xcjthu commited on
Commit
5253c7f
·
verified ·
1 Parent(s): 2aaa97c

update files to remove sparse attention usage for the 0.5B model

Browse files
Files changed (1) hide show
  1. modeling_minicpm.py +31 -1026
modeling_minicpm.py CHANGED
@@ -24,7 +24,7 @@ import torch.utils.checkpoint
24
  from torch import nn
25
  from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
26
  from transformers.activations import ACT2FN
27
- from transformers.cache_utils import Cache, DynamicCache
28
  from transformers.modeling_attn_mask_utils import (
29
  AttentionMaskConverter,
30
  _prepare_4d_attention_mask,
@@ -52,493 +52,9 @@ from .configuration_minicpm import MiniCPMConfig
52
  try:
53
  from flash_attn import flash_attn_func, flash_attn_varlen_func
54
  from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
55
- from infllm_v2 import (
56
- infllmv2_attn_stage1,
57
- infllmv2_attn_varlen_func,
58
- infllmv2_attn_with_kvcache,
59
- max_pooling_1d,
60
- )
61
  except:
62
  pass
63
 
64
- from functools import lru_cache
65
-
66
-
67
- def compressed_attention(
68
- q: torch.Tensor,
69
- k: torch.Tensor,
70
- v: torch.Tensor,
71
- kernel_size: int,
72
- kernel_stride: int,
73
- block_size: int,
74
- topk: int,
75
- cu_seqlens_q: torch.Tensor,
76
- cu_seqlens_k: torch.Tensor,
77
- max_seqlen_q: int,
78
- max_seqlen_k: int,
79
- sm_scale: float = None,
80
- init_blocks: int = 1,
81
- local_blocks: int = 2,
82
- parallel_topk_compute: Union[str, bool] = 'auto',
83
- total_seq_lens=-1,
84
- ) -> Tuple[torch.Tensor, torch.Tensor]:
85
- """Attention between query and compressed key and value. Compute attention output and topk block idx used in topk_sparse_attention.
86
-
87
- Args:
88
- q (torch.Tensor): shape [total_q_len, num_q_heads, head_dim]
89
- k (torch.Tensor): shape [total_kv_len, num_kv_heads, head_dim]
90
- v (torch.Tensor): shape [total_kv_len, num_kv_heads, head_dim]
91
- kernel_size (int): kernel size in compress_key_value
92
- kernel_stride (int): stride of compress_key_value
93
- block_size (int): key value block size for topk sparse attention.
94
- topk (int): number of blocks for each query.
95
- cu_seqlens_q (torch.Tensor): shape [batch_size + 1], similar to cu_seqlens_q in flash_attn_func_varlen.
96
- cu_seqlens_k (torch.Tensor): shape [batch_size + 1], similar to cu_seqlens_k in flash_attn_func_varlen.
97
- max_seqlen_q (int): max q len of the batch.
98
- max_seqlen_k (int): max k len of the batch.
99
- sm_scale (float, optional): softmax scale. Defaults to None, means 1/sqrt(head_dim).
100
- init_blocks (int, optional): Number of init blocks for each query. Defaults to 1.
101
- local_blocks (int, optional): Number of local blocks for each query. Defaults to 2.
102
- parallel_topk_compute (str, optional): Only set it to False when the sequence length is too long. This can avoid a current bug.
103
- We'll fix this issue later. Defaults to auto, it will be set to False when the sequence length is greater than 32k and True otherwise.
104
-
105
- Returns:
106
- Tuple[torch.Tensor, torch.Tensor]: attention output and topk_idx used in topk_sparse_attention
107
- """
108
- with torch.no_grad():
109
- cache_len = 0
110
- batch_size = cu_seqlens_q.shape[0] - 1
111
- if total_seq_lens == -1:
112
- total_seq_lens = max_seqlen_q
113
- q_idx = torch.cat(
114
- [
115
- torch.arange(cu_seqlens_q[i + 1] - cu_seqlens_q[i], device=q.device) + total_seq_lens - (cu_seqlens_q[i + 1] - cu_seqlens_q[i])
116
- for i in range(batch_size)
117
- ],
118
- dim=0,
119
- )
120
- q_idx = q_idx // block_size
121
-
122
- else:
123
- cache_len = total_seq_lens - max_seqlen_q
124
- assert batch_size == 1, 'batch_size must be 1 when total_seq_lens is set'
125
- q_idx = torch.tensor([total_seq_lens - 1], device=q.device, dtype=torch.int32) // block_size
126
-
127
- score = infllmv2_attn_stage1(
128
- q.contiguous(),
129
- k.contiguous(),
130
- v.contiguous(),
131
- cu_seqlens_q=cu_seqlens_q,
132
- cu_seqlens_k=cu_seqlens_k,
133
- max_seqlen_q=max_seqlen_q,
134
- max_seqlen_k=max_seqlen_k,
135
- causal=q_idx.shape[0] > 1)
136
- score = score[:, :q_idx.shape[0], :]
137
-
138
- # Replace transform_score with max_pooling_1d
139
- block_score = max_pooling_1d(
140
- score.contiguous(),
141
- cache_len=cache_len,
142
- local_blocks=local_blocks,
143
- init_blocks=init_blocks,
144
- block_size=block_size,
145
- stride=kernel_stride,
146
- )
147
- # get topk
148
- topk = min(topk, block_score.shape[-1])
149
- topk_idx = block_score.topk(topk, dim=-1).indices.sort(-1).values
150
- topk_idx[topk_idx >= q_idx[None, :, None]] = -1
151
- topk_idx = topk_idx.to(torch.int32)
152
-
153
- return topk_idx
154
-
155
-
156
- @lru_cache(maxsize=16)
157
- def calc_chunks_with_stride(cu_seqlen, chunk_size, kernel_stride):
158
- """
159
- Compute the chunks that require Sparse attention, with stride support.
160
-
161
- Args:
162
- cu_seqlen (torch.Tensor): Cumulative sequence lengths for each sample.
163
- chunk_size (int): Chunk size used for Sparse attention.
164
- kernel_stride (int): Stride size when sliding over the sequence.
165
-
166
- Returns:
167
- filtered_indices (torch.Tensor): Indices used to directly index into the key/value tensors.
168
- cu_seqlens_compressed (torch.Tensor): Cumulative sequence lengths after compression.
169
- """
170
- # 1. Compute the length of each sequence
171
- batch_sizes = cu_seqlen[1:] - cu_seqlen[:-1]
172
-
173
- # 2. Compute the start positions of chunks for each sequence (with stride)
174
- max_seq_len = torch.max(batch_sizes)
175
- max_num_chunks_per_seq = (max_seq_len - chunk_size) // kernel_stride + 1
176
- chunk_start_offsets = torch.arange(0, max_num_chunks_per_seq * kernel_stride, kernel_stride, device=cu_seqlen.device)
177
- seq_starts = cu_seqlen[:-1]
178
- chunk_start_in_seq = seq_starts[:, None] + chunk_start_offsets[None, :] # [batch_size, max_num_chunks_per_seq]
179
-
180
- # 3. Filter out chunks that exceed sequence length or are smaller than the full chunk size
181
- chunk_end_in_seq = chunk_start_in_seq + chunk_size
182
- valid_chunk_mask = (chunk_end_in_seq <= (seq_starts[:, None] + batch_sizes[:, None]))
183
-
184
- # 4. Filter valid chunk start positions using the valid_chunk_mask
185
- valid_chunk_starts = chunk_start_in_seq[valid_chunk_mask] # [num_valid_chunks]
186
- del chunk_start_in_seq
187
- # 5. Generate filtered_indices
188
- chunk_indices = torch.arange(
189
- 0, chunk_size, device=cu_seqlen.device
190
- )[None, :] # [1, chunk_size]
191
- filtered_indices = valid_chunk_starts[:, None] + chunk_indices # [num_valid_chunks, chunk_size]
192
- filtered_indices = filtered_indices.view(-1) # Flatten to 1D indices
193
-
194
- # 6. Compute compressed cumulative sequence lengths
195
- num_filtered_chunks_per_batch = valid_chunk_mask.sum(dim=1) # Number of valid chunks per batch
196
- cu_seqlens_compressed = torch.zeros(
197
- len(cu_seqlen), dtype=torch.int32, device=cu_seqlen.device
198
- )
199
- cu_seqlens_compressed[1:] = num_filtered_chunks_per_batch.cumsum(dim=0)
200
- del num_filtered_chunks_per_batch, chunk_start_offsets, seq_starts, chunk_end_in_seq, valid_chunk_mask, chunk_indices
201
- return filtered_indices, cu_seqlens_compressed
202
-
203
-
204
- class CompressK(torch.nn.Module):
205
- def __init__(self, head_num_k, head_dim, kernel_size, kernel_stride=16):
206
- """
207
- Module for compressing key (K) representations.
208
-
209
- Args:
210
- head_num_k (int): Number of key attention heads.
211
- head_dim (int): Dimension of each attention head.
212
- kernel_size (int): Size of each chunk used for compression.
213
- kernel_stride (int, optional): Stride used when dividing input into chunks. Default is 16.
214
- """
215
- super().__init__()
216
- self.kernel_size = kernel_size
217
- self.head_num_k = head_num_k
218
- self.head_dim = head_dim
219
- self.kernel_stride = kernel_stride
220
-
221
- def forward(self, k: torch.Tensor, cu_seqlens):
222
- """
223
- Forward pass for compressing the key (K) tensor.
224
-
225
- Args:
226
- k (torch.Tensor): Input key tensor of shape (total_seq_len, num_heads, head_dim).
227
- cu_seqlens (torch.Tensor): Cumulative sequence lengths for each sample in the batch, typically used for handling variable-length sequences.
228
-
229
- Returns:
230
- compress_k (torch.Tensor): Compressed key tensor.
231
- cu_seqlens_compressed (torch.Tensor): Updated cumulative sequence lengths after compression.
232
-
233
- """
234
- # Compute chunk-related metadata, with stride support
235
- filtered_k_indices, cu_seqlens_compressed = calc_chunks_with_stride(
236
- cu_seqlens, self.kernel_size, self.kernel_stride
237
- )
238
-
239
- # Extract filtered key vectors
240
- filtered_k = k.index_select(0, filtered_k_indices.view(-1))
241
-
242
- # split
243
- filtered_k = filtered_k.view(filtered_k.shape[0] // self.kernel_size, self.kernel_size, self.head_num_k, self.head_dim) # [l, block_size,h,d]
244
-
245
- compressed_k = filtered_k.mean(dim=1)
246
- return compressed_k, cu_seqlens_compressed
247
-
248
-
249
- class DynamicCacheQKV(DynamicCache):
250
- """
251
- A cache that grows dynamically as more tokens are generated. This is the default for generative models.
252
-
253
- It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
254
- `[batch_size, num_heads, seq_len, head_dim]`.
255
-
256
- Example:
257
- ```python
258
- >>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
259
-
260
- >>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
261
- >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
262
-
263
- >>> inputs = tokenizer(text="My name is Qwen2", return_tensors="pt")
264
-
265
- >>> # Prepare a cache class and pass it to model's forward
266
- >>> past_key_values = DynamicCache()
267
- >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
268
- >>> outputs.past_key_values # access cache filled with key/values from generation
269
- DynamicCache()
270
- ```
271
- """
272
- def __init__(self, num_hidden_layers: Optional[int] = None) -> None:
273
- super().__init__()
274
- if num_hidden_layers is None:
275
- self.key_cache: List[torch.Tensor] = []
276
- self.value_cache: List[torch.Tensor] = []
277
- self.compress_k_cache: List[torch.Tensor] = []
278
- self.no_compress_k_cache: List[torch.Tensor] = []
279
- self.cached_compressed_cu_seqlens: List[torch.Tensor] = []
280
- self.no_rope_key_cache: List[torch.Tensor] = []
281
- else:
282
- self.key_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
283
- self.value_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
284
- self.compress_k_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
285
- self.no_compress_k_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
286
- self.cached_compressed_cu_seqlens: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
287
- self.no_rope_key_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)]
288
- self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
289
-
290
- def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
291
- """
292
- Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
293
- sequence length.
294
- """
295
- if layer_idx < len(self):
296
- return (self.key_cache[layer_idx], self.value_cache[layer_idx])
297
- else:
298
- raise KeyError(f'Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}')
299
-
300
- def __iter__(self):
301
- """
302
- Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
303
- keys and values
304
- """
305
- for layer_idx in range(len(self)):
306
- yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
307
-
308
- def __len__(self):
309
- """
310
- Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
311
- to the number of layers in the model.
312
- """
313
- return len(self.key_cache)
314
-
315
- def update(
316
- self,
317
- key_states: torch.Tensor,
318
- value_states: torch.Tensor,
319
- layer_idx: int,
320
- cache_kwargs: Optional[Dict[str, Any]] = None
321
- ) -> Tuple[torch.Tensor, torch.Tensor]:
322
- """
323
- Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
324
-
325
- Parameters:
326
- key_states (`torch.Tensor`):
327
- The new key states to cache.
328
- value_states (`torch.Tensor`):
329
- The new value states to cache.
330
- layer_idx (`int`):
331
- The index of the layer to cache the states for.
332
- cache_kwargs (`Dict[str, Any]`, `optional`):
333
- Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
334
-
335
- Return:
336
- A tuple containing the updated key and value states.
337
- """
338
- # Update the number of seen tokens
339
- if layer_idx == 0:
340
- self._seen_tokens += key_states.shape[-2]
341
-
342
- # Update the cache
343
- if len(self.key_cache) <= layer_idx:
344
- self.key_cache.append(key_states)
345
- self.value_cache.append(value_states)
346
-
347
- # content on layer cache can be a tensor and checking not tensor causes errors
348
- # so we explicitly check for the empty list
349
- elif self.key_cache[layer_idx] == []:
350
- self.key_cache[layer_idx] = key_states
351
- self.value_cache[layer_idx] = value_states
352
-
353
- else:
354
- self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
355
- self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
356
- return self.key_cache[layer_idx], self.value_cache[layer_idx]
357
-
358
- def update_no_rope_key(
359
- self,
360
- key_states: torch.Tensor,
361
- layer_idx: int,
362
- cache_kwargs: Optional[Dict[str, Any]] = None):
363
-
364
- # Update the cache
365
- if len(self.no_rope_key_cache) <= layer_idx:
366
- self.no_rope_key_cache.append(key_states)
367
-
368
- # content on layer cache can be a tensor and checking not tensor causes errors
369
- # so we explicitly check for the empty list
370
- elif self.no_rope_key_cache[layer_idx] == []:
371
- self.no_rope_key_cache[layer_idx] = key_states
372
- else:
373
- self.no_rope_key_cache[layer_idx] = torch.cat([self.no_rope_key_cache[layer_idx], key_states], dim=1)
374
- return self.no_rope_key_cache[layer_idx]
375
-
376
- def update_compress_k(
377
- self,
378
- key_states: torch.Tensor,
379
- layer_idx: int,
380
- cache_kwargs: Optional[Dict[str, Any]] = None
381
- ) -> Tuple[torch.Tensor, torch.Tensor]:
382
- """
383
- Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
384
-
385
- Parameters:
386
- key_states (`torch.Tensor`):
387
- The new key states to cache.
388
- value_states (`torch.Tensor`):
389
- The new value states to cache.
390
- layer_idx (`int`):
391
- The index of the layer to cache the states for.
392
- cache_kwargs (`Dict[str, Any]`, `optional`):
393
- Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
394
-
395
- Return:
396
- A tuple containing the updated key and value states.
397
- """
398
-
399
- # Update the cache
400
- if len(self.compress_k_cache) <= layer_idx:
401
- self.compress_k_cache.append(key_states)
402
-
403
- # content on layer cache can be a tensor and checking not tensor causes errors
404
- # so we explicitly check for the empty list
405
- elif self.compress_k_cache[layer_idx] == []:
406
- self.compress_k_cache[layer_idx] = key_states
407
- else:
408
- self.compress_k_cache[layer_idx] = torch.cat([self.compress_k_cache[layer_idx], key_states], dim=0)
409
- return self.compress_k_cache[layer_idx]
410
-
411
- def update_no_compress_k(
412
- self,
413
- key_states: torch.Tensor,
414
- layer_idx: int,
415
- kernel_size: int = 32,
416
- kernel_stride: int = 16,
417
- cache_kwargs: Optional[Dict[str, Any]] = None
418
- ) -> Tuple[torch.Tensor, torch.Tensor]:
419
- """
420
- Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
421
-
422
- Parameters:
423
- key_states (`torch.Tensor`):
424
- The new key states to cache.
425
- value_states (`torch.Tensor`):
426
- The new value states to cache.
427
- layer_idx (`int`):
428
- The index of the layer to cache the states for.
429
- cache_kwargs (`Dict[str, Any]`, `optional`):
430
- Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
431
-
432
- Return:
433
- A tuple containing the updated key and value states.
434
- """
435
- # Update the cache
436
- if len(self.no_compress_k_cache) <= layer_idx:
437
- self.no_compress_k_cache.append(key_states)
438
-
439
- # content on layer cache can be a tensor and checking not tensor causes errors
440
- # so we explicitly check for the empty list
441
- elif self.no_compress_k_cache[layer_idx] == []:
442
- self.no_compress_k_cache[layer_idx] = key_states
443
- else:
444
- self.no_compress_k_cache[layer_idx] = torch.cat([self.no_compress_k_cache[layer_idx], key_states], dim=0)
445
-
446
- current_len = self.no_compress_k_cache[layer_idx].shape[0]
447
-
448
- if current_len >= kernel_size:
449
- k_chunk = self.no_compress_k_cache[layer_idx][:kernel_size]
450
- self.no_compress_k_cache[layer_idx] = self.no_compress_k_cache[layer_idx][kernel_stride:]
451
- return k_chunk
452
- else:
453
- return None
454
-
455
- def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
456
- """Returns the sequence length of the cached states. A layer index can be optionally passed."""
457
- # TODO: deprecate this function in favor of `cache_position`
458
- if len(self.key_cache) <= layer_idx or (len(self.key_cache) > layer_idx and self.key_cache[layer_idx] == []):
459
- return 0
460
- return self.key_cache[layer_idx].shape[-2]
461
-
462
- def get_max_length(self) -> Optional[int]:
463
- """Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
464
- return None
465
-
466
- def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
467
- """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
468
- backward compatibility."""
469
- legacy_cache = ()
470
- for layer_idx in range(len(self)):
471
- legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
472
- return legacy_cache
473
-
474
- # @classmethod
475
- # def from_legacy_cache(
476
- # cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, num_hidden_layers: int = None
477
- # ) -> "DynamicCacheQKV":
478
- # """Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
479
- # backward compatibility."""
480
- # cache = cls(num_hidden_layers)
481
- # if past_key_values is not None:
482
- # for layer_idx in range(len(past_key_values)):
483
- # key_states, value_states, query_status = past_key_values[layer_idx]
484
- # cache.update(key_states, value_states, query_status,layer_idx)
485
- # return cache
486
-
487
- def crop(self, max_length: int):
488
- """Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
489
- negative to remove `max_length` tokens. This is used in assisted decoding and contrastive search."""
490
- # In case it is negative
491
- if max_length < 0:
492
- max_length = self.get_seq_length() - abs(max_length)
493
-
494
- if self.get_seq_length() <= max_length:
495
- return
496
-
497
- self._seen_tokens = max_length
498
- for idx in range(len(self.key_cache)):
499
- if self.key_cache[idx] != []:
500
- self.key_cache[idx] = self.key_cache[idx][..., :max_length, :]
501
- self.value_cache[idx] = self.value_cache[idx][..., :max_length, :]
502
-
503
- def batch_split(self, full_batch_size: int, split_size: int, num_hidden_layers: int) -> List['DynamicCacheQKV']:
504
- """Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
505
- `_split_model_inputs()` in `generation.utils`"""
506
- out = []
507
- for i in range(0, full_batch_size, split_size):
508
- current_split = DynamicCacheQKV(num_hidden_layers)
509
- current_split._seen_tokens = self._seen_tokens
510
- current_split.key_cache = [tensor[i: i + split_size] for tensor in self.key_cache]
511
- current_split.value_cache = [tensor[i: i + split_size] for tensor in self.value_cache]
512
- out.append(current_split)
513
- return out
514
-
515
- @classmethod
516
- def from_batch_splits(cls, splits: List['DynamicCacheQKV'], num_hidden_layers: int) -> 'DynamicCacheQKV':
517
- """This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
518
- `generation.utils`"""
519
- cache = cls(num_hidden_layers)
520
- for idx in range(len(splits[0])):
521
- key_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
522
- value_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
523
- query_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
524
- if key_cache != []:
525
- layer_keys = torch.cat(key_cache, dim=0)
526
- layer_values = torch.cat(value_cache, dim=0)
527
- layer_query = torch.cat(query_cache, dim=0)
528
- cache.update(layer_keys, layer_values, idx, query_states=layer_query)
529
- return cache
530
-
531
- def batch_repeat_interleave(self, repeats: int):
532
- """Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
533
- for layer_idx in range(len(self)):
534
- self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0)
535
- self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0)
536
-
537
- def batch_select_indices(self, indices: torch.Tensor):
538
- """Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
539
- for layer_idx in range(len(self)):
540
- self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...]
541
- self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...]
542
 
