Update README.md
Browse files
README.md
CHANGED
@@ -51,7 +51,7 @@ The model is available for use in the [NVIDIA NeMo](https://github.com/NVIDIA/Ne
|
|
51 |
### Inference
|
52 |
For inference, you can follow our [Audio Codec Inference Tutorial](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tts/Audio_Codec_Inference.ipynb) which automatically downloads the model checkpoint. Note that you will need to set the ```model_name``` parameter to "nvidia/audio-codec-22khz".
|
53 |
|
54 |
-
Alternatively, you can
|
55 |
|
56 |
```
|
57 |
import librosa
|
@@ -86,7 +86,7 @@ sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)
|
|
86 |
|
87 |
### Training
|
88 |
|
89 |
-
For fine-tuning on another dataset please follow the steps available at our [Audio Codec Training Tutorial](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tts/Audio_Codec_Training.ipynb). Note that you will need to set the ```CONFIG_FILENAME``` parameter to the "audio_codec_22050.yaml" config. You also will need to set ```pretrained_model_name``` to "audio-codec-22khz".
|
90 |
|
91 |
## Training, Testing, and Evaluation Datasets:
|
92 |
|
|
|
51 |
### Inference
|
52 |
For inference, you can follow our [Audio Codec Inference Tutorial](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tts/Audio_Codec_Inference.ipynb) which automatically downloads the model checkpoint. Note that you will need to set the ```model_name``` parameter to "nvidia/audio-codec-22khz".
|
53 |
|
54 |
+
Alternatively, you can use the code below, which also handles the automatic checkpoint download:
|
55 |
|
56 |
```
|
57 |
import librosa
|
|
|
86 |
|
87 |
### Training
|
88 |
|
89 |
+
For fine-tuning on another dataset please follow the steps available at our [Audio Codec Training Tutorial](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tts/Audio_Codec_Training.ipynb). Note that you will need to set the ```CONFIG_FILENAME``` parameter to the "audio_codec_22050.yaml" config. You also will need to set ```pretrained_model_name``` to "nvidia/audio-codec-22khz".
|
90 |
|
91 |
## Training, Testing, and Evaluation Datasets:
|
92 |
|