--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer datasets: - oguz7/printer2 model-index: - name: printer2llama3.1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B bf16: auto dataset_prepared_path: null datasets: - path: oguz7/printer2 type: alpaca debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_sample_packing: false eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: oguz7/printer2llama3.1 learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_modules_to_save: - embed_tokens - lm_head lora_r: 32 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 2 model_type: LlamaForCausalLM num_epochs: 4 optimizer: adamw_bnb_8bit output_dir: ./outputs/lora-out pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: true saves_per_epoch: 1 sequence_len: 4096 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# printer2llama3.1 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the oguz7/printer2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0