543
 
544
  # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
@@ -567,22 +83,6 @@ def _get_unpad_data(attention_mask):
567
  )
568
 
569
 
570
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
571
- warnings.warn(
572
- 'Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask'
573
- )
574
- return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
575
-
576
-
577
- def _make_causal_mask(
578
- input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
579
- ):
580
- warnings.warn(
581
- 'Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask'
582
- )
583
- return AttentionMaskConverter._make_causal_mask(
584
- input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
585
- )
586
 
587
 
588
  # @torch.jit.script # type: ignore
@@ -796,6 +296,21 @@ class MiniCPMMLP(nn.Module):
796
 
797
  return down_proj
798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
799
 
800
  def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
801
  """
@@ -927,15 +442,7 @@ class MiniCPMAttention(nn.Module):
927
  key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
928
  value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
929
 
930
- kv_seq_len = key_states.shape[-2]
931
- if past_key_value is not None:
932
- if self.layer_idx is None:
933
- raise ValueError(
934
- f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
935
- 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
936
- 'with a layer index.'
937
- )
938
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
939
  cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
940
 
941
  query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
@@ -1037,9 +544,7 @@ class MiniCPMFlashAttention2(MiniCPMAttention):
1037
  key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1038
  value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1039
 
1040
- kv_seq_len = key_states.shape[-2]
1041
- if past_key_value is not None:
1042
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1043
  cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
1044
  query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
1045
 
@@ -1187,504 +692,6 @@ class MiniCPMFlashAttention2(MiniCPMAttention):
1187
  )
1188
 
1189
 
1190
- class MiniCPMInfLLMv2Attention(MiniCPMAttention):
1191
- """
1192
- MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays
1193
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
1194
- flash attention and deal with padding tokens in case the input contains any of them.
1195
- """
1196
-
1197
- def __init__(self, *args, **kwargs):
1198
- super().__init__(*args, **kwargs)
1199
- assert self.config._attn_implementation == 'flash_attention_2', 'Only flash_attention_2 is supported for sparse attention'
1200
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
1201
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
1202
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
1203
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
1204
-
1205
- # -------sparse-------
1206
- self.kernel_size = self.config.sparse_config.get('kernel_size', 32)
1207
- self.kernel_stride = self.config.sparse_config.get('kernel_stride', 16)
1208
- self.init_blocks = self.config.sparse_config.get('init_blocks', 1)
1209
- self.block_size = self.config.sparse_config.get('block_size', 64)
1210
- self.window_size = self.config.sparse_config.get('window_size', 2048)
1211
- self.dense_len = self.config.sparse_config.get('dense_len', 8192)
1212
-
1213
- self.local_blocks = self.window_size // self.block_size # local_blocks
1214
- self.topk = self.config.sparse_config.get('topk', 64)
1215
- self.use_nope = self.config.sparse_config.get('use_nope', False)
1216
- self.compress_k = CompressK(self.num_key_value_heads, self.head_dim, kernel_size=self.kernel_size, kernel_stride=self.kernel_stride)
1217
-
1218
- def forward(
1219
- self,
1220
- hidden_states: torch.Tensor,
1221
- attention_mask: Optional[torch.LongTensor] = None,
1222
- position_ids: Optional[torch.LongTensor] = None,
1223
- past_key_value: Optional[Cache] = None,
1224
- output_attentions: bool = False,
1225
- use_cache: bool = False,
1226
- **kwargs,
1227
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
1228
- # MiniCPMFlashAttention2 attention does not support output_attentions
1229
- if 'padding_mask' in kwargs:
1230
- warnings.warn(
1231
- 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
1232
- )
1233
-
1234
- # overwrite attention_mask with padding_mask
1235
- attention_mask = kwargs.pop('padding_mask')
1236
-
1237
- output_attentions = False
1238
-
1239
- bsz, q_len, _ = hidden_states.size()
1240
- assert bsz == 1, 'Only batch_size=1 is supported at the moment.'
1241
-
1242
- query_states = self.q_proj(hidden_states)
1243
- key_states = self.k_proj(hidden_states)
1244
- value_states = self.v_proj(hidden_states)
1245
-
1246
- # !save no rope
1247
- if self.use_nope:
1248
- query_states_no_rope = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
1249
- key_states_no_rope = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
1250
-
1251
- # Flash attention requires the input to have the shape
1252
- # batch_size x seq_length x head_dim x hidden_dim
1253
- # therefore we just need to keep the original shape
1254
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
1255
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1256
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1257
-
1258
- kv_seq_len = key_states.shape[-2]
1259
- if past_key_value is not None:
1260
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1261
- cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
1262
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
1263
-
1264
- if past_key_value is not None:
1265
- cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
1266
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
1267
-
1268
- # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
1269
- # to be able to avoid many of these transpose/reshape/view.
1270
- query_states = query_states.transpose(1, 2)
1271
- key_states = key_states.transpose(1, 2)
1272
- value_states = value_states.transpose(1, 2)
1273
- if self.use_nope:
1274
- no_rope_param = {
1275
- 'key_states_no_rope': key_states_no_rope,
1276
- 'query_states_no_rope': query_states_no_rope,
1277
- }
1278
- if kv_seq_len <= self.dense_len:
1279
- past_key_value.update_no_rope_key(key_states_no_rope, self.layer_idx)
1280
- else:
1281
- no_rope_param = None
1282
-
1283
- dropout_rate = self.attention_dropout if self.training else 0.0
1284
-
1285
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
1286
- # therefore the input hidden states gets silently casted in float32. Hence, we need
1287
- # cast them back in the correct dtype just to be sure everything works as expected.
1288
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
1289
- # in fp32. (MiniCPMRMSNorm handles it correctly)
1290
-
1291
- input_dtype = query_states.dtype
1292
- if input_dtype == torch.float32:
1293
- # Handle the case where the model is quantized
1294
- if hasattr(self.config, '_pre_quantization_dtype'):
1295
- target_dtype = self.config._pre_quantization_dtype
1296
- else:
1297
- target_dtype = self.q_proj.weight.dtype
1298
-
1299
- logger.warning_once(
1300
- f'The input hidden states seems to be silently casted in float32, this might be related to'
1301
- f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
1302
- f' {target_dtype}.'
1303
- )
1304
-
1305
- query_states = query_states.to(target_dtype)
1306
- key_states = key_states.to(target_dtype)
1307
- value_states = value_states.to(target_dtype)
1308
- if kv_seq_len < self.dense_len:
1309
- attn_output = self._flash_attention_forward_dense(
1310
- query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate)
1311
- elif past_key_value is None or q_len != 1: # prefilling
1312
- attn_output = self._flash_attention_forward(
1313
- query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate,
1314
- no_rope_param=no_rope_param, # if past_key_value is not None else None,
1315
- past_key_value=past_key_value)
1316
- else:
1317
- attn_output = self._flash_attention_forward_with_kv_cache(
1318
- query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, no_rope_param=no_rope_param, past_key_value=past_key_value)
1319
-
1320
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
1321
- attn_output = self.o_proj(attn_output)
1322
-
1323
- if not output_attentions:
1324
- attn_weights = None
1325
-
1326
- return attn_output, attn_weights, past_key_value
1327
-
1328
- def _flash_attention_forward(
1329
- self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None, no_rope_param=None, past_key_value=None
1330
- ):
1331
- """
1332
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1333
- first unpad the input, then computes the attention scores and pad the final attention scores.
1334
-
1335
- Args:
1336
- query_states (`torch.Tensor`):
1337
- Input query states to be passed to Flash Attention API
1338
- key_states (`torch.Tensor`):
1339
- Input key states to be passed to Flash Attention API
1340
- value_states (`torch.Tensor`):
1341
- Input value states to be passed to Flash Attention API
1342
- attention_mask (`torch.Tensor`):
1343
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1344
- position of padding tokens and 1 for the position of non-padding tokens.
1345
- dropout (`int`, *optional*):
1346
- Attention dropout
1347
- softmax_scale (`float`, *optional*):
1348
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1349
- """
1350
