olgaduchovny commited on
Commit
3f0f342
·
1 Parent(s): fa375d2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md CHANGED
@@ -1,3 +1,63 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
2
  license: mit
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+
5
+ tags:
6
+ - pytorch
7
+ - ner
8
+ - qa
9
+
10
+ inference: false
11
+
12
  license: mit
13
+
14
+ datasets:
15
+ - conll2003
16
+
17
+ metrics:
18
+ - f1
19
  ---
20
+ # t5-base-qa-ner-conll
21
+
22
+ Unofficial implementation of [InstructionNER](https://arxiv.org/pdf/2203.03903v1.pdf).
23
+ t5-base model tuned on conll2003 dataset.
24
+
25
+ https://github.com/ovbystrova/InstructionNER
26
+
27
+ ## Inference
28
+ ```shell
29
+ git clone https://github.com/ovbystrova/InstructionNER
30
+ cd InstructionNER
31
+ ```
32
+
33
+ ```python
34
+ from instruction_ner.model import Model
35
+ model = Model(
36
+ model_path_or_name="olgaduchovny/t5-base-ner-mit-movie",
37
+ tokenizer_path_or_name="olgaduchovny/t5-base-ner-mit-movie"
38
+ )
39
+ options = ["LOC", "PER", "ORG", "MISC"]
40
+ instruction = "please extract entities and their types from the input sentence, " \
41
+ "all entity types are in options"
42
+ text = "The protest , which attracted several thousand supporters , coincided with the 18th anniversary of Spain 's constitution ."
43
+ generation_kwargs = {
44
+ "num_beams": 2,
45
+ "max_length": 128
46
+ }
47
+ pred_spans = model.predict(
48
+ text=text,
49
+ generation_kwargs=generation_kwargs,
50
+ instruction=instruction,
51
+ options=options
52
+ )
53
+ >>> [(99, 104, 'LOC')]
54
+ ```
55
+
56
+ ## Prediction Sample
57
+ ```
58
+ Sentence: The protest , which attracted several thousand supporters , coincided with the 18th anniversary of Spain 's constitution .
59
+ Instruction: please extract entities and their types from the input sentence, all entity types are in options
60
+ Options: ORG, PER, LOC
61
+ Prediction (raw text): Spain is a LOC.
62
+ Prediction (span): [(99, 104, 'LOC')]
63
+ ```