guanwenyu1995 commited on
Commit
4d70679
·
verified ·
1 Parent(s): b1a7136

Upload 2 files

Browse files

Add MiniCPM4-0.5B-QAT-Int4-GGUF's files

.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ MiniCPM4-0.5B-QAT-Int4_gptq_aware_q4_0.gguf filter=lfs diff=lfs merge=lfs -text
MiniCPM4-0.5B-QAT-Int4_gptq_aware_q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa4ad3f448355578ce5e4021204be319e5a3cb665fb173607f92bc139c96a290
3
+ size 265307040
README.md CHANGED
@@ -1,3 +1,84 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - zh
5
+ - en
6
+ pipeline_tag: text-generation
7
+ library_name: transformers
8
+ ---
9
+ <div align="center">
10
+ <img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
11
+ </div>
12
+
13
+ <p align="center">
14
+ <a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
15
+ <a href="https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf" target="_blank">Technical Report</a>
16
+ </p>
17
+ <p align="center">
18
+ 👋 Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
19
+ </p>
20
+
21
+ ## What's New
22
+ - [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report [here](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf).🔥🔥🔥
23
+
24
+ ## MiniCPM4 Series
25
+ MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
26
+ - [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
27
+ - [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens.
28
+ - [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
29
+ - [MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu): Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
30
+ - [MiniCPM4-8B-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-vLLM): Eagle head in vLLM format, accelerating speculative inference for MiniCPM4-8B.
31
+ - [MiniCPM4-8B-marlin-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-marlin-Eagle-vLLM): Quantized Eagle head for vLLM format, accelerating speculative inference for MiniCPM4-8B.
32
+ - [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
33
+ - [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
34
+ - [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
35
+ - [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy users' requirements.
36
+ - [MiniCPM4-0.5B-QAT-Int4-unquantized](https://huggingface.co/openbmb/MiniCPM4-0.5B-QAT-Int4-unquantized): Int4 version of MiniCPM4-0.5B, trained by QAT and stored in fake quantization style.
37
+ - [MiniCPM4-0.5B-QAT-Int4-GPTQ-format](https://huggingface.co/openbmb/MiniCPM4-0.5B-QAT-Int4-GPTQ-format): Int4 version of MiniCPM4-0.5B, trained by QAT and stored in GPTQ format.
38
+ - [MiniCPM4-0.5B-QAT-Int4-GGUF](https://huggingface.co/openbmb/MiniCPM4-0.5B-QAT-Int4-GGUF): Int4 version of MiniCPM4-0.5B in GGUF. (**<-- you are here**)
39
+ ## Introduction
40
+ MiniCPM 4 is an extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements.
41
+
42
+ - 🏗️ **Efficient Model Architecture:**
43
+ - InfLLM v2 -- Trainable Sparse Attention Mechanism: Adopts a trainable sparse attention mechanism architecture where each token only needs to compute relevance with less than 5% of tokens in 128K long text processing, significantly reducing computational overhead for long texts
44
+
45
+ - 🧠 **Efficient Learning Algorithms:**
46
+ - Model Wind Tunnel 2.0 -- Efficient Predictable Scaling: Introduces scaling prediction methods for performance of downstream tasks, enabling more precise model training configuration search
47
+ - BitCPM -- Ultimate Ternary Quantization: Compresses model parameter bit-width to 3 values, achieving 90% extreme model bit-width reduction
48
+ - Efficient Training Engineering Optimization: Adopts FP8 low-precision computing technology combined with Multi-token Prediction training strategy
49
+
50
+ - 📚 **High-Quality Training Data:**
51
+ - UltraClean -- High-quality Pre-training Data Filtering and Generation: Builds iterative data cleaning strategies based on efficient data verification, open-sourcing high-quality Chinese and English pre-training dataset [UltraFinweb](https://huggingface.co/datasets/openbmb/Ultra-FineWeb)
52
+ - UltraChat v2 -- High-quality Supervised Fine-tuning Data Generation: Constructs large-scale high-quality supervised fine-tuning datasets covering multiple dimensions including knowledge-intensive data, reasoning-intensive data, instruction-following data, long text understanding data, and tool calling data
53
+
54
+ - ⚡ **Efficient Inference System:**
55
+ - CPM.cu -- Lightweight and Efficient CUDA Inference Framework: Integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding
56
+ - ArkInfer -- Cross-platform Deployment System: Supports efficient deployment across multiple backend environments, providing flexible cross-platform adaptation capabilities
57
+
58
+ ## Usage
59
+ ### Inference with Llama.cpp
60
+ ```bash
61
+ llama-cli -m MiniCPM4-0.5B-QAT-Int4_gptq_aware_q4_0.gguf -p "推荐5个北京的景点。" -n 100
62
+ ```
63
+
64
+
65
+
66
+ ## Statement
67
+ - As a language model, MiniCPM generates content by learning from a vast amount of text.
68
+ - However, it does not possess the ability to comprehend or express personal opinions or value judgments.
69
+ - Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
70
+ - Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.
71
+
72
+ ## LICENSE
73
+ - This repository and MiniCPM models are released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
74
+
75
+ ## Citation
76
+ - Please cite our [paper](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf) if you find our work valuable.
77
+
78
+ ```bibtex
79
+ @article{minicpm4,
80
+ title={{MiniCPM4}: Ultra-Efficient LLMs on End Devices},
81
+ author={MiniCPM Team},
82
+ year={2025}
83
+ }
84
+ ```