File size: 2,013 Bytes
c86066e 76b708b c86066e 76b708b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
datasets:
- iva_mt_wslot
metrics:
- bleu
model-index:
- name: iva_mt
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: iva_mt_wslot
type: iva_mt_wslot
config: en-pl
split: validation
args: en-pl
metrics:
- name: Bleu
type: bleu
value: 8.2225
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# iva_mt
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the iva_mt_wslot dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4663
- Bleu: 8.2225
- Gen Len: 14.5833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:-------:|
| No log | 0.6154 | 1 | 2.4663 | 8.2225 | 14.5833 |
| No log | 1.8462 | 3 | 2.4663 | 8.2225 | 14.5833 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |