+
"children": [],
|
| 595 |
+
"depth": 0,
|
| 596 |
+
"segment_id": 0,
|
| 597 |
+
"need_predict": False,
|
| 598 |
+
}
|
| 599 |
+
|
| 600 |
+
segments = [root]
|
| 601 |
+
|
| 602 |
+
def _build_dict_tree(data: CPMBeeInputType, depth: int, need_predict: bool) -> List[_DictTree]:
|
| 603 |
+
if isinstance(data, dict):
|
| 604 |
+
ret_list: List[_DictTree] = []
|
| 605 |
+
curr_items = list(data.items())
|
| 606 |
+
if need_predict and shuffle_answer:
|
| 607 |
+
access_idx = np.arange(len(curr_items))
|
| 608 |
+
np.random.shuffle(access_idx)
|
| 609 |
+
curr_items = [curr_items[idx] for idx in access_idx]
|
| 610 |
+
for k, v in curr_items:
|
| 611 |
+
child_info: _DictTree = {
|
| 612 |
+
"value": k,
|
| 613 |
+
"children": [],
|
| 614 |
+
"depth": depth,
|
| 615 |
+
"segment_id": len(segments),
|
| 616 |
+
"need_predict": False, # only leaves are contexts
|
| 617 |
+
}
|
| 618 |
+
segments.append(child_info)
|
| 619 |
+
child_info["children"] = _build_dict_tree(
|
| 620 |
+
v, depth + 1, need_predict or (depth == 1 and k == "<ans>")
|
| 621 |
+
) # elements in <root>.<ans>
|
| 622 |
+
|
| 623 |
+
ret_list.append(child_info)
|
| 624 |
+
return ret_list
|
| 625 |
+
else:
|
| 626 |
+
assert isinstance(data, str), "Invalid data {}".format(data)
|
| 627 |
+
ret: _DictTree = {
|
| 628 |
+
"value": data,
|
| 629 |
+
"children": [],
|
| 630 |
+
"depth": depth,
|
| 631 |
+
"segment_id": len(segments),
|
| 632 |
+
"need_predict": need_predict,
|
| 633 |
+
}
|
| 634 |
+
segments.append(ret)
|
| 635 |
+
return [ret]
|
| 636 |
+
|
| 637 |
+
root["children"] = _build_dict_tree(data, 1, False)
|
| 638 |
+
|
| 639 |
+
num_segments = len(segments)
|
| 640 |
+
segment_rel = np.zeros((num_segments * num_segments,), dtype=np.int32)
|
| 641 |
+
|
| 642 |
+
def _build_segment_rel(node: _DictTree) -> List[Tuple[int, int]]:
|
| 643 |
+
ret: List[Tuple[int, int]] = [(node["segment_id"], node["depth"])]
|
| 644 |
+
for child in node["children"]:
|
| 645 |
+
sub = _build_segment_rel(child)
|
| 646 |
+
for seg_id_1, depth_1 in sub:
|
| 647 |
+
for seg_id_2, depth_2 in ret:
|
| 648 |
+
n_up = min(depth_1 - node["depth"], max_depth - 1)
|
| 649 |
+
n_down = min(depth_2 - node["depth"], max_depth - 1)
|
| 650 |
+
segment_rel[seg_id_1 * num_segments + seg_id_2] = rel_to_bucket(
|
| 651 |
+
n_up, n_down, max_depth=max_depth
|
| 652 |
+
)
|
| 653 |
+
segment_rel[seg_id_2 * num_segments + seg_id_1] = rel_to_bucket(
|
| 654 |
+
n_down, n_up, max_depth=max_depth
|
| 655 |
+
)
|
| 656 |
+
ret.extend(sub)
|
| 657 |
+
return ret
|
| 658 |
+
|
| 659 |
+
_build_segment_rel(root)
|
| 660 |
+
|
| 661 |
+
input_ids: List[int] = []
|
| 662 |
+
input_id_subs: List[int] = []
|
| 663 |
+
segment_bound: List[Tuple[int, int]] = []
|
| 664 |
+
|
| 665 |
+
if prev_ext_states is not None:
|
| 666 |
+
self.ext_table = prev_ext_states["ext_table"]
|
| 667 |
+
self.token_id_table = prev_ext_states["token_id_table"]
|
| 668 |
+
|
| 669 |
+
for seg in segments:
|
| 670 |
+
# tokenize
|
| 671 |
+
tokens = self.convert_tokens_to_ids(self.tokenize(seg["value"], for_cpmbee=True))
|
| 672 |
+
|
| 673 |
+
token_id_subs = []
|
| 674 |
+
reid_token_ids = []
|
| 675 |
+
for idx in tokens:
|
| 676 |
+
if idx in self.ext_table:
|
| 677 |
+
# unk or special token
|
| 678 |
+
token = self.ext_table[idx]
|
| 679 |
+
if token.startswith("<") and token.endswith(">"):
|
| 680 |
+
# special token
|
| 681 |
+
if "_" in token:
|
| 682 |
+
token_name = token[1:-1].split("_", maxsplit=1)[0]
|
| 683 |
+
else:
|
| 684 |
+
token_name = token[1:-1]
|
| 685 |
+
token_name = "<{}>".format(token_name)
|
| 686 |
+
else:
|
| 687 |
+
token_name = "<unk>"
|
| 688 |
+
|
| 689 |
+
if token_name not in self.token_id_table:
|
| 690 |
+
self.token_id_table[token_name] = {}
|
| 691 |
+
if idx not in self.token_id_table[token_name]:
|
| 692 |
+
self.token_id_table[token_name][idx] = len(self.token_id_table[token_name])
|
| 693 |
+
if token_name not in self.encoder:
|
| 694 |
+
raise ValueError("Invalid token {}".format(token))
|
| 695 |
+
reid_token_ids.append(self.encoder[token_name])
|
| 696 |
+
token_id_subs.append(self.token_id_table[token_name][idx])
|
| 697 |
+
else:
|
| 698 |
+
reid_token_ids.append(idx)
|
| 699 |
+
token_id_subs.append(0)
|
| 700 |
+
tokens = [self.bos_token_id] + reid_token_ids
|
| 701 |
+
token_id_subs = [0] + token_id_subs
|
| 702 |
+
# eos_id 表示 no need_predict
|
| 703 |
+
if not seg["need_predict"]: # eos
|
| 704 |
+
tokens = tokens + [self.eos_token_id]
|
| 705 |
+
token_id_subs = token_id_subs + [0]
|
| 706 |
+
else:
|
| 707 |
+
# no eos
|
| 708 |
+
pass
|
| 709 |
+
begin = len(input_ids)
|
| 710 |
+
input_ids.extend(tokens)
|
| 711 |
+
input_id_subs.extend(token_id_subs)
|
| 712 |
+
end = len(input_ids)
|
| 713 |
+
segment_bound.append((begin, end))
|
| 714 |
+
|
| 715 |
+
ids = np.array(input_ids, dtype=np.int32)
|
| 716 |
+
id_subs = np.array(input_id_subs, dtype=np.int32)
|
| 717 |
+
segs = np.zeros((ids.shape[0],), dtype=np.int32) # 按segment_bound对seg编号
|
| 718 |
+
context = np.zeros((ids.shape[0],), dtype=np.int8)
|
| 719 |
+
for i, (begin, end) in enumerate(segment_bound):
|
| 720 |
+
if not segments[i]["need_predict"]:
|
| 721 |
+
context[begin:end] = 1
|
| 722 |
+
segs[begin:end] = i
|
| 723 |
+
|
| 724 |
+
curr_ext_table_states: _PrevExtTableStates = {
|
| 725 |
+
"ext_table": self.ext_table,
|
| 726 |
+
"token_id_table": self.token_id_table,
|
| 727 |
+
}
|
| 728 |
+
return ids, id_subs, context, segs, segment_rel, num_segments, curr_ext_table_states
|
| 729 |
+
|
| 730 |
+
def prepare_for_model(
|
| 731 |
+
self,
|
| 732 |
+
ids: List[int],
|
| 733 |
+
pair_ids: Optional[List[int]] = None,
|
| 734 |
+
add_special_tokens: bool = True,
|
| 735 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
| 736 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
| 737 |
+
max_length: Optional[int] = None,
|
| 738 |
+
stride: int = 0,
|
| 739 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 740 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 741 |
+
return_token_type_ids: Optional[bool] = None,
|
| 742 |
+
return_attention_mask: Optional[bool] = None,
|
| 743 |
+
return_overflowing_tokens: bool = False,
|
| 744 |
+
return_special_tokens_mask: bool = False,
|
| 745 |
+
return_length: bool = False,
|
| 746 |
+
verbose: bool = True,
|
| 747 |
+
prepend_batch_axis: bool = False,
|
| 748 |
+
**kwargs,
|
| 749 |
+
) -> BatchEncoding:
|
| 750 |
+
"""
|
| 751 |
+
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
|
| 752 |
+
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
|
| 753 |
+
manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
|
| 754 |
+
different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
|
| 755 |
+
overflowing tokens. Such a combination of arguments will raise an error.
|
| 756 |
+
|
| 757 |
+
Args:
|
| 758 |
+
ids (`List[int]`):
|
| 759 |
+
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
|
| 760 |
+
`convert_tokens_to_ids` methods.
|
| 761 |
+
pair_ids (`List[int]`, *optional*):
|
| 762 |
+
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
|
| 763 |
+
and `convert_tokens_to_ids` methods.
