--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed5 results: [] --- # codegen-350M-mono-measurement_pred-diamonds-seed5 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5059 - Accuracy: 0.9004 - Accuracy Sensor 0: 0.9014 - Auroc Sensor 0: 0.9556 - Accuracy Sensor 1: 0.8987 - Auroc Sensor 1: 0.9560 - Accuracy Sensor 2: 0.9201 - Auroc Sensor 2: 0.9711 - Accuracy Aggregated: 0.8813 - Auroc Aggregated: 0.9554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.2902 | 0.9997 | 781 | 0.3671 | 0.8431 | 0.8573 | 0.9025 | 0.8378 | 0.8994 | 0.8717 | 0.9333 | 0.8057 | 0.8989 | | 0.1961 | 1.9994 | 1562 | 0.2889 | 0.8868 | 0.8871 | 0.9334 | 0.8813 | 0.9320 | 0.9069 | 0.9565 | 0.8718 | 0.9332 | | 0.1311 | 2.9990 | 2343 | 0.3433 | 0.8875 | 0.8886 | 0.9531 | 0.8797 | 0.9519 | 0.9099 | 0.9714 | 0.8718 | 0.9536 | | 0.0788 | 4.0 | 3125 | 0.3613 | 0.9028 | 0.9005 | 0.9566 | 0.9027 | 0.9579 | 0.9199 | 0.9716 | 0.8882 | 0.9555 | | 0.043 | 4.9984 | 3905 | 0.5059 | 0.9004 | 0.9014 | 0.9556 | 0.8987 | 0.9560 | 0.9201 | 0.9711 | 0.8813 | 0.9554 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1