File size: 24,612 Bytes
c317565
 
 
 
504150e
c317565
 
 
 
 
2c92866
 
 
 
 
8327ed6
c317565
 
 
849327c
 
e3b2080
 
 
 
 
 
 
 
 
 
 
 
504150e
e3b2080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76d9714
e3b2080
 
c317565
 
 
 
 
 
 
 
 
 
 
 
 
438ab7b
 
 
 
 
 
b261166
438ab7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1929d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438ab7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529704c
 
 
2c92866
 
c317565
 
 
 
387f732
c317565
 
 
 
 
 
 
 
 
 
 
 
 
387f732
c317565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c92866
 
 
 
 
 
c317565
 
 
2c92866
 
 
 
 
 
c317565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c92866
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
---
license: other
language:
- en
arxiv: 2507.08128
tags:
- audio
- reasoning
- audio understanding
- ASR
datasets:
- nvidia/AudioSkills
- nvidia/AF-Chat
- nvidia/AF-Think
- nvidia/LongAudio
pipeline_tag: audio-text-to-text
---
# Model Overview

🚨 Audio Flamingo 3 has now been integrated to HuggingFace Transformers. Check out the model card [here](https://huggingface.co/nvidia/audio-flamingo-3-hf)!

<div align="center" style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <a href="https://github.com/NVIDIA/audio-flamingo" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
    <img src="static/logo-no-bg.png" alt="Audio Flamingo 3 🔥🚀🔥" width="120">
  </a>
</div>
<div align="center" style="display: flex; justify-content: center; align-items: center; text-align: center;">
    <h2>
    Audio Flamingo 3: Advancing Audio Intelligence with Fully Open Large Audio-Language Models
    </h2>
</div>

<div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
  <a href="https://arxiv.org/abs/2507.08128"><img src="https://img.shields.io/badge/arXiv-2503.03983-AD1C18" style="margin-right: 5px;"></a>
  <a href="https://research.nvidia.com/labs/adlr/AF3/"><img src="https://img.shields.io/badge/Demo page-228B22" style="margin-right: 5px;"></a>
  <a href="https://github.com/NVIDIA/audio-flamingo"><img src='https://img.shields.io/badge/Github-Audio Flamingo 3-9C276A' style="margin-right: 5px;"></a>
  <a href="https://github.com/NVIDIA/audio-flamingo/stargazers"><img src="https://img.shields.io/github/stars/NVIDIA/audio-flamingo.svg?style=social"></a>
</div>

<div align="center" style="display: flex; justify-content: center; margin-top: 10px; flex-wrap: wrap; gap: 5px;">
  <a href="https://huggingface.co/nvidia/audio-flamingo-3">
    <img src="https://img.shields.io/badge/🤗-Checkpoints-ED5A22.svg">
  </a>
  <a href="https://huggingface.co/nvidia/audio-flamingo-3-chat">
    <img src="https://img.shields.io/badge/🤗-Checkpoints (Chat)-ED5A22.svg">
  </a>
  <a href="https://huggingface.co/datasets/nvidia/AudioSkills">
    <img src="https://img.shields.io/badge/🤗-Dataset: AudioSkills--XL-ED5A22.svg">
  </a>
  <a href="https://huggingface.co/datasets/nvidia/LongAudio">
    <img src="https://img.shields.io/badge/🤗-Dataset: LongAudio--XL-ED5A22.svg">
  </a>
  <a href="https://huggingface.co/datasets/nvidia/AF-Chat">
    <img src="https://img.shields.io/badge/🤗-Dataset: AF--Chat-ED5A22.svg">
  </a>
  <a href="https://huggingface.co/datasets/nvidia/AF-Think">
    <img src="https://img.shields.io/badge/🤗-Dataset: AF--Think-ED5A22.svg">
  </a>
</div>

<div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
<a href="https://huggingface.co/spaces/nvidia/audio-flamingo-3"><img src="https://img.shields.io/badge/🤗-Gradio Demo (7B)-5F9EA0.svg" style="margin-right: 5px;"></a>
</div>

## Description:
Audio Flamingo 3 (AF3) is a fully open, state-of-the-art Large Audio-Language Model (LALM) that advances reasoning and understanding across speech, sounds, and music. AF3 builds on previous work with innovations in:

- Unified audio representation learning (speech, sound, music)  
- Flexible, on-demand chain-of-thought reasoning  
- Long-context audio comprehension (up to 10 minutes)
- Multi-turn, multi-audio conversational dialogue (AF3-Chat)    
- Voice-to-voice interaction (AF3-Chat)    

Extensive evaluations confirm AF3’s effectiveness, setting new benchmarks on over 20 public audio understanding and reasoning tasks.

