MiniCPM-V-4_5 / resampler.py
tc-mb's picture
Update resampler.py (#3)
dacabb6 verified
from functools import partial
from itertools import chain
from typing import Optional, Tuple, List
import numpy as np
import torch
from torch import nn
from torch.nn.init import trunc_normal_
from transformers.integrations import is_deepspeed_zero3_enabled
def get_2d_sincos_pos_embed(embed_dim, image_size):
"""
image_size: image_size or (image_height, image_width)
return:
pos_embed: [image_height, image_width, embed_dim]
"""
if isinstance(image_size, int):
grid_h_size, grid_w_size = image_size, image_size
else:
grid_h_size, grid_w_size = image_size[0], image_size[1]
grid_h = np.arange(grid_h_size, dtype=np.float32)
grid_w = np.arange(grid_w_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
return emb
def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (H, W)
out: (H, W, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
emb_sin = np.sin(out) # (H, W, D/2)
emb_cos = np.cos(out) # (H, W, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
return emb
def get_1d_sincos_pos_embed_from_temporal_size(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
class Resampler(nn.Module):
"""
A 2D perceiver-resampler network with one cross attention layers by
given learnable queries and 2d sincos pos_emb
Outputs:
A tensor with the shape of (batch_size, num_queries, embed_dim)
"""
def __init__(
self,
num_queries,
embed_dim,
num_heads,
kv_dim=None,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
adaptive=False,
max_size=(70, 70),
max_temporal_size=72000,
batch_infer=False
):
super().__init__()
self.num_queries = num_queries
self.embed_dim = embed_dim
self.num_heads = num_heads
self.adaptive = adaptive
self.max_size = max_size
self.max_temporal_size = max_temporal_size
self.batch_infer = batch_infer
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
trunc_normal_(self.query, std=.02)
if kv_dim is not None and kv_dim != embed_dim:
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
else:
self.kv_proj = nn.Identity()
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
self.ln_q = norm_layer(embed_dim)
self.ln_kv = norm_layer(embed_dim)
self.ln_post = norm_layer(embed_dim)
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
self._set_2d_pos_cache(self.max_size)
self._set_temporal_pos_cache(self.max_temporal_size)
self.apply(self._init_weights)
def _set_2d_pos_cache(self, max_size, device='cpu'):
if is_deepspeed_zero3_enabled():
device='cuda'
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
self.register_buffer("pos_embed", pos_embed, persistent=False)
def _adjust_pos_cache(self, tgt_sizes, device):
max_h = torch.max(tgt_sizes[:, 0])
max_w = torch.max(tgt_sizes[:, 1])
if max_h > self.max_size[0] or max_w > self.max_size[1]:
self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
self._set_2d_pos_cache(self.max_size, device)
def _set_temporal_pos_cache(self, max_temporal_size, device='cpu'):
temporal_size = np.arange(max_temporal_size, dtype=np.float32)
pos_embed = torch.from_numpy(get_1d_sincos_pos_embed_from_temporal_size(self.embed_dim, temporal_size)).float().to(device)
self.register_buffer("temporal_pos_embed", pos_embed, persistent=False)
def _adjust_temporal_pos_cache(self, max_temporal_size, device):
if max_temporal_size > self.max_temporal_size:
self.max_temporal_size = max_temporal_size
self._set_temporal_pos_cache(self.max_temporal_size, device)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _initialize_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x, tgt_sizes=None, temporal_ids=None):
assert x.shape[0] == tgt_sizes.shape[0]
bs = x.shape[0]
device = x.device
dtype = x.dtype
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
self._adjust_pos_cache(tgt_sizes, device=device)
temporal_pos_emb = False
temporal_ids_flatten = None
if temporal_ids is not None:
# example: [[-1], [-1], [2, 6, 9]]
temporal_ids_flatten = list(chain.from_iterable(temporal_ids))
max_temporal_size = max(temporal_ids_flatten) + 1
if max_temporal_size > -1:
temporal_pos_emb = True
if max_temporal_size > self.max_temporal_size:
self._adjust_temporal_pos_cache(max_temporal_size, device)
max_patch_len = torch.max(patch_len)
key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
pos_embed = []
for i in range(bs):
tgt_h, tgt_w = tgt_sizes[i]
pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
key_padding_mask[i, patch_len[i]:] = True
pos_embed = torch.nn.utils.rnn.pad_sequence(
pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
x = self.kv_proj(x) # B * L * D
x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
q = self.ln_q(self.query) # Q * D
pos_embed_2d = []
pos_embed_temporal = []
for i in range(bs):
tgt_h, tgt_w = tgt_sizes[i]
if temporal_pos_emb:
if temporal_ids_flatten[i] == -1:
pos_embed_temporal.append(torch.zeros(self.embed_dim, dtype=dtype, device=device))
else:
pos_embed_temporal.append(self.temporal_pos_embed[temporal_ids_flatten[i]].to(dtype)) # D
pos_embed_2d.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
key_padding_mask[i, patch_len[i]:] = True
pos_embed_2d = torch.nn.utils.rnn.pad_sequence(
pos_embed_2d, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
v = x
k = x + pos_embed_2d
if self.batch_infer:
out = self.batch_attn_forward(q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask)
else: # save gpu memory
out = self.foreach_attn_forward(q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask)
# out: Q * B * D
x = out.permute(1, 0, 2) # B * Q * D
x = self.ln_post(x)
x = x @ self.proj
return x
def _repeat(self, query, N: int):
return query.unsqueeze(1).repeat(1, N, 1)
def batch_attn_forward(self, q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask):
bs = k.shape[0]
if pos_embed_temporal:
# temporal 维度折叠
# 时序 embedding
k += torch.stack(pos_embed_temporal, dim=0)
bs = len(temporal_ids)
merge_k = []
merge_v = []
merge_key_padding_mask = []
start = 0
for tp in temporal_ids:
end = start + len(tp)
# # L * (end-start) * D -> (end-start) * L * D -> 1 * L*(end-start) * D
merge_k.append(k[:, start: end, :].permute(1, 0, 2).reshape(-1, self.embed_dim))
merge_v.append(v[:, start: end, :].permute(1, 0, 2).reshape(-1, self.embed_dim))
merge_key_padding_mask.append(key_padding_mask[start: end, :].reshape(-1, 1))
start = end
k = torch.nn.utils.rnn.pad_sequence(merge_k, batch_first=True, padding_value=0.0).permute(1, 0, 2) # L*(end-start)
v = torch.nn.utils.rnn.pad_sequence(merge_v, batch_first=True, padding_value=0.0).permute(1, 0, 2) # L*(end-start)
key_padding_mask = torch.nn.utils.rnn.pad_sequence(merge_key_padding_mask, batch_first=True, padding_value=True).squeeze(-1)
out = self.attn(
self._repeat(q, bs), # Q * B * D
k, # L * B * D + L * B * D
v,
key_padding_mask=key_padding_mask)[0]
return out
def foreach_attn_forward(self, q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask):
bs = k.shape[0]
if pos_embed_temporal:
k += torch.stack(pos_embed_temporal, dim=0)
# bs = len(temporal_ids)
out_list = []
start = 0
for tp in temporal_ids:
end = start + len(tp)
# 处理每个序列而不padding
curr_k = k[:, start:end, :].reshape(-1, self.embed_dim)
curr_v = v[:, start:end, :].reshape(-1, self.embed_dim)
curr_key_padding_mask = key_padding_mask[start: end, :].reshape(-1)
curr_out = self.attn(
q,
curr_k,
curr_v,
key_padding_mask=curr_key_padding_mask,
)[0]
out_list.append(curr_out)
start = end
# 合并所有序列的结果
out = torch.stack(out_list, dim=1)
else:
out = self.attn(
self._repeat(q, bs), # Q * B * D
k, # L * B * D + L * B * D
v,
key_padding_mask=key_padding_mask)[0]
return out