Update handler.py
Browse files- handler.py +22 -17
handler.py
CHANGED
@@ -1,38 +1,43 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
import torch
|
3 |
|
4 |
-
# Load
|
5 |
-
|
6 |
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
8 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
9 |
model.eval()
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
model.to(device)
|
13 |
|
14 |
-
def predict(
|
15 |
-
"""
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
18 |
|
19 |
results = []
|
20 |
-
for text in
|
21 |
-
|
22 |
-
inputs = tokenizer(
|
23 |
text,
|
24 |
return_tensors="pt",
|
25 |
truncation=True,
|
26 |
padding="max_length",
|
27 |
-
max_length=
|
28 |
)
|
29 |
-
|
30 |
|
31 |
with torch.no_grad():
|
32 |
-
outputs = model(**
|
33 |
-
score = outputs.logits.squeeze().item()
|
34 |
-
clipped_score = min(max(score, 0.0), 1.0)
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
return results
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
import torch
|
3 |
|
4 |
+
# Load once when the endpoint starts
|
5 |
+
model_name = "open-paws/text_performance_prediction_longform"
|
6 |
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
model.eval()
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
model.to(device)
|
13 |
|
14 |
+
def predict(inputs):
|
15 |
+
"""
|
16 |
+
Hugging Face Inference Endpoints will call this function.
|
17 |
+
`inputs` can be a single string or a list of strings.
|
18 |
+
"""
|
19 |
+
if isinstance(inputs, str):
|
20 |
+
inputs = [inputs]
|
21 |
|
22 |
results = []
|
23 |
+
for text in inputs:
|
24 |
+
encoded = tokenizer(
|
|
|
25 |
text,
|
26 |
return_tensors="pt",
|
27 |
truncation=True,
|
28 |
padding="max_length",
|
29 |
+
max_length=4096,
|
30 |
)
|
31 |
+
encoded = {k: v.to(device) for k, v in encoded.items()}
|
32 |
|
33 |
with torch.no_grad():
|
34 |
+
outputs = model(**encoded)
|
|
|
|
|
35 |
|
36 |
+
raw_score = outputs.logits.squeeze().item()
|
37 |
+
clipped_score = min(max(raw_score, 0.0), 1.0)
|
38 |
+
|
39 |
+
results.append({
|
40 |
+
"score": round(clipped_score, 4),
|
41 |
+
})
|
42 |
|
43 |
return results
|