- if not self._flash_attn_uses_top_left_mask:
1351
- causal = self.is_causal
1352
- else:
1353
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
1354
- causal = self.is_causal and query_length != 1
1355
- # Contains at least one padding token in the sequence
1356
- if attention_mask is not None:
1357
- batch_size = query_states.shape[0]
1358
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
1359
- query_states, key_states, value_states, attention_mask, query_length
1360
- )
1361
- if no_rope_param is not None:
1362
- # nope unpad
1363
- no_rope_param['query_states_no_rope'] = no_rope_param['query_states_no_rope'].squeeze(0)
1364
- no_rope_param['key_states_no_rope'] = no_rope_param['key_states_no_rope'].squeeze(0)
1365
-
1366
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1367
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1368
- attn_output_unpad = self.sparse_forward(
1369
- query_states,
1370
- key_states,
1371
- value_states,
1372
- cu_seqlens_q,
1373
- cu_seqlens_k,
1374
- max_seqlen_in_batch_q,
1375
- max_seqlen_in_batch_k,
1376
- no_rope_param=no_rope_param,
1377
- past_key_value=past_key_value,
1378
- )
1379
-
1380
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
1381
- else:
1382
- raise ValueError('Need attention mask')
1383
-
1384
- return attn_output
1385
-
1386
- def _flash_attention_forward_with_kv_cache(
1387
- self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None, no_rope_param=None, past_key_value=None
1388
- ):
1389
- """
1390
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1391
- first unpad the input, then computes the attention scores and pad the final attention scores.
1392
-
1393
- Args:
1394
- query_states (`torch.Tensor`):
1395
- Input query states to be passed to Flash Attention API
1396
- key_states (`torch.Tensor`):
1397
- Input key states to be passed to Flash Attention API
1398
- value_states (`torch.Tensor`):
1399
- Input value states to be passed to Flash Attention API
1400
- attention_mask (`torch.Tensor`):
1401
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1402
- position of padding tokens and 1 for the position of non-padding tokens.
1403
- dropout (`int`, *optional*):
1404
- Attention dropout
1405
- softmax_scale (`float`, *optional*):
1406
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1407
- """
1408
- if not self._flash_attn_uses_top_left_mask:
1409
- causal = self.is_causal
1410
- else:
1411
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
1412
- causal = self.is_causal and query_length != 1
1413
- # Contains at least one padding token in the sequence
1414
- if attention_mask is not None:
1415
-
1416
- batch_size = query_states.shape[0]
1417
-
1418
- # query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
1419
- # query_states, key_states, value_states, attention_mask, query_length=query_length
1420
- # )
1421
-
1422
- assert batch_size == 1, 'Only batch_size=1 is supported at the moment.'
1423
- # prepare past kv ,new kv
1424
- new_q = query_states
1425
-
1426
- new_k = key_states[:, -1:, :, :].contiguous()
1427
- new_v = value_states[:, -1:, :, :].contiguous()
1428
-
1429
- past_k = key_states[:, :-1, :, :].contiguous()
1430
- past_v = value_states[:, :-1, :, :].contiguous()
1431
- if no_rope_param is not None:
1432
- # nope unpad
1433
- no_rope_param['query_states_no_rope'] = no_rope_param['query_states_no_rope'].squeeze(0)
1434
- no_rope_param['key_states_no_rope'] = no_rope_param['key_states_no_rope'].squeeze(0)
1435
-
1436
- attn_output = self.sparse_forward_with_kv_cache(
1437
- past_k=past_k, past_v=past_v, new_k=new_k, new_v=new_v, new_q=new_q, batch_size=batch_size, no_rope_param=no_rope_param, past_key_value=past_key_value)
1438
-
1439
- # attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
1440
- else:
1441
- raise ValueError('need attention mask')
1442
-
1443
- return attn_output
1444
-
1445
- def sparse_forward(self,
1446
- query_layer,
1447
- key_layer,
1448
- value_layer,
1449
- cu_seqlens_q,
1450
- cu_seqlens_k,
1451
- max_seqlen_in_batch_q,
1452
- max_seqlen_in_batch_k,
1453
- no_rope_param=None,
1454
- past_key_value=None):
1455
- stage1_k = key_layer if no_rope_param is None else no_rope_param['key_states_no_rope']
1456
- compressed_k, compressed_cu_seqlens = self.compress_k(stage1_k, cu_seqlens_k)
1457
- compressed_v = compressed_k.clone()
1458
- if past_key_value is not None:
1459
- # Compute the start indices of keys (k) that were not compressed, Only batch_size=1 is supported at the moment.
1460
- no_compress_k_start = compressed_k.shape[0] * self.kernel_stride
1461
- past_key_value.update_compress_k(
1462
- compressed_k, self.layer_idx
1463
- )
1464
- past_key_value.update_no_compress_k(
1465
- key_layer[no_compress_k_start:], self.layer_idx, no_compress_k_start)
1466
- past_key_value.cached_compressed_cu_seqlens.append(compressed_cu_seqlens)
1467
- compressed_seqlens = compressed_cu_seqlens[1:] - compressed_cu_seqlens[:-1]
1468
- topk_idx = compressed_attention(
1469
- query_layer if no_rope_param is None else no_rope_param['query_states_no_rope'],
1470
- compressed_k,
1471
- compressed_v,
1472
- self.kernel_size,
1473
- self.kernel_stride,
1474
- self.block_size,
1475
- self.topk,
1476
- cu_seqlens_q,
1477
- compressed_cu_seqlens,
1478
- max_seqlen_in_batch_q,
1479
- compressed_seqlens.max().item(),
1480
- None,
1481
- init_blocks=self.init_blocks,
1482
- local_blocks=self.local_blocks,
1483
- )
1484
-
1485
- topk_attn_output = infllmv2_attn_varlen_func(
1486
- query_layer,
1487
- key_layer,
1488
- value_layer,
1489
- cu_seqlens_q,
1490
- cu_seqlens_k,
1491
- max_seqlen_in_batch_q,
1492
- max_seqlen_in_batch_k,
1493
- dropout_p=0.0,
1494
- deterministic=False,
1495
- softmax_scale=None,
1496
- causal=True,
1497
- return_attn_probs=False,
1498
- block_window_size=self.window_size // self.block_size,
1499
- topk_idx=topk_idx
1500
- )
1501
-
1502
- return topk_attn_output
1503
-
1504
- def sparse_forward_with_kv_cache(self, past_k=None, past_v=None, new_k=None, new_v=None, new_q=None, batch_size=None, no_rope_param=None, past_key_value=None):
1505
-
1506
- # stage1_k = new_k.squeeze(0) if no_rope_param is None else no_rope_param['key_states_no_rope']
1507
- if past_k.shape[1] + new_k.shape[1] == self.dense_len and (past_key_value.compress_k_cache == [] or len(past_key_value.compress_k_cache) < self.layer_idx + 1 or past_key_value.compress_k_cache[self.layer_idx] == []):
1508
- if no_rope_param is not None:
1509
- stage1_k = past_key_value.no_rope_key_cache[self.layer_idx].squeeze(0).contiguous() # just batch_size ==1
1510
- else:
1511
- stage1_k = torch.cat([past_k, new_k], dim=1).contiguous().squeeze(0).contiguous() # just batch_size ==1
1512
- compressed_k, compressed_cu_seqlens = self.compress_k(stage1_k, torch.tensor([0, stage1_k.shape[0]], device=stage1_k.device, dtype=torch.int32)) # just batch_size ==1
1513
-
1514
- # Compute the start indices of keys (k) that were not compressed, Only batch_size=1 is supported at the moment.
1515
- no_compress_k_start = compressed_k.shape[0] * self.kernel_stride
1516
- past_key_value.update_compress_k(
1517
- compressed_k, self.layer_idx
1518
- )
1519
- past_key_value.update_no_compress_k(
1520
- stage1_k[no_compress_k_start:], self.layer_idx, no_compress_k_start)
1521
