| from transformers import LlamaConfig, PretrainedConfig | |
| from transformers.utils import logging | |
| from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, AutoConfig, AutoModelForCausalLM | |
| logger = logging.get_logger(__name__) | |
| class InternVisionConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to | |
| instantiate a vision encoder according to the specified arguments, defining the model architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| num_channels (`int`, *optional*, defaults to 3): | |
| Number of color channels in the input images (e.g., 3 for RGB). | |
| patch_size (`int`, *optional*, defaults to 14): | |
| The size (resolution) of each patch. | |
| image_size (`int`, *optional*, defaults to 224): | |
| The size (resolution) of each image. | |
| qkv_bias (`bool`, *optional*, defaults to `False`): | |
| Whether to add a bias to the queries and values in the self-attention layers. | |
| hidden_size (`int`, *optional*, defaults to 3200): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| num_attention_heads (`int`, *optional*, defaults to 25): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| intermediate_size (`int`, *optional*, defaults to 12800): | |
| Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| qk_normalization (`bool`, *optional*, defaults to `True`): | |
| Whether to normalize the queries and keys in the self-attention layers. | |
| num_hidden_layers (`int`, *optional*, defaults to 48): | |
| Number of hidden layers in the Transformer encoder. | |
| use_flash_attn (`bool`, *optional*, defaults to `True`): | |
| Whether to use flash attention mechanism. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-6): | |
| The epsilon used by the layer normalization layers. | |
| dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
| drop_path_rate (`float`, *optional*, defaults to 0.0): | |
| Dropout rate for stochastic depth. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| initializer_factor (`float`, *optional*, defaults to 0.1): | |
| A factor for layer scale. | |
| """ | |
| model_type = 'intern_vit_6b' | |
| def __init__( | |
| self, | |
| num_channels=3, | |
| patch_size=14, | |
| image_size=448, | |
| qkv_bias=False, | |
| hidden_size=3200, | |
| num_attention_heads=25, | |
| intermediate_size=12800, | |
| qk_normalization=True, | |
| num_hidden_layers=45, | |
| use_flash_attn=True, | |
| hidden_act='gelu', | |
| layer_norm_eps=1e-6, | |
| dropout=0.0, | |
| drop_path_rate=0.0, | |
| attention_dropout=0.0, | |
| initializer_range=1e-10, | |
| initializer_factor=0.1, | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.drop_path_rate = drop_path_rate | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.num_channels = num_channels | |
| self.patch_size = patch_size | |
| self.image_size = image_size | |
| self.initializer_range = initializer_range | |
| self.initializer_factor = initializer_factor | |
| self.attention_dropout = attention_dropout | |
| self.layer_norm_eps = layer_norm_eps | |
| self.hidden_act = hidden_act | |
| self.qkv_bias = qkv_bias | |
| self.qk_normalization = qk_normalization | |
| self.use_flash_attn = use_flash_attn | |
| class OmChatConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`OmChatForConditionalGeneration`]. It is used to instantiate an | |
| Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
| with the defaults will yield a similar configuration to that of the [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) | |
| model. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`): | |
| The config object or dictionary of the vision backbone. | |
| text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`): | |
| The config object or dictionary of the text backbone. | |
| ignore_index (`int`, *optional*, defaults to -100): | |
| The ignore index for the loss function. | |
| image_token_index (`int`, *optional*, defaults to 32000): | |
| The image token index to encode the image prompt. | |
| projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): | |
| The activation function used by the multimodal projector. | |
| vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): | |
| The feature selection strategy used to select the vision feature from the vision backbone. | |
| Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. | |
| If `"full"`, the full vision features are used. | |
| vision_feature_layer (`int`, *optional*, defaults to -2): | |
| The index of the layer to select the vision feature. | |
| image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`): | |
| A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list | |
| of the form `(height, width)`. | |
| tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
| Whether the model's input and output word embeddings should be tied. | |
| Example: | |
| ```python | |
| >>> from transformers import OmChatForConditionalGeneration, OmChatConfig, CLIPVisionConfig, LlamaConfig | |
| >>> # Initializing a CLIP-vision config | |
| >>> vision_config = CLIPVisionConfig() | |
| >>> # Initializing a Llama config | |
| >>> text_config = LlamaConfig() | |
| >>> # Initializing a Llava-Next llava-hf/llava-v1.6-mistral-7b-hf style configuration | |
| >>> configuration = OmChatConfig(vision_config, text_config) | |
| >>> # Initializing a model from the llava-hf/llava-v1.6-mistral-7b-hf style configuration | |
| >>> model = OmChatForConditionalGeneration(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "omchat" | |
| is_composition = False | |
| def __init__( | |
| self, | |
| vision_config=None, | |
| text_config=None, | |
| ignore_index=-100, | |
| image_token_index=32000, | |
| projector_hidden_act="gelu", | |
| vision_feature_select_strategy="default", | |
| vision_feature_layer=-1, | |
| image_grid_pinpoints=None, | |
| tie_word_embeddings=False, | |
| **kwargs, | |
| ): | |
| self.ignore_index = ignore_index | |
| self.image_token_index = image_token_index | |
| self.projector_hidden_act = projector_hidden_act | |
| if vision_feature_select_strategy not in ["default", "full"]: | |
| raise ValueError( | |
| "vision_feature_select_strategy should be one of 'default', 'full'." | |
| f"Got: {vision_feature_select_strategy}" | |
| ) | |
| self.vision_feature_select_strategy = vision_feature_select_strategy | |
| self.vision_feature_layer = vision_feature_layer | |
| image_grid_pinpoints = ( | |
| image_grid_pinpoints | |
| if image_grid_pinpoints is not None | |
| else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]] | |
| ) | |
| self.image_grid_pinpoints = image_grid_pinpoints | |
| if isinstance(vision_config, dict): | |
| vision_config = InternVisionConfig(**vision_config) | |
| self.vision_config = vision_config | |
| if isinstance(text_config, dict): | |
| text_config = Qwen2Config(**text_config) | |
| self.text_config = text_config | |
| super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) | |