---
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B
tags:
- axolotl
- generated_from_trainer
datasets:
- penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct
model-index:
- name: Llama-3-8B-WildChat-250k-Llama-3.1-8B
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.6.0`
```yaml
base_model: meta-llama/Meta-Llama-3.1-8B
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
strict: false
chat_template: llama3
datasets:
- path: penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct
type: chat_template
split: train[:25%]
field_messages: conversation
message_field_role: role
message_field_content: content
dataset_prepared_path: /scratch/bf996/axolotl/datasets/wildchat-250k-Llama-3.1-8B
val_set_size: 0.02
output_dir: /scratch/bf996/axolotl/outputs/llama-3-8b-wildchat-250k-Llama-3.1-8B
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: lm-evals
wandb_entity:
wandb_watch:
wandb_name: Llama-3-8B-WildChat-Llama-3.1-8B
wandb_log_model:
hub_model_id: penfever/Llama-3-8B-WildChat-250k-Llama-3.1-8B
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_backward_prefetch: BACKWARD_PRE
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
```
# Llama-3-8B-WildChat-250k-Llama-3.1-8B
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct dataset.
It achieves the following results on the evaluation set:
- Loss: 8.8207
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 8.8881 | 0.9995 | 1109 | 8.8207 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0