|
| 764 |
+
"""
|
| 765 |
+
|
| 766 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
| 767 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
| 768 |
+
padding=padding,
|
| 769 |
+
truncation=truncation,
|
| 770 |
+
max_length=max_length,
|
| 771 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 772 |
+
verbose=verbose,
|
| 773 |
+
**kwargs,
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
+
pair = bool(pair_ids is not None)
|
| 777 |
+
len_ids = len(ids)
|
| 778 |
+
len_pair_ids = len(pair_ids) if pair else 0
|
| 779 |
+
|
| 780 |
+
if return_token_type_ids and not add_special_tokens:
|
| 781 |
+
raise ValueError(
|
| 782 |
+
"Asking to return token_type_ids while setting add_special_tokens to False "
|
| 783 |
+
"results in an undefined behavior. Please set add_special_tokens to True or "
|
| 784 |
+
"set return_token_type_ids to None."
|
| 785 |
+
)
|
| 786 |
+
|
| 787 |
+
if (
|
| 788 |
+
return_overflowing_tokens
|
| 789 |
+
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
|
| 790 |
+
and pair_ids is not None
|
| 791 |
+
):
|
| 792 |
+
raise ValueError(
|
| 793 |
+
"Not possible to return overflowing tokens for pair of sequences with the "
|
| 794 |
+
"`longest_first`. Please select another truncation strategy than `longest_first`, "
|
| 795 |
+
"for instance `only_second` or `only_first`."
|
| 796 |
+
)
|
| 797 |
+
|
| 798 |
+
# Load from model defaults
|
| 799 |
+
if return_token_type_ids is None:
|
| 800 |
+
return_token_type_ids = "token_type_ids" in self.model_input_names
|
| 801 |
+
if return_attention_mask is None:
|
| 802 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
| 803 |
+
|
| 804 |
+
encoded_inputs = {}
|
| 805 |
+
|
| 806 |
+
# Compute the total size of the returned encodings
|
| 807 |
+
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
|
| 808 |
+
|
| 809 |
+
# Truncation: Handle max sequence length
|
| 810 |
+
overflowing_tokens = []
|
| 811 |
+
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
|
| 812 |
+
ids, pair_ids, overflowing_tokens = self.truncate_sequences(
|
| 813 |
+
ids,
|
| 814 |
+
pair_ids=pair_ids,
|
| 815 |
+
num_tokens_to_remove=total_len - max_length,
|
| 816 |
+
truncation_strategy=truncation_strategy,
|
| 817 |
+
stride=stride,
|
| 818 |
+
)
|
| 819 |
+
|
| 820 |
+
if return_overflowing_tokens:
|
| 821 |
+
encoded_inputs["overflowing_tokens"] = overflowing_tokens
|
| 822 |
+
encoded_inputs["num_truncated_tokens"] = total_len - max_length
|
| 823 |
+
|
| 824 |
+
# Add special tokens
|
| 825 |
+
if add_special_tokens:
|
| 826 |
+
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
|
| 827 |
+
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
|
| 828 |
+
else:
|
| 829 |
+
sequence = ids + pair_ids if pair else ids
|
| 830 |
+
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
|
| 831 |
+
|
| 832 |
+
# Build output dictionary
|
| 833 |
+
encoded_inputs["input_ids"] = sequence
|
| 834 |
+
if return_token_type_ids:
|
| 835 |
+
encoded_inputs["token_type_ids"] = token_type_ids
|
| 836 |
+
if return_special_tokens_mask:
|
| 837 |
+
if add_special_tokens:
|
| 838 |
+
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
|
| 839 |
+
else:
|
| 840 |
+
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
|
| 841 |
+
|
| 842 |
+
# Check lengths
|
| 843 |
+
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
|
| 844 |
+
|
| 845 |
+
# Padding
|
| 846 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
|
| 847 |
+
encoded_inputs = self.pad(
|
| 848 |
+
encoded_inputs,
|
| 849 |
+
max_length=max_length,
|
| 850 |
+
padding=padding_strategy.value,
|
| 851 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 852 |
+
return_attention_mask=return_attention_mask,
|
| 853 |
+
)
|
| 854 |
+
|
| 855 |
+
if return_length:
|
| 856 |
+
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
|
| 857 |
+
|
| 858 |
+
# for CPMBee, encode all the model arguments
|
| 859 |
+
for arg in self.ext_args_for_model:
|
| 860 |
+
v = kwargs.get(arg, None)
|
| 861 |
+
if v is not None:
|
| 862 |
+
encoded_inputs[arg] = v
|
| 863 |
+
|
| 864 |
+
batch_outputs = BatchEncoding(
|
| 865 |
+
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
|
| 866 |
+
)
|
| 867 |
+
|
| 868 |
+
return batch_outputs
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name_or_path": "openbmb/cpm-bee-5b",
|
| 3 |
+
"tokenizer_class": "CpmBeeTokenizer",
|
| 4 |
+
"auto_map": {
|
| 5 |
+
"AutoTokenizer": [
|
| 6 |
+
"tokenization_cpmbee.CpmBeeTokenizer",
|
| 7 |
+
null
|
| 8 |
+
]
|
| 9 |
+
}
|
| 10 |
+
}
|