Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- ar
|
| 5 |
+
- da
|
| 6 |
+
- de
|
| 7 |
+
- el
|
| 8 |
+
- en
|
| 9 |
+
- es
|
| 10 |
+
- fi
|
| 11 |
+
- fr
|
| 12 |
+
- he
|
| 13 |
+
- hi
|
| 14 |
+
- it
|
| 15 |
+
- ja
|
| 16 |
+
- ko
|
| 17 |
+
- ms
|
| 18 |
+
- nl
|
| 19 |
+
- no
|
| 20 |
+
- pl
|
| 21 |
+
- pt
|
| 22 |
+
- ru
|
| 23 |
+
- sv
|
| 24 |
+
- sw
|
| 25 |
+
- tr
|
| 26 |
+
- zh
|
| 27 |
+
pipeline_tag: text-to-speech
|
| 28 |
+
tags:
|
| 29 |
+
- text-to-speech
|
| 30 |
+
- speech
|
| 31 |
+
- speech-generation
|
| 32 |
+
- voice-cloning
|
| 33 |
+
- multilingual-tts
|
| 34 |
+
library_name: chatterbox
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
<img width="800" alt="cb-big2" src="https://github.com/user-attachments/assets/bd8c5f03-e91d-4ee5-b680-57355da204d1" />
|
| 38 |
+
|
| 39 |
+
<h1 style="font-size: 32px">Chatterbox TTS</h1>
|
| 40 |
+
|
| 41 |
+
<div style="display: flex; align-items: center; gap: 12px">
|
| 42 |
+
<a href="https://resemble-ai.github.io/chatterbox_demopage/">
|
| 43 |
+
<img src="https://img.shields.io/badge/listen-demo_samples-blue" alt="Listen to Demo Samples" />
|
| 44 |
+
</a>
|
| 45 |
+
<a href="https://huggingface.co/spaces/ResembleAI/Chatterbox">
|
| 46 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm.svg" alt="Open in HF Spaces" />
|
| 47 |
+
</a>
|
| 48 |
+
<a href="https://podonos.com/resembleai/chatterbox">
|
| 49 |
+
<img src="https://static-public.podonos.com/badges/insight-on-pdns-sm-dark.svg" alt="Insight on Podos" />
|
| 50 |
+
</a>
|
| 51 |
+
</div>
|
| 52 |
+
|
| 53 |
+
<div style="display: flex; align-items: center; gap: 8px;">
|
| 54 |
+
<span style="font-style: italic;white-space: pre-wrap">Made with ❤️ by</span>
|
| 55 |
+
<img width="100" alt="resemble-logo-horizontal" src="https://github.com/user-attachments/assets/35cf756b-3506-4943-9c72-c05ddfa4e525" />
|
| 56 |
+
</div>
|
| 57 |
+
|
| 58 |
+
**Chatterbox** [Resemble AI's](https://resemble.ai) production-grade open source TTS model. Chatterbox supports **English** out of the box. Licensed under MIT, Chatterbox has been benchmarked against leading closed-source systems like ElevenLabs, and is consistently preferred in side-by-side evaluations.
|
| 59 |
+
|
| 60 |
+
Whether you're working on memes, videos, games, or AI agents, Chatterbox brings your content to life. It's also the first open source TTS model to support **emotion exaggeration control**, a powerful feature that makes your voices stand out.
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# Key Details
|
| 64 |
+
- SoTA zeroshot English TTS
|
| 65 |
+
- 0.5B Llama backbone
|
| 66 |
+
- Unique exaggeration/intensity control
|
| 67 |
+
- Ultra-stable with alignment-informed inference
|
| 68 |
+
- Trained on 0.5M hours of cleaned data
|
| 69 |
+
- Watermarked outputs (optional)
|
| 70 |
+
- Easy voice conversion script using onnxruntime
|
| 71 |
+
- [Outperforms ElevenLabs](https://podonos.com/resembleai/chatterbox)
|
| 72 |
+
|
| 73 |
+
# Tips
|
| 74 |
+
- **General Use (TTS and Voice Agents):**
|
| 75 |
+
- The default settings (`exaggeration=0.5`, `cfg=0.5`) work well for most prompts.
|
| 76 |
+
|
| 77 |
+
- **Expressive or Dramatic Speech:**
|
| 78 |
+
- Try increase `exaggeration` to around `0.7` or higher.
|
| 79 |
+
- Higher `exaggeration` tends to speed up speech;
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Usage
|
| 83 |
+
[ONNX Export and Inference script](https://github.com/VladOS95-cyber/onnx_conversion_scripts/tree/main/chatterbox)
|
| 84 |
+
|
| 85 |
+
```python
|
| 86 |
+
import onnxruntime
|
| 87 |
+
|
| 88 |
+
from huggingface_hub import hf_hub_download
|
| 89 |
+
from transformers import AutoTokenizer
|
| 90 |
+
|
| 91 |
+
import numpy as np
|
| 92 |
+
from tqdm import tqdm
|
| 93 |
+
import librosa
|
| 94 |
+
import soundfile as sf
|
| 95 |
+
|
| 96 |
+
S3GEN_SR = 24000
|
| 97 |
+
|
| 98 |
+
# Sampling rate of the inputs to S3TokenizerV2
|
| 99 |
+
START_SPEECH_TOKEN = 6561
|
| 100 |
+
STOP_SPEECH_TOKEN = 6562
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class RepetitionPenaltyLogitsProcessor:
|
| 104 |
+
def __init__(self, penalty: float):
|
| 105 |
+
if not isinstance(penalty, float) or not (penalty > 0):
|
| 106 |
+
raise ValueError(f"`penalty` must be a strictly positive float, but is {penalty}")
|
| 107 |
+
self.penalty = penalty
|
| 108 |
+
|
| 109 |
+
def __call__(self, input_ids: np.ndarray, scores: np.ndarray) -> np.ndarray:
|
| 110 |
+
score = np.take_along_axis(scores, input_ids, axis=1)
|
| 111 |
+
score = np.where(score < 0, score * self.penalty, score / self.penalty)
|
| 112 |
+
scores_processed = scores.copy()
|
| 113 |
+
np.put_along_axis(scores_processed, input_ids, score, axis=1)
|
| 114 |
+
return scores_processed
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def run_inference(
|
| 118 |
+
text="The Lord of the Rings is the greatest work of literature.",
|
| 119 |
+
target_voice_path=None,
|
| 120 |
+
max_new_tokens = 256,
|
| 121 |
+
exaggeration=0.5,
|
| 122 |
+
output_dir="converted",
|
| 123 |
+
output_file_name="output.wav",
|
| 124 |
+
apply_watermark=True,
|
| 125 |
+
):
|
| 126 |
+
|
| 127 |
+
model_id = "onnx-community/chatterbox-onnx"
|
| 128 |
+
if not target_voice_path:
|
| 129 |
+
target_voice_path = hf_hub_download(repo_id=model_id, filename="default_voice.wav", local_dir=output_dir)
|
| 130 |
+
|
| 131 |
+
## Load model
|
| 132 |
+
speech_encoder_path = hf_hub_download(repo_id=model_id, filename="speech_encoder.onnx", local_dir=output_dir, subfolder='onnx')
|
| 133 |
+
hf_hub_download(repo_id=model_id, filename="speech_encoder.onnx_data", local_dir=output_dir, subfolder='onnx')
|
| 134 |
+
embed_tokens_path = hf_hub_download(repo_id=model_id, filename="embed_tokens.onnx", local_dir=output_dir, subfolder='onnx')
|
| 135 |
+
hf_hub_download(repo_id=model_id, filename="embed_tokens.onnx_data", local_dir=output_dir, subfolder='onnx')
|
| 136 |
+
conditional_decoder_path = hf_hub_download(repo_id=model_id, filename="conditional_decoder.onnx", local_dir=output_dir, subfolder='onnx')
|
| 137 |
+
hf_hub_download(repo_id=model_id, filename="conditional_decoder.onnx_data", local_dir=output_dir, subfolder='onnx')
|
| 138 |
+
language_model_path = hf_hub_download(repo_id=model_id, filename="language_model.onnx", local_dir=output_dir, subfolder='onnx')
|
| 139 |
+
hf_hub_download(repo_id=model_id, filename="language_model.onnx_data", local_dir=output_dir, subfolder='onnx')
|
| 140 |
+
|
| 141 |
+
# # Start inferense sessions
|
| 142 |
+
speech_encoder_session = onnxruntime.InferenceSession(speech_encoder_path)
|
| 143 |
+
embed_tokens_session = onnxruntime.InferenceSession(embed_tokens_path)
|
| 144 |
+
llama_with_past_session = onnxruntime.InferenceSession(language_model_path)
|
| 145 |
+
cond_decoder_session = onnxruntime.InferenceSession(conditional_decoder_path)
|
| 146 |
+
|
| 147 |
+
def execute_text_to_audio_inference(text):
|
| 148 |
+
print("Start inference script...")
|
| 149 |
+
|
| 150 |
+
audio_values, _ = librosa.load(target_voice_path, sr=S3GEN_SR)
|
| 151 |
+
audio_values = audio_values[np.newaxis, :].astype(np.float32)
|
| 152 |
+
|
| 153 |
+
## Prepare input
|
| 154 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 155 |
+
input_ids = tokenizer(text, return_tensors="np")["input_ids"].astype(np.int64)
|
| 156 |
+
|
| 157 |
+
position_ids = np.where(
|
| 158 |
+
input_ids >= START_SPEECH_TOKEN,
|
| 159 |
+
0,
|
| 160 |
+
np.arange(input_ids.shape[1])[np.newaxis, :] - 1
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
ort_embed_tokens_inputs = {
|
| 164 |
+
"input_ids": input_ids,
|
| 165 |
+
"position_ids": position_ids,
|
| 166 |
+
"exaggeration": np.array([exaggeration], dtype=np.float32)
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
## Instantiate the logits processors.
|
| 170 |
+
repetition_penalty = 1.2
|
| 171 |
+
repetition_penalty_processor = RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty)
|
| 172 |
+
|
| 173 |
+
num_hidden_layers = 30
|
| 174 |
+
num_key_value_heads = 16
|
| 175 |
+
head_dim = 64
|
| 176 |
+
|
| 177 |
+
generate_tokens = np.array([[START_SPEECH_TOKEN]], dtype=np.long)
|
| 178 |
+
|
| 179 |
+
# ---- Generation Loop using kv_cache ----
|
| 180 |
+
for i in tqdm(range(max_new_tokens), desc="Sampling", dynamic_ncols=True):
|
| 181 |
+
|
| 182 |
+
inputs_embeds = embed_tokens_session.run(None, ort_embed_tokens_inputs)[0]
|
| 183 |
+
if i == 0:
|
| 184 |
+
ort_speech_encoder_input = {
|
| 185 |
+
"audio_values": audio_values,
|
| 186 |
+
}
|
| 187 |
+
cond_emb, prompt_token, ref_x_vector, prompt_feat = speech_encoder_session.run(None, ort_speech_encoder_input)
|
| 188 |
+
inputs_embeds = np.concatenate((cond_emb, inputs_embeds), axis=1)
|
| 189 |
+
|
| 190 |
+
## Prepare llm inputs
|
| 191 |
+
batch_size, seq_len, _ = inputs_embeds.shape
|
| 192 |
+
past_key_values = {
|
| 193 |
+
f"past_key_values.{layer}.{kv}": np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32)
|
| 194 |
+
for layer in range(num_hidden_layers)
|
| 195 |
+
for kv in ("key", "value")
|
| 196 |
+
}
|
| 197 |
+
attention_mask = np.ones((batch_size, seq_len), dtype=np.int64)
|
| 198 |
+
llm_position_ids = np.cumsum(attention_mask, axis=1, dtype=np.int64) - 1
|
| 199 |
+
|
| 200 |
+
logits, *present_key_values = llama_with_past_session.run(None, dict(
|
| 201 |
+
inputs_embeds=inputs_embeds,
|
| 202 |
+
attention_mask=attention_mask,
|
| 203 |
+
position_ids=llm_position_ids,
|
| 204 |
+
**past_key_values,
|
| 205 |
+
))
|
| 206 |
+
|
| 207 |
+
logits = logits[:, -1, :]
|
| 208 |
+
next_token_logits = repetition_penalty_processor(generate_tokens, logits)
|
| 209 |
+
|
| 210 |
+
next_token = np.argmax(next_token_logits, axis=-1, keepdims=True).astype(np.int64)
|
| 211 |
+
generate_tokens = np.concatenate((generate_tokens, next_token), axis=-1)
|
| 212 |
+
if (next_token.flatten() == STOP_SPEECH_TOKEN).all():
|
| 213 |
+
break
|
| 214 |
+
|
| 215 |
+
# Get embedding for the new token.
|
| 216 |
+
position_ids = np.full(
|
| 217 |
+
(input_ids.shape[0], 1),
|
| 218 |
+
i + 1,
|
| 219 |
+
dtype=np.int64,
|
| 220 |
+
)
|
| 221 |
+
ort_embed_tokens_inputs["input_ids"] = next_token
|
| 222 |
+
ort_embed_tokens_inputs["position_ids"] = position_ids
|
| 223 |
+
|
| 224 |
+
## Update values for next generation loop
|
| 225 |
+
attention_mask = np.concatenate([attention_mask, np.ones((batch_size, 1), dtype=np.int64)], axis=1)
|
| 226 |
+
llm_position_ids = llm_position_ids[:, -1:] + 1
|
| 227 |
+
for j, key in enumerate(past_key_values):
|
| 228 |
+
past_key_values[key] = present_key_values[j]
|
| 229 |
+
|
| 230 |
+
speech_tokens = generate_tokens[:, 1:-1]
|
| 231 |
+
speech_tokens = np.concatenate([prompt_token, speech_tokens], axis=1)
|
| 232 |
+
return speech_tokens, ref_x_vector, prompt_feat
|
| 233 |
+
|
| 234 |
+
speech_tokens, speaker_embeddings, speaker_features = execute_text_to_audio_inference(text)
|
| 235 |
+
cond_incoder_input = {
|
| 236 |
+
"speech_tokens": speech_tokens,
|
| 237 |
+
"speaker_embeddings": speaker_embeddings,
|
| 238 |
+
"speaker_features": speaker_features,
|
| 239 |
+
}
|
| 240 |
+
wav = cond_decoder_session.run(None, cond_incoder_input)[0]
|
| 241 |
+
wav = np.squeeze(wav, axis=0)
|
| 242 |
+
|
| 243 |
+
# Optional: Apply watermark
|
| 244 |
+
if apply_watermark:
|
| 245 |
+
import perth
|
| 246 |
+
watermarker = perth.PerthImplicitWatermarker()
|
| 247 |
+
wav = watermarker.apply_watermark(wav, sample_rate=S3GEN_SR)
|
| 248 |
+
|
| 249 |
+
sf.write(output_file_name, wav, S3GEN_SR)
|
| 250 |
+
print(f"{output_file_name} was successfully saved")
|
| 251 |
+
|
| 252 |
+
if __name__ == "__main__":
|
| 253 |
+
run_inference(
|
| 254 |
+
text="Ezreal and Jinx teamed up with Ahri, Yasuo, and Teemo to take down the enemy's Nexus in an epic late-game pentakill.",
|
| 255 |
+
exaggeration=0.5,
|
| 256 |
+
output_file_name="output.wav",
|
| 257 |
+
apply_watermark=False,
|
| 258 |
+
)
|
| 259 |
+
```
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
# Acknowledgements
|
| 263 |
+
- [Xenova](https://huggingface.co/Xenova)
|
| 264 |
+
- [Vladislav Bronzov](https://github.com/VladOS95-cyber)
|
| 265 |
+
- [Resemble AI](https://github.com/resemble-ai/chatterbox)
|
| 266 |
+
|
| 267 |
+
# Built-in PerTh Watermarking for Responsible AI
|
| 268 |
+
|
| 269 |
+
Every audio file generated by Chatterbox includes [Resemble AI's Perth (Perceptual Threshold) Watermarker](https://github.com/resemble-ai/perth) - imperceptible neural watermarks that survive MP3 compression, audio editing, and common manipulations while maintaining nearly 100% detection accuracy.
|
| 270 |
+
|
| 271 |
+
# Disclaimer
|
| 272 |
+
Don't use this model to do bad things. Prompts are sourced from freely available data on the internet.
|