- past_key_value.cached_compressed_cu_seqlens.append(compressed_cu_seqlens)
1522
-
1523
- else:
1524
- stage1_k = new_k.squeeze(0) if no_rope_param is None else no_rope_param['key_states_no_rope']
1525
- no_compress_k = past_key_value.update_no_compress_k(
1526
- stage1_k, self.layer_idx, kernel_stride=self.kernel_stride, kernel_size=self.kernel_size)
1527
- if no_compress_k is not None:
1528
- compressed_k = no_compress_k.mean(dim=0, keepdim=True) # [1, n_heads_k, head_dim]
1529
-
1530
- compressed_k = past_key_value.update_compress_k(
1531
- compressed_k, self.layer_idx) # [seqlen, nheads_k, head_dim]
1532
-
1533
- past_key_value.cached_compressed_cu_seqlens[self.layer_idx][-1] += 1 # !Increment the last entry in sequence lengths by 1; currently supports only batch_size = 1
1534
- compressed_cu_seqlens = past_key_value.cached_compressed_cu_seqlens[self.layer_idx]
1535
- else:
1536
- compressed_k = past_key_value.compress_k_cache[self.layer_idx] # [seqlen, nheads_k, head_dim]
1537
- compressed_cu_seqlens = past_key_value.cached_compressed_cu_seqlens[self.layer_idx]
1538
-
1539
- compressed_v = compressed_k.clone()
1540
-
1541
- compressed_seqlens = compressed_cu_seqlens[1:] - compressed_cu_seqlens[:-1]
1542
- torch.cuda.synchronize()
1543
- # Manually verify that the lengths match
1544
- assert compressed_k.shape[0] == compressed_seqlens.sum().item(), 'The length of compressed_k does not match the sum of compressed_seqlens'
1545
- topk_idx = compressed_attention(
1546
- new_q.squeeze(0).contiguous() if no_rope_param is None else no_rope_param['query_states_no_rope'],
1547
- compressed_k,
1548
- compressed_v,
1549
- self.kernel_size,
1550
- self.kernel_stride,
1551
- self.block_size,
1552
- self.topk,
1553
- torch.tensor([0, 1], device=compressed_k.device, dtype=torch.int32),
1554
- compressed_cu_seqlens,
1555
- 1,
1556
- compressed_seqlens.max().item(),
1557
- None,
1558
- init_blocks=self.init_blocks,
1559
- local_blocks=self.local_blocks,
1560
- total_seq_lens=past_k.shape[1] + 1, # !Only batch_size=1 is supported at the moment.
1561
- )
1562
-
1563
- repeat_times = 1
1564
- if repeat_times > 1:
1565
- new_q = new_q.repeat_interleave(repeat_times, dim=-2)
1566
- else:
1567
- new_q = new_q
1568
-
1569
- cache_batch_idx = torch.arange(batch_size, device=new_q.device, dtype=torch.int32)
1570
-
1571
- seqlen_k = past_k.shape[1] + new_k.shape[1] # !Only batch_size=1 is supported at the moment.
1572
- seqlens_k = torch.full((batch_size,), seqlen_k - 1, dtype=torch.int32, device=new_q.device)
1573
-
1574
- past_k = torch.cat([past_k, torch.zeros_like(new_k, dtype=new_k.dtype)], dim=1).contiguous() # Append one zero vector to avoid potential out-of-bounds access
1575
- past_v = torch.cat([past_v, torch.zeros_like(new_v, dtype=new_v.dtype)], dim=1).contiguous() # Append one zero vector to avoid potential out-of-bounds access
1576
- topk_attn_output = infllmv2_attn_with_kvcache(
1577
- q=new_q,
1578
- k_cache=past_k,
1579
- v_cache=past_v,
1580
- topk_idx=topk_idx,
1581
- block_window_size=self.window_size // self.block_size,
1582
- k=new_k, # [batch_size, 1, nheads_k, d]
1583
- v=new_v, # [batch_size, 1, nheads_k, d]
1584
- cache_seqlens=seqlens_k, # current_seqlens_k-1
1585
- rotary_cos=None, # No rotary embeddings
1586
- rotary_sin=None, # No rotary embeddings
1587
- cache_batch_idx=cache_batch_idx,
1588
- causal=False, # Renaming to match function signature
1589
- )
1590
- return topk_attn_output
1591
-
1592
- def _flash_attention_forward_dense(
1593
- self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
1594
- ):
1595
- """
1596
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1597
- first unpad the input, then computes the attention scores and pad the final attention scores.
1598
-
1599
- Args:
1600
- query_states (`torch.Tensor`):
1601
- Input query states to be passed to Flash Attention API
1602
- key_states (`torch.Tensor`):
1603
- Input key states to be passed to Flash Attention API
1604
- value_states (`torch.Tensor`):
1605
- Input value states to be passed to Flash Attention API
1606
- attention_mask (`torch.Tensor`):
1607
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1608
- position of padding tokens and 1 for the position of non-padding tokens.
1609
- dropout (`int`, *optional*):
1610
- Attention dropout
1611
- softmax_scale (`float`, *optional*):
1612
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1613
- """
1614
- if not self._flash_attn_uses_top_left_mask:
1615
- causal = self.is_causal
1616
- else:
1617
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
1618
- causal = self.is_causal and query_length != 1
1619
- # Contains at least one padding token in the sequence
1620
- if attention_mask is not None:
1621
- batch_size = query_states.shape[0]
1622
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
1623
- query_states, key_states, value_states, attention_mask, query_length
1624
- )
1625
-
1626
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1627
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1628
- attn_output_unpad = flash_attn_varlen_func(
1629
- query_states,
1630
- key_states,
1631
- value_states,
1632
- cu_seqlens_q=cu_seqlens_q,
1633
- cu_seqlens_k=cu_seqlens_k,
1634
- max_seqlen_q=max_seqlen_in_batch_q,
1635
- max_seqlen_k=max_seqlen_in_batch_k,
1636
- dropout_p=dropout,
1637
- softmax_scale=softmax_scale,
1638
- causal=causal,
1639
- )
1640
-
1641
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
1642
- else:
1643
- attn_output = flash_attn_func(
1644
- query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
1645
- )
1646
-
1647
- return attn_output
1648
-
1649
- def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
1650
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1651
- batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1652
-
1653
- key_layer = index_first_axis(
1654
- key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
1655
- )
1656
- value_layer = index_first_axis(
1657
- value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
1658
- )
1659
- if query_length == kv_seq_len:
1660
- query_layer = index_first_axis(
1661
- query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
1662
- )
1663
- cu_seqlens_q = cu_seqlens_k
1664
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
1665
- indices_q = indices_k
1666
- elif query_length == 1:
1667
- max_seqlen_in_batch_q = 1
1668
- cu_seqlens_q = torch.arange(
1669
- batch_size + 1, dtype=torch.int32, device=query_layer.device
1670
- ) # There is a memcpy here, that is very bad.
1671
- indices_q = cu_seqlens_q[:-1]
1672
- query_layer = query_layer.squeeze(1)
1673
- else:
1674
- # The -q_len: slice assumes left padding.
1675
- attention_mask = attention_mask[:, -query_length:]
1676
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
1677
-
1678
- return (
1679
- query_layer,
1680
- key_layer,
1681
- value_layer,
1682
- indices_q,
1683
- (cu_seqlens_q, cu_seqlens_k),
1684
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1685
- )
1686
-
1687
-
1688
  class MiniCPMSdpaAttention(MiniCPMAttention):
1689
  """
1690
  MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
@@ -1727,9 +734,7 @@ class MiniCPMSdpaAttention(MiniCPMAttention):
1727
  key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1728
  value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1729
 
1730
- kv_seq_len = key_states.shape[-2]
1731
- if past_key_value is not None:
1732
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1733
  cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
1734
 
1735
  query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
@@ -1783,10 +788,7 @@ class MiniCPMDecoderLayer(nn.Module):
1783
  def __init__(self, config: MiniCPMConfig, layer_idx: int):
1784
  super().__init__()
1785
  self.hidden_size = config.hidden_size
1786
- if config.sparse_config is not None and torch.cuda.is_available():
1787
- raise NotImplementedError("MiniCPM4-0.5B does not support sparse attention yet.")
1788
- else:
1789
- self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
1790
 
1791
  self.mlp = MiniCPMMLP(config)
1792
  self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
@@ -2052,11 +1054,10 @@ class MiniCPMModel(MiniCPMPreTrainedModel):
2052
  raise ValueError(
2053
  'You must use the new past_key_values format, such as the Cache class, instead of the old tuple format.'
2054
  )
2055
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
2056
 
2057
- past_key_values_length = past_key_values.get_usable_length(seq_length)
2058
- if self.config.sparse_config is not None and torch.cuda.is_available() and past_key_values_length == 0:
2059
- past_key_values = DynamicCacheQKV()
2060
 
2061
  if position_ids is None:
2062
  device = input_ids.device if input_ids is not None else inputs_embeds.device
@@ -2282,12 +1283,16 @@ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
2282
  ):
2283
  if past_key_values is not None:
2284
  if isinstance(past_key_values, Cache):
 
2285
  cache_length = past_key_values.get_seq_length()
2286
- past_length = past_key_values.seen_tokens
2287
- max_cache_length = None # past_key_values.get_max_length()
2288
- else:
2289
- cache_length = past_length = past_key_values[0][0].shape[2]
2290
  max_cache_length = None
 
 
 
 
2291
 
2292
  # Keep only the unprocessed tokens:
2293
  # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
 
24
  from torch import nn
25
  from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
26
  from transformers.activations import ACT2FN
27
+ from transformers.cache_utils import Cache, DynamicCache, CacheLayerMixin, DynamicLayer
28
  from transformers.modeling_attn_mask_utils import (
29
  AttentionMaskConverter,
30
  _prepare_4d_attention_mask,
 
52
  try:
53
  from flash_attn import flash_attn_func, flash_attn_varlen_func
54
  from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
 
 
 
 
 
 
55
  except:
56
  pass
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
 
60
  # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
 
83
  )
84
 
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
 
88
  # @torch.jit.script # type: ignore
 
296
 
297
  return down_proj
298
 
299
+ def _unpad_one_tensor(hidden_states, attention_mask):
300
+ # Unpad the hidden states using the indices
301
+ indices, cu_seqlens, max_seqlen_in_batch = _get_unpad_data(attention_mask)
302
+ batch_size, seq_len = hidden_states.shape[:2]
303
+
304
+ # Get the remaining dimensions
305
+ remaining_dims = hidden_states.shape[2:]
306
+
307
+ # Reshape to (batch_size * seq_len, *remaining_dims)
308
+ reshaped_states = hidden_states.reshape(batch_size * seq_len, *remaining_dims)
309
+
310
+ # Apply unpadding using indices
311
+ unpadded_states = index_first_axis(reshaped_states, indices)
312
+
313
+ return unpadded_states, indices, cu_seqlens, max_seqlen_in_batch
314
 
315
  def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
316
  """
 
442
  key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
443
  value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
444
 
445
+ kv_seq_len = position_ids.max().item() + 1
 
 
 
 
 
 
 
 
446
  cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
447
 
448
  query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
 
544
  key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
545
  value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
546
 
547
+ kv_seq_len = position_ids.max().item() + 1
 
 
548
  cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
549
  query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
550
 
 
692
  )
693
 
694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695
  class MiniCPMSdpaAttention(MiniCPMAttention):
696
  """
697
  MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
 
734
  key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
735
  value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
736
 
737
+ kv_seq_len = position_ids.max().item() + 1
 
 
738
  cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
739
 
740
  query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
 
788
  def __init__(self, config: MiniCPMConfig, layer_idx: int):
789
  super().__init__()
790
  self.hidden_size = config.hidden_size
791
+ self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
 
 
 
792
 
793
  self.mlp = MiniCPMMLP(config)
794
  self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 
1054
  raise ValueError(
1055
  'You must use the new past_key_values format, such as the Cache class, instead of the old tuple format.'
1056
  )
 
1057
 
1058
+ # Calculate the usable length of past key values
1059
+ past_key_values_length = past_key_values.get_seq_length() if isinstance(past_key_values, Cache) else 0
1060
+
1061
 
1062
  if position_ids is None:
1063
  device = input_ids.device if input_ids is not None else inputs_embeds.device
 
1283
  ):
1284
  if past_key_values is not None:
1285
  if isinstance(past_key_values, Cache):
1286
+ # Use the new Cache class methods
1287
  cache_length = past_key_values.get_seq_length()
1288
+
1289
+
1290
+ past_length = cache_length
 
1291
  max_cache_length = None
1292
+ else:
1293
+ raise ValueError(
1294
+ 'You must use the new past_key_values format, such as the Cache class, instead of the old tuple format.'
1295
+ )
1296
 
1297
  # Keep only the unprocessed tokens:
1298
  # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where