**This model is for non-commercial research purposes only.**

## Usage

Audio Flamingo 3 is supported in 🤗 Transformers. To run the model, first install Transformers:

```bash
pip install --upgrade pip
pip install --upgrade git+https://github.com/huggingface/transformers accelerate
```

> **Note:** AF3 processes audio in 30-second windows with a **10-minute** total cap per sample. Longer inputs are truncated.

### Single-turn: audio + text instruction

```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor

model_id = "nvidia/audio-flamingo-3-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")

conversation = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Transcribe the input speech."},
            {"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/WhDJDIviAOg_120_10.mp3"},
        ],
    }
]

inputs = processor.apply_chat_template(
    conversation,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
).to(model.device)

outputs = model.generate(**inputs, max_new_tokens=500)

decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(decoded_outputs)
```

### Multi-turn chat

```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor

model_id = "nvidia/audio-flamingo-3-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")

conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "Instruction: How does the tone of female speech change throughout the audio? Choose the correct option among the options below: (A) Sad to happy (B) Happy to sad (C) Neutral to happy (D) Happy to neutral.",
            },
            {"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/000000786159.31.wav"},
        ],
    },
    {
        "role": "assistant",
        "content": [{"type": "text", "text": "(A) Sad to happy"}],
    },
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Why do you think so?"},
        ],
    },
]

inputs = processor.apply_chat_template(
    conversation,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
).to(model.device)

outputs = model.generate(**inputs, max_new_tokens=500)

decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(decoded_outputs)
```

### Batch multiple conversations

```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor

model_id = "nvidia/audio-flamingo-3-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")

conversations = [
    [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Transcribe the input speech."},
                {
                    "type": "audio",
                    "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/t_837b89f2-26aa-4ee2-bdf6-f73f0dd59b26.wav",
                },
            ],
        }
    ],
    [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "This track feels really peaceful and introspective. What elements make it feel so calming and meditative?",
                },
                {"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/FPSbCAANfbJLVSwD.mp3"},
            ],
        }
    ],
]

inputs = processor.apply_chat_template(
    conversations,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
).to(model.device)

outputs = model.generate(**inputs, max_new_tokens=500)

decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(decoded_outputs)
```

### Text-only and audio-only prompts

```python
# text-only
conv = [{"role": "user", "content": [{"type": "text", "text": "What is the capital of France?"}]}]
batch = processor.apply_chat_template(conv, tokenize=True, add_generation_prompt=True, return_dict=True).to(device)
print(processor.batch_decode(model.generate(**batch)[:, batch["input_ids"].shape[1]:], skip_special_tokens=True)[0])

# audio-only
conv = [{"role": "user", "content": [{"type": "audio", "path": "https://.../sample.wav"}]}]
batch = processor.apply_chat_template(conv, tokenize=True, add_generation_prompt=True, return_dict=True).to(device)
print(processor.batch_decode(model.generate(**batch)[:, batch["input_ids"].shape[1]:], skip_special_tokens=True)[0])
```

AF3 transcription checkpoints prepend answers with fixed assistant phrasing such as `The spoken content of the audio is "<text>".`. Passing `strip_prefix=True` removes that canned prefix and the surrounding quotes so you only keep the transcription.

### Transcribe a local/remote file (shortcut)

```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor

model_id = "nvidia/audio-flamingo-3-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")

inputs = processor.apply_transcription_request(audio="https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/t_837b89f2-26aa-4ee2-bdf6-f73f0dd59b26.wav").to(model.device)

outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True, strip_prefix=True)

print(decoded_outputs)
```

### Think-mode reasoning with PEFT adapter (AF-Think)

```python
import os

import torch
from huggingface_hub import snapshot_download
from peft import PeftModel

from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor


model_id = "nvidia/audio-flamingo-3-hf"
local_id = snapshot_download(model_id)

processor = AutoProcessor.from_pretrained(local_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(local_id, device_map="auto")

non_lora_path = os.path.join(local_id, "think", "non_lora_trainables.bin")
non_lora_trainables = torch.load(non_lora_path)
model.load_state_dict(non_lora_trainables, strict=False)

model = PeftModel.from_pretrained(model, local_id, subfolder="think")

conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "Generate a detailed caption for the input audio, describing all notable speech, sound, and musical events comprehensively. In the caption, transcribe all spoken content by all speakers in the audio precisely.\nPlease think and reason about the input music before you respond.",
            },
            {
                "type": "audio",
                "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/videoplayback_superman.wav",
            },
        ],
    }
]

inputs = processor.apply_chat_template(
    conversation,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
).to(model.device)

outputs = model.generate(**inputs, max_new_tokens=1024)

decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1] :], skip_special_tokens=True)
print(decoded_outputs)
```

### Training / Fine-tuning

```python
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor

model_id = "nvidia/audio-flamingo-3-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
model.train()

conversation = [
    [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Transcribe the input speech."},
                {"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/WhDJDIviAOg_120_10.mp3"},
            ],
        },
        {
            "role": "assistant",
            "content": [{"type": "text", "text": "The transcription of the audio is 'summer follows spring the days grow longer and the nights are warm'."}],
        }
    ],
    [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "This track feels really peaceful and introspective. What elements make it feel so calming and meditative?",
                },
                {"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/FPSbCAANfbJLVSwD.mp3"},
            ],
        },
        {
            "role": "assistant",
            "content": [{"type": "text", "text": "The transcription of the audio is 'some transcription of the audio'."}],
        }

    ]
]

inputs = processor.apply_chat_template(
    conversation,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
    output_labels=True,
).to(model.device)

loss = model(**inputs).loss
loss.backward()
```

### Generation options

You can tune decoding similar to other text-generation models:

```python
generate_kwargs = {
    "max_new_tokens": 256,
    "do_sample": True,
    "temperature": 0.7,
    "top_p": 0.9,
}
out = model.generate(**batch, **generate_kwargs)
```

## Additional Speed & Memory Improvements

### Flash Attention 2

If your GPU supports it and you are **not** using `torch.compile`, install Flash-Attention and enable it at load time:

```bash
pip install flash-attn --no-build-isolation
```

```python
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="flash_attention_2"
).to(device)
```

### Torch compile

AF3’s forward pass is compatible with `torch.compile` for significant speed-ups:

```python
import torch
torch.set_float32_matmul_precision("high")

model.generation_config.cache_implementation = "static"
model.generation_config.max_new_tokens = 256
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
```

> `torch.compile` is not compatible with Flash Attention 2 at the same time.

### PyTorch SDPA

If Flash-Attention isn’t available, AF3 will use PyTorch scaled-dot product attention (SDPA) by default on supported PyTorch versions. You can set it explicitly:

```python
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="sdpa"
).to(device)
```


## Results:
<center><img src="static/af3_radial-1.png" width="400"></center>

## Model Architecture:
Audio Flamingo 3 uses AF-Whisper unified audio encoder, MLP-based audio adaptor, Decoder-only LLM backbone (Qwen2.5-7B), and Streaming TTS module (AF3-Chat). Audio Flamingo 3 can take up to 10 minutes of audio inputs.

<center><img src="static/af3_main_diagram-1.png" width="800"></center>

## License / Terms of Use
The model is released under the [NVIDIA OneWay Noncommercial License](static/NVIDIA_OneWay_Noncommercial_License.docx). Portions of the dataset generation are also subject to the [Qwen Research License](https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE) and OpenAI’s [Terms of Use](https://openai.com/policies/terms-of-use).

## Deployment Geography
Global.

## Use Case
Intended for researchers and developers to explore:
- Audio question answering and reasoning  
- Long-context audio comprehension  
- Interactive sound/music design assistants  
- Multi-turn (voice) chat    

## Release Date
- Github (07/10/2025) via https://github.com/NVIDIA/audio-flamingo
- HuggingFace (07/10/2025) via https://huggingface.co/nvidia/audio-flamingo-3

## References:
* [Audio Flamingo 3: Advancing Audio Intelligence with Fully Open Large Audio-Language Models]()  
* [Project Page](https://github.com/NVIDIA/audio-flamingo)  
* [Demo Website](https://research.nvidia.com/labs/adlr/AF3/)
* [Hugging Face](https://huggingface.co/nvidia/audio-flamingo-3)


## Model Architecture:
**Architecture Type:** Transformer   
**Network Architecture:** Audio Flamingo 3  

AF3 uses:
- AF-Whisper unified audio encoder  
- MLP-based audio adaptor  
- Decoder-only LLM backbone (Qwen2.5-7B)  
- Streaming TTS module (AF3-Chat) 

**This model was developed based on [NVILA](https://github.com/NVlabs/VILA/tree/main/scripts/NVILA-Lite) and [Qwen-2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) <br>

## Input: 
- Input Type: Audio, Text <br>
- Input Format: WAV/MP3/FLAC, UTF-8 text <br>
- Input Parameters: Audio is Two-Dimensional (2D) and Text is One-Dimensional (1D)<br>
- Other Properties Related to Input: <br>
- Max Audio Length: 10 Minutes <br>
- Max Text Length: 16000 tokens<br>


## Output: 
- Output Type: Text (and optional speech) <br>
- Text Format: UTF-8 string  <br>
- Output Parameters: One-Dimensional (1D)<br>
- Other Properties Related to Output: <br>
- Max Text Length: 1024 tokens <br>
- Speech Format: streaming TTS (text-to-speech) waveform<br>


Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems (A100/H100). By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br> 

## Software Integration:
**Runtime Engine:** PyTorch / HuggingFace Transformers  

**Supported Hardware:**  
* NVIDIA Ampere (A100)  
* NVIDIA Hopper (H100)  

**Supported OS:**  
* Linux  

## Model Version:
* v3.0  

---

## Training and Testing Datasets:

### Training Dataset:
AF3 is trained entirely on open-source audio data, organized into four novel, large-scale collections. For each dataset, we mention whether the dataset annotations are collected by Human or they are Automated i.e. generated using AI models.

The data collection method noted below applies for all datasets used for training and testing:
Data Collection Method: Human
Labeling Collection Method: Please see below:

#### General Sound:
* [WavCaps](https://github.com/XinhaoMei/WavCaps) (Automated)
* [MACS](https://zenodo.org/records/5114771) (Human)
* [SoundDescs](https://github.com/akoepke/audio-retrieval-benchmark) (Human)
* [Clotho-v2](https://github.com/audio-captioning/clotho-dataset/tree/master) (Human)
* [WavText5K](https://github.com/microsoft/WavText5K) (Human)
* [Clotho-AQA](https://zenodo.org/records/6473207) (Human)
* [Open-AQA](https://github.com/YuanGongND/ltu?tab=readme-ov-file)  (Automated)
* [CompA-R](https://github.com/Sreyan88/GAMA)  (Automated)
* [Salmonn AQA](https://github.com/bytedance/SALMONN/tree/main)  (Automated)
* [Audio Entailment](https://github.com/microsoft/AudioEntailment)(Automated)
* [CompA](https://github.com/Sreyan88/CompA)  (Automated)
* [AudioSet](https://research.google.com/audioset/download.html)  (Human)
* [YouTube-8M](https://research.google.com/youtube8m/)  (Human)
* [FSD50k](https://zenodo.org/records/4060432)  (Human)
* [CochlScene](https://github.com/cochlearai/cochlscene)  (Human)
* [NonSpeech7K](https://zenodo.org/records/6967442)  (Human)
* [Chime-Home](https://code.soundsoftware.ac.uk/projects/chime-home-dataset-annotation-and-baseline-evaluation-code)  (Human)
* [Sonyc-UST](https://zenodo.org/records/3966543)  (Human)

#### Music:
* [LP-MusicCaps](https://github.com/seungheondoh/lp-music-caps)  (Automated)
* [MusicQA](https://github.com/shansongliu/MU-LLaMA?tab=readme-ov-file)  (Automated)
* [MusicAVQA](https://gewu-lab.github.io/MUSIC-AVQA/)  (Human)
* [MusicBench](https://huggingface.co/datasets/amaai-lab/MusicBench)  (Automated)
* [Mu-LLAMA](https://github.com/shansongliu/MU-LLaMA)  (Automated)
* [NSynth](https://magenta.tensorflow.org/datasets/nsynth)  (Human)
* [FMA](https://github.com/mdeff/fma)  (Human)
* [MusDB-HQ](https://zenodo.org/records/3338373)  (Human)
* [Music4All](https://sites.google.com/view/contact4music4all)  (Human)
* [Million Song Dataset](http://millionsongdataset.com/)  (Human)

#### Speech:
* [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html)  (Human)
* [JL-Corpus](https://github.com/tli725/JL-Corpus)  (Human)
* [MELD](https://github.com/declare-lab/MELD)  (Human)
* [Tess](https://www.kaggle.com/datasets/ejlok1/toronto-emotional-speech-set-tess)  (Human)
* [OMGEmotion](https://github.com/knowledgetechnologyuhh/OMGEmotionChallenge)  (Human)
* [Emov-DB](https://github.com/numediart/EmoV-DB)  (Human)
* [LibriSpeech](https://www.openslr.org/12)  (Human)  
* [SPGISpeech](https://datasets.kensho.com/datasets/spgispeech)  (Human)  
* [TEDLIUM](https://www.openslr.org/51/)  (Human)  
* [GigaSpeech](https://github.com/SpeechColab/GigaSpeech)  (Human)  
* [Common Voice 15](https://huggingface.co/datasets/mozilla-foundation/common_voice_12_0)  (Human)  
* [VoxPopuli](https://github.com/facebookresearch/voxpopuli)  (Human)  
* [VoxCeleb2](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox2.html)  (Human)  
* [Switchboard](https://catalog.ldc.upenn.edu/LDC97S62)  (Human) 
* [AMI](https://groups.inf.ed.ac.uk/ami/corpus/)  (Human) 

#### Voice:
* [VoiceAssistant-400K](https://huggingface.co/datasets/gpt-omni/VoiceAssistant-400K)  (Automated)

#### Mixed:
* [AudioSkills-XL (ours)](https://huggingface.co/datasets/nvidia/AudioSkills) (Automated)
* [LongAudio-XL (ours)](https://huggingface.co/datasets/nvidia/LongAudio) (Automated)
* [AF-Think (ours)](https://huggingface.co/datasets/nvidia/AF-Think) (Automated)
* [AF-Chat (ours)](https://huggingface.co/datasets/nvidia/AF-Chat) (Automated)

---

### Testing Dataset:
Audio Flamingo 3 is evaluated on the test split of the following datasets.

Data Collection Method: Human (for all datasets noted below)
Labeling Method: See below

* [ClothoAQA](https://zenodo.org/records/6473207)  (Human)
* [MusicAVQA](https://gewu-lab.github.io/MUSIC-AVQA/)  (Human)
* [Clotho-v2](https://github.com/audio-captioning/clotho-dataset/tree/master)  (Human)
* [CochlScene](https://github.com/cochlearai/cochlscene)  (Human)
* [NonSpeech7K](https://zenodo.org/records/6967442)  (Human)
* [NSynth](https://magenta.tensorflow.org/datasets/nsynth)  (Human)
* [AudioCaps](https://github.com/cdjkim/audiocaps)  (Human)
* [US8K](https://urbansounddataset.weebly.com/urbansound8k.html)  (Human)
* [GTZAN](https://www.tensorflow.org/datasets/catalog/gtzan)  (Human)
* [MMAU](https://github.com/Sakshi113/mmau/tree/main)  (Human)
* [MMAR](https://arxiv.org/abs/2505.13032)  (Human)
* [Audio Entailment](https://github.com/microsoft/AudioEntailment)(Automated)
* [CompA-R-test](https://github.com/Sreyan88/GAMA)  (Automated)
* [MuchoMusic](https://huggingface.co/datasets/yongyizang/RUListening)  (Automated)
* [Open-AQA](https://github.com/YuanGongND/ltu?tab=readme-ov-file)(Automated)
* [MusicInstruct](https://huggingface.co/datasets/m-a-p/Music-Instruct)  (Automated)
* [MusicQA](https://huggingface.co/datasets/mu-llama/MusicQA)  (Automated)
* [CMM Hallucination](https://huggingface.co/datasets/DAMO-NLP-SG/CMM)  (Human)  
* [IEMOCAP](https://sail.usc.edu/iemocap/)  (Human)  
* [VoiceBench](https://github.com/MatthewCYM/VoiceBench)  (Human)  
* [OpenAudioBench](https://huggingface.co/datasets/baichuan-inc/OpenAudioBench) (Human)  
* [SEED](https://github.com/BytedanceSpeech/seed-tts-eval)  (Human)  
* [LibriSpeech](https://www.openslr.org/12)  (Human)  
* [SPGISpeech](https://datasets.kensho.com/datasets/spgispeech)  (Human)  
* [TEDLIUM](https://www.openslr.org/51/)  (Human)  
* [GigaSpeech](https://github.com/SpeechColab/GigaSpeech)  (Human)  
* [Common Voice 15](https://huggingface.co/datasets/mozilla-foundation/common_voice_12_0)  (Human)  
* [VoxPopuli](https://github.com/facebookresearch/voxpopuli)  (Human)  
* [LongAudioBench (ours)](https://huggingface.co/datasets/nvidia/LongAudio)  (Automated) 
* [AF-Chat-test (ours)](https://huggingface.co/datasets/nvidia/AF-Chat)  (Human) 

---

## Inference:

**Engine:** HuggingFace Transformers  
**Test Hardware:** NVIDIA A100 80 GB  

---

## Ethical Considerations:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).

---

## Acknowledgements
Built with Qwen, NVILA and the open audio-ML community.