File size: 24,612 Bytes
c317565 504150e c317565 2c92866 8327ed6 c317565 849327c e3b2080 504150e e3b2080 76d9714 e3b2080 c317565 438ab7b b261166 438ab7b b1929d6 438ab7b 529704c 2c92866 c317565 387f732 c317565 387f732 c317565 2c92866 c317565 2c92866 c317565 2c92866 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
---
license: other
language:
- en
arxiv: 2507.08128
tags:
- audio
- reasoning
- audio understanding
- ASR
datasets:
- nvidia/AudioSkills
- nvidia/AF-Chat
- nvidia/AF-Think
- nvidia/LongAudio
pipeline_tag: audio-text-to-text
---
# Model Overview
🚨 Audio Flamingo 3 has now been integrated to HuggingFace Transformers. Check out the model card [here](https://huggingface.co/nvidia/audio-flamingo-3-hf)!
<div align="center" style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/NVIDIA/audio-flamingo" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="static/logo-no-bg.png" alt="Audio Flamingo 3 🔥🚀🔥" width="120">
</a>
</div>
<div align="center" style="display: flex; justify-content: center; align-items: center; text-align: center;">
<h2>
Audio Flamingo 3: Advancing Audio Intelligence with Fully Open Large Audio-Language Models
</h2>
</div>
<div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
<a href="https://arxiv.org/abs/2507.08128"><img src="https://img.shields.io/badge/arXiv-2503.03983-AD1C18" style="margin-right: 5px;"></a>
<a href="https://research.nvidia.com/labs/adlr/AF3/"><img src="https://img.shields.io/badge/Demo page-228B22" style="margin-right: 5px;"></a>
<a href="https://github.com/NVIDIA/audio-flamingo"><img src='https://img.shields.io/badge/Github-Audio Flamingo 3-9C276A' style="margin-right: 5px;"></a>
<a href="https://github.com/NVIDIA/audio-flamingo/stargazers"><img src="https://img.shields.io/github/stars/NVIDIA/audio-flamingo.svg?style=social"></a>
</div>
<div align="center" style="display: flex; justify-content: center; margin-top: 10px; flex-wrap: wrap; gap: 5px;">
<a href="https://huggingface.co/nvidia/audio-flamingo-3">
<img src="https://img.shields.io/badge/🤗-Checkpoints-ED5A22.svg">
</a>
<a href="https://huggingface.co/nvidia/audio-flamingo-3-chat">
<img src="https://img.shields.io/badge/🤗-Checkpoints (Chat)-ED5A22.svg">
</a>
<a href="https://huggingface.co/datasets/nvidia/AudioSkills">
<img src="https://img.shields.io/badge/🤗-Dataset: AudioSkills--XL-ED5A22.svg">
</a>
<a href="https://huggingface.co/datasets/nvidia/LongAudio">
<img src="https://img.shields.io/badge/🤗-Dataset: LongAudio--XL-ED5A22.svg">
</a>
<a href="https://huggingface.co/datasets/nvidia/AF-Chat">
<img src="https://img.shields.io/badge/🤗-Dataset: AF--Chat-ED5A22.svg">
</a>
<a href="https://huggingface.co/datasets/nvidia/AF-Think">
<img src="https://img.shields.io/badge/🤗-Dataset: AF--Think-ED5A22.svg">
</a>
</div>
<div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
<a href="https://huggingface.co/spaces/nvidia/audio-flamingo-3"><img src="https://img.shields.io/badge/🤗-Gradio Demo (7B)-5F9EA0.svg" style="margin-right: 5px;"></a>
</div>
## Description:
Audio Flamingo 3 (AF3) is a fully open, state-of-the-art Large Audio-Language Model (LALM) that advances reasoning and understanding across speech, sounds, and music. AF3 builds on previous work with innovations in:
- Unified audio representation learning (speech, sound, music)
- Flexible, on-demand chain-of-thought reasoning
- Long-context audio comprehension (up to 10 minutes)
- Multi-turn, multi-audio conversational dialogue (AF3-Chat)
- Voice-to-voice interaction (AF3-Chat)
Extensive evaluations confirm AF3’s effectiveness, setting new benchmarks on over 20 public audio understanding and reasoning tasks.
**This model is for non-commercial research purposes only.**
## Usage
Audio Flamingo 3 is supported in 🤗 Transformers. To run the model, first install Transformers:
```bash
pip install --upgrade pip
pip install --upgrade git+https://github.com/huggingface/transformers accelerate
```
> **Note:** AF3 processes audio in 30-second windows with a **10-minute** total cap per sample. Longer inputs are truncated.
### Single-turn: audio + text instruction
```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
model_id = "nvidia/audio-flamingo-3-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "Transcribe the input speech."},
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/WhDJDIviAOg_120_10.mp3"},
],
}
]
inputs = processor.apply_chat_template(
conversation,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(decoded_outputs)
```
### Multi-turn chat
```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
model_id = "nvidia/audio-flamingo-3-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
conversation = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Instruction: How does the tone of female speech change throughout the audio? Choose the correct option among the options below: (A) Sad to happy (B) Happy to sad (C) Neutral to happy (D) Happy to neutral.",
},
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/000000786159.31.wav"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "(A) Sad to happy"}],
},
{
"role": "user",
"content": [
{"type": "text", "text": "Why do you think so?"},
],
},
]
inputs = processor.apply_chat_template(
conversation,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(decoded_outputs)
```
### Batch multiple conversations
```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
model_id = "nvidia/audio-flamingo-3-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
conversations = [
[
{
"role": "user",
"content": [
{"type": "text", "text": "Transcribe the input speech."},
{
"type": "audio",
"path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/t_837b89f2-26aa-4ee2-bdf6-f73f0dd59b26.wav",
},
],
}
],
[
{
"role": "user",
"content": [
{
"type": "text",
"text": "This track feels really peaceful and introspective. What elements make it feel so calming and meditative?",
},
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/FPSbCAANfbJLVSwD.mp3"},
],
}
],
]
inputs = processor.apply_chat_template(
conversations,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(decoded_outputs)
```
### Text-only and audio-only prompts
```python
# text-only
conv = [{"role": "user", "content": [{"type": "text", "text": "What is the capital of France?"}]}]
batch = processor.apply_chat_template(conv, tokenize=True, add_generation_prompt=True, return_dict=True).to(device)
print(processor.batch_decode(model.generate(**batch)[:, batch["input_ids"].shape[1]:], skip_special_tokens=True)[0])
# audio-only
conv = [{"role": "user", "content": [{"type": "audio", "path": "https://.../sample.wav"}]}]
batch = processor.apply_chat_template(conv, tokenize=True, add_generation_prompt=True, return_dict=True).to(device)
print(processor.batch_decode(model.generate(**batch)[:, batch["input_ids"].shape[1]:], skip_special_tokens=True)[0])
```
AF3 transcription checkpoints prepend answers with fixed assistant phrasing such as `The spoken content of the audio is "<text>".`. Passing `strip_prefix=True` removes that canned prefix and the surrounding quotes so you only keep the transcription.
### Transcribe a local/remote file (shortcut)
```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
model_id = "nvidia/audio-flamingo-3-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
inputs = processor.apply_transcription_request(audio="https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/t_837b89f2-26aa-4ee2-bdf6-f73f0dd59b26.wav").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True, strip_prefix=True)
print(decoded_outputs)
```
### Think-mode reasoning with PEFT adapter (AF-Think)
```python
import os
import torch
from huggingface_hub import snapshot_download
from peft import PeftModel
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
model_id = "nvidia/audio-flamingo-3-hf"
local_id = snapshot_download(model_id)
processor = AutoProcessor.from_pretrained(local_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(local_id, device_map="auto")
non_lora_path = os.path.join(local_id, "think", "non_lora_trainables.bin")
non_lora_trainables = torch.load(non_lora_path)
model.load_state_dict(non_lora_trainables, strict=False)
model = PeftModel.from_pretrained(model, local_id, subfolder="think")
conversation = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Generate a detailed caption for the input audio, describing all notable speech, sound, and musical events comprehensively. In the caption, transcribe all spoken content by all speakers in the audio precisely.\nPlease think and reason about the input music before you respond.",
},
{
"type": "audio",
"path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/videoplayback_superman.wav",
},
],
}
]
inputs = processor.apply_chat_template(
conversation,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=1024)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1] :], skip_special_tokens=True)
print(decoded_outputs)
```
### Training / Fine-tuning
```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
model_id = "nvidia/audio-flamingo-3-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
model.train()
conversation = [
[
{
"role": "user",
"content": [
{"type": "text", "text": "Transcribe the input speech."},
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/WhDJDIviAOg_120_10.mp3"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "The transcription of the audio is 'summer follows spring the days grow longer and the nights are warm'."}],
}
],
[
{
"role": "user",
"content": [
{
"type": "text",
"text": "This track feels really peaceful and introspective. What elements make it feel so calming and meditative?",
},
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/FPSbCAANfbJLVSwD.mp3"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "The transcription of the audio is 'some transcription of the audio'."}],
}
]
]
inputs = processor.apply_chat_template(
conversation,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
output_labels=True,
).to(model.device)
loss = model(**inputs).loss
loss.backward()
```
### Generation options
You can tune decoding similar to other text-generation models:
```python
generate_kwargs = {
"max_new_tokens": 256,
"do_sample": True,
"temperature": 0.7,
"top_p": 0.9,
}
out = model.generate(**batch, **generate_kwargs)
```
## Additional Speed & Memory Improvements
### Flash Attention 2
If your GPU supports it and you are **not** using `torch.compile`, install Flash-Attention and enable it at load time:
```bash
pip install flash-attn --no-build-isolation
```
```python
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="flash_attention_2"
).to(device)
```
### Torch compile
AF3’s forward pass is compatible with `torch.compile` for significant speed-ups:
```python
import torch
torch.set_float32_matmul_precision("high")
model.generation_config.cache_implementation = "static"
model.generation_config.max_new_tokens = 256
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
```
> `torch.compile` is not compatible with Flash Attention 2 at the same time.
### PyTorch SDPA
If Flash-Attention isn’t available, AF3 will use PyTorch scaled-dot product attention (SDPA) by default on supported PyTorch versions. You can set it explicitly:
```python
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="sdpa"
).to(device)
```
## Results:
<center><img src="static/af3_radial-1.png" width="400"></center>
## Model Architecture:
Audio Flamingo 3 uses AF-Whisper unified audio encoder, MLP-based audio adaptor, Decoder-only LLM backbone (Qwen2.5-7B), and Streaming TTS module (AF3-Chat). Audio Flamingo 3 can take up to 10 minutes of audio inputs.
<center><img src="static/af3_main_diagram-1.png" width="800"></center>
## License / Terms of Use
The model is released under the [NVIDIA OneWay Noncommercial License](static/NVIDIA_OneWay_Noncommercial_License.docx). Portions of the dataset generation are also subject to the [Qwen Research License](https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE) and OpenAI’s [Terms of Use](https://openai.com/policies/terms-of-use).
## Deployment Geography
Global.
## Use Case
Intended for researchers and developers to explore:
- Audio question answering and reasoning
- Long-context audio comprehension
- Interactive sound/music design assistants
- Multi-turn (voice) chat
## Release Date
- Github (07/10/2025) via https://github.com/NVIDIA/audio-flamingo
- HuggingFace (07/10/2025) via https://huggingface.co/nvidia/audio-flamingo-3
## References:
* [Audio Flamingo 3: Advancing Audio Intelligence with Fully Open Large Audio-Language Models]()
* [Project Page](https://github.com/NVIDIA/audio-flamingo)
* [Demo Website](https://research.nvidia.com/labs/adlr/AF3/)
* [Hugging Face](https://huggingface.co/nvidia/audio-flamingo-3)
## Model Architecture:
**Architecture Type:** Transformer
**Network Architecture:** Audio Flamingo 3
AF3 uses:
- AF-Whisper unified audio encoder
- MLP-based audio adaptor
- Decoder-only LLM backbone (Qwen2.5-7B)
- Streaming TTS module (AF3-Chat)
**This model was developed based on [NVILA](https://github.com/NVlabs/VILA/tree/main/scripts/NVILA-Lite) and [Qwen-2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) <br>
## Input:
- Input Type: Audio, Text <br>
- Input Format: WAV/MP3/FLAC, UTF-8 text <br>
- Input Parameters: Audio is Two-Dimensional (2D) and Text is One-Dimensional (1D)<br>
- Other Properties Related to Input: <br>
- Max Audio Length: 10 Minutes <br>
- Max Text Length: 16000 tokens<br>
## Output:
- Output Type: Text (and optional speech) <br>
- Text Format: UTF-8 string <br>
- Output Parameters: One-Dimensional (1D)<br>
- Other Properties Related to Output: <br>
- Max Text Length: 1024 tokens <br>
- Speech Format: streaming TTS (text-to-speech) waveform<br>
Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems (A100/H100). By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br>
## Software Integration:
**Runtime Engine:** PyTorch / HuggingFace Transformers
**Supported Hardware:**
* NVIDIA Ampere (A100)
* NVIDIA Hopper (H100)
**Supported OS:**
* Linux
## Model Version:
* v3.0
---
## Training and Testing Datasets:
### Training Dataset:
AF3 is trained entirely on open-source audio data, organized into four novel, large-scale collections. For each dataset, we mention whether the dataset annotations are collected by Human or they are Automated i.e. generated using AI models.
The data collection method noted below applies for all datasets used for training and testing:
Data Collection Method: Human
Labeling Collection Method: Please see below:
#### General Sound:
* [WavCaps](https://github.com/XinhaoMei/WavCaps) (Automated)
* [MACS](https://zenodo.org/records/5114771) (Human)
* [SoundDescs](https://github.com/akoepke/audio-retrieval-benchmark) (Human)
* [Clotho-v2](https://github.com/audio-captioning/clotho-dataset/tree/master) (Human)
* [WavText5K](https://github.com/microsoft/WavText5K) (Human)
* [Clotho-AQA](https://zenodo.org/records/6473207) (Human)
* [Open-AQA](https://github.com/YuanGongND/ltu?tab=readme-ov-file) (Automated)
* [CompA-R](https://github.com/Sreyan88/GAMA) (Automated)
* [Salmonn AQA](https://github.com/bytedance/SALMONN/tree/main) (Automated)
* [Audio Entailment](https://github.com/microsoft/AudioEntailment)(Automated)
* [CompA](https://github.com/Sreyan88/CompA) (Automated)
* [AudioSet](https://research.google.com/audioset/download.html) (Human)
* [YouTube-8M](https://research.google.com/youtube8m/) (Human)
* [FSD50k](https://zenodo.org/records/4060432) (Human)
* [CochlScene](https://github.com/cochlearai/cochlscene) (Human)
* [NonSpeech7K](https://zenodo.org/records/6967442) (Human)
* [Chime-Home](https://code.soundsoftware.ac.uk/projects/chime-home-dataset-annotation-and-baseline-evaluation-code) (Human)
* [Sonyc-UST](https://zenodo.org/records/3966543) (Human)
#### Music:
* [LP-MusicCaps](https://github.com/seungheondoh/lp-music-caps) (Automated)
* [MusicQA](https://github.com/shansongliu/MU-LLaMA?tab=readme-ov-file) (Automated)
* [MusicAVQA](https://gewu-lab.github.io/MUSIC-AVQA/) (Human)
* [MusicBench](https://huggingface.co/datasets/amaai-lab/MusicBench) (Automated)
* [Mu-LLAMA](https://github.com/shansongliu/MU-LLaMA) (Automated)
* [NSynth](https://magenta.tensorflow.org/datasets/nsynth) (Human)
* [FMA](https://github.com/mdeff/fma) (Human)
* [MusDB-HQ](https://zenodo.org/records/3338373) (Human)
* [Music4All](https://sites.google.com/view/contact4music4all) (Human)
* [Million Song Dataset](http://millionsongdataset.com/) (Human)
#### Speech:
* [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html) (Human)
* [JL-Corpus](https://github.com/tli725/JL-Corpus) (Human)
* [MELD](https://github.com/declare-lab/MELD) (Human)
* [Tess](https://www.kaggle.com/datasets/ejlok1/toronto-emotional-speech-set-tess) (Human)
* [OMGEmotion](https://github.com/knowledgetechnologyuhh/OMGEmotionChallenge) (Human)
* [Emov-DB](https://github.com/numediart/EmoV-DB) (Human)
* [LibriSpeech](https://www.openslr.org/12) (Human)
* [SPGISpeech](https://datasets.kensho.com/datasets/spgispeech) (Human)
* [TEDLIUM](https://www.openslr.org/51/) (Human)
* [GigaSpeech](https://github.com/SpeechColab/GigaSpeech) (Human)
* [Common Voice 15](https://huggingface.co/datasets/mozilla-foundation/common_voice_12_0) (Human)
* [VoxPopuli](https://github.com/facebookresearch/voxpopuli) (Human)
* [VoxCeleb2](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox2.html) (Human)
* [Switchboard](https://catalog.ldc.upenn.edu/LDC97S62) (Human)
* [AMI](https://groups.inf.ed.ac.uk/ami/corpus/) (Human)
#### Voice:
* [VoiceAssistant-400K](https://huggingface.co/datasets/gpt-omni/VoiceAssistant-400K) (Automated)
#### Mixed:
* [AudioSkills-XL (ours)](https://huggingface.co/datasets/nvidia/AudioSkills) (Automated)
* [LongAudio-XL (ours)](https://huggingface.co/datasets/nvidia/LongAudio) (Automated)
* [AF-Think (ours)](https://huggingface.co/datasets/nvidia/AF-Think) (Automated)
* [AF-Chat (ours)](https://huggingface.co/datasets/nvidia/AF-Chat) (Automated)
---
### Testing Dataset:
Audio Flamingo 3 is evaluated on the test split of the following datasets.
Data Collection Method: Human (for all datasets noted below)
Labeling Method: See below
* [ClothoAQA](https://zenodo.org/records/6473207) (Human)
* [MusicAVQA](https://gewu-lab.github.io/MUSIC-AVQA/) (Human)
* [Clotho-v2](https://github.com/audio-captioning/clotho-dataset/tree/master) (Human)
* [CochlScene](https://github.com/cochlearai/cochlscene) (Human)
* [NonSpeech7K](https://zenodo.org/records/6967442) (Human)
* [NSynth](https://magenta.tensorflow.org/datasets/nsynth) (Human)
* [AudioCaps](https://github.com/cdjkim/audiocaps) (Human)
* [US8K](https://urbansounddataset.weebly.com/urbansound8k.html) (Human)
* [GTZAN](https://www.tensorflow.org/datasets/catalog/gtzan) (Human)
* [MMAU](https://github.com/Sakshi113/mmau/tree/main) (Human)
* [MMAR](https://arxiv.org/abs/2505.13032) (Human)
* [Audio Entailment](https://github.com/microsoft/AudioEntailment)(Automated)
* [CompA-R-test](https://github.com/Sreyan88/GAMA) (Automated)
* [MuchoMusic](https://huggingface.co/datasets/yongyizang/RUListening) (Automated)
* [Open-AQA](https://github.com/YuanGongND/ltu?tab=readme-ov-file)(Automated)
* [MusicInstruct](https://huggingface.co/datasets/m-a-p/Music-Instruct) (Automated)
* [MusicQA](https://huggingface.co/datasets/mu-llama/MusicQA) (Automated)
* [CMM Hallucination](https://huggingface.co/datasets/DAMO-NLP-SG/CMM) (Human)
* [IEMOCAP](https://sail.usc.edu/iemocap/) (Human)
* [VoiceBench](https://github.com/MatthewCYM/VoiceBench) (Human)
* [OpenAudioBench](https://huggingface.co/datasets/baichuan-inc/OpenAudioBench) (Human)
* [SEED](https://github.com/BytedanceSpeech/seed-tts-eval) (Human)
* [LibriSpeech](https://www.openslr.org/12) (Human)
* [SPGISpeech](https://datasets.kensho.com/datasets/spgispeech) (Human)
* [TEDLIUM](https://www.openslr.org/51/) (Human)
* [GigaSpeech](https://github.com/SpeechColab/GigaSpeech) (Human)
* [Common Voice 15](https://huggingface.co/datasets/mozilla-foundation/common_voice_12_0) (Human)
* [VoxPopuli](https://github.com/facebookresearch/voxpopuli) (Human)
* [LongAudioBench (ours)](https://huggingface.co/datasets/nvidia/LongAudio) (Automated)
* [AF-Chat-test (ours)](https://huggingface.co/datasets/nvidia/AF-Chat) (Human)
---
## Inference:
**Engine:** HuggingFace Transformers
**Test Hardware:** NVIDIA A100 80 GB
---
## Ethical Considerations:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
---
## Acknowledgements
Built with Qwen, NVILA and the open audio-ML community. |