File size: 3,123 Bytes
aa1a403
adf2788
 
 
 
 
 
 
 
 
aa1a403
 
adf2788
 
aa1a403
adf2788
aa1a403
adf2788
 
74860cb
 
 
 
 
 
 
 
 
 
aa1a403
adf2788
aa1a403
adf2788
aa1a403
adf2788
aa1a403
adf2788
aa1a403
adf2788
aa1a403
adf2788
aa1a403
adf2788
aa1a403
adf2788
aa1a403
adf2788
 
 
 
 
 
 
 
 
 
 
 
aa1a403
adf2788
aa1a403
adf2788
 
74860cb
 
 
 
 
aa1a403
 
adf2788
aa1a403
adf2788
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: bsd-3-clause
base_model: Salesforce/codegen-350M-mono
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: codegen-350M-mono-measurement_pred-diamonds-seed5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# codegen-350M-mono-measurement_pred-diamonds-seed5

This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5059
- Accuracy: 0.9004
- Accuracy Sensor 0: 0.9014
- Auroc Sensor 0: 0.9556
- Accuracy Sensor 1: 0.8987
- Auroc Sensor 1: 0.9560
- Accuracy Sensor 2: 0.9201
- Auroc Sensor 2: 0.9711
- Accuracy Aggregated: 0.8813
- Auroc Aggregated: 0.9554

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 64
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:|
| 0.2902        | 0.9997 | 781  | 0.3671          | 0.8431   | 0.8573            | 0.9025         | 0.8378            | 0.8994         | 0.8717            | 0.9333         | 0.8057              | 0.8989           |
| 0.1961        | 1.9994 | 1562 | 0.2889          | 0.8868   | 0.8871            | 0.9334         | 0.8813            | 0.9320         | 0.9069            | 0.9565         | 0.8718              | 0.9332           |
| 0.1311        | 2.9990 | 2343 | 0.3433          | 0.8875   | 0.8886            | 0.9531         | 0.8797            | 0.9519         | 0.9099            | 0.9714         | 0.8718              | 0.9536           |
| 0.0788        | 4.0    | 3125 | 0.3613          | 0.9028   | 0.9005            | 0.9566         | 0.9027            | 0.9579         | 0.9199            | 0.9716         | 0.8882              | 0.9555           |
| 0.043         | 4.9984 | 3905 | 0.5059          | 0.9004   | 0.9014            | 0.9556         | 0.8987            | 0.9560         | 0.9201            | 0.9711         | 0.8813              | 0.9554           |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1