File size: 1,566 Bytes
778b920 d5305db 778b920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
library_name: transformers.js
base_model: jmtzt/ijepa_vith16_1k
---
https://huggingface.co/jmtzt/ijepa_vith16_1k with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
**Example:** Image feature extraction with `onnx-community/ijepa_vith16_1k`.
```js
import { pipeline, cos_sim } from "@huggingface/transformers";
// Create an image feature extraction pipeline
const extractor = await pipeline(
"image-feature-extraction",
"onnx-community/ijepa_vith16_1k",
{ dtype: "q8" },
);
// Compute image embeddings
const url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
const url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
const output = await extractor([url_1, url_2]);
const pooled_output = output.mean(1); // Apply mean pooling
// Compute cosine similarity
const similarity = cos_sim(pooled_output[0].data, pooled_output[1].data);
console.log(similarity); // 0.5334921616321957
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |