Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,295 @@
|
|
1 |
---
|
2 |
license: other
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: other
|
3 |
+
datasets:
|
4 |
+
- imagenet-1k
|
5 |
---
|
6 |
+
[**FasterViT: Fast Vision Transformers with Hierarchical Attention**](https://arxiv.org/abs/2306.06189).
|
7 |
+
|
8 |
+
|
9 |
+
FasterViT achieves a new SOTA Pareto-front in
|
10 |
+
terms of accuracy vs. image throughput without extra training data !
|
11 |
+
|
12 |
+
<p align="center">
|
13 |
+
<img src="https://github.com/NVlabs/FasterViT/assets/26806394/253d1a2e-b5f5-4a9b-a362-6cdd16bfccc1" width=62% height=62%
|
14 |
+
class="center">
|
15 |
+
</p>
|
16 |
+
|
17 |
+
We introduce a new self-attention mechanism, denoted as Hierarchical
|
18 |
+
Attention (HAT), that captures both short and long-range information by learning
|
19 |
+
cross-window carrier tokens.
|
20 |
+
|
21 |
+

|
22 |
+
|
23 |
+
Note: Please use the [**latest NVIDIA TensorRT release**](https://docs.nvidia.com/deeplearning/tensorrt/container-release-notes/index.html) to enjoy the benefits of optimized FasterViT ops.
|
24 |
+
|
25 |
+
|
26 |
+
## Quick Start
|
27 |
+
|
28 |
+
We can import pre-trained FasterViT models with **1 line of code**. First, FasterViT can be simply installed by:
|
29 |
+
|
30 |
+
```bash
|
31 |
+
pip install fastervit
|
32 |
+
```
|
33 |
+
|
34 |
+
A pretrained FasterViT model with default hyper-parameters can be created as in the following:
|
35 |
+
|
36 |
+
```python
|
37 |
+
>>> from fastervit import create_model
|
38 |
+
|
39 |
+
# Define fastervit-0 model with 224 x 224 resolution
|
40 |
+
|
41 |
+
>>> model = create_model('faster_vit_0_224',
|
42 |
+
pretrained=True,
|
43 |
+
model_path="/tmp/faster_vit_0.pth.tar")
|
44 |
+
```
|
45 |
+
|
46 |
+
`model_path` is used to set the directory to download the model.
|
47 |
+
|
48 |
+
We can also simply test the model by passing a dummy input image. The output is the logits:
|
49 |
+
|
50 |
+
```python
|
51 |
+
>>> import torch
|
52 |
+
|
53 |
+
>>> image = torch.rand(1, 3, 224, 224)
|
54 |
+
>>> output = model(image) # torch.Size([1, 1000])
|
55 |
+
```
|
56 |
+
|
57 |
+
We can also use the any-resolution FasterViT model to accommodate arbitrary image resolutions. In the following, we define an any-resolution FasterViT-0
|
58 |
+
model with input resolution of 576 x 960, window sizes of 12 and 6 in 3rd and 4th stages, carrier token size of 2 and embedding dimension of
|
59 |
+
64:
|
60 |
+
|
61 |
+
```python
|
62 |
+
>>> from fastervit import create_model
|
63 |
+
|
64 |
+
# Define any-resolution FasterViT-0 model with 576 x 960 resolution
|
65 |
+
>>> model = create_model('faster_vit_0_any_res',
|
66 |
+
resolution=[576, 960],
|
67 |
+
window_size=[7, 7, 12, 6],
|
68 |
+
ct_size=2,
|
69 |
+
dim=64,
|
70 |
+
pretrained=True)
|
71 |
+
```
|
72 |
+
Note that the above model is intiliazed from the original ImageNet pre-trained FasterViT with original resolution of 224 x 224. As a result, missing keys and mis-matches could be expected since we are addign new layers (e.g. addition of new carrier tokens, etc.)
|
73 |
+
|
74 |
+
We can simply test the model by passing a dummy input image. The output is the logits:
|
75 |
+
|
76 |
+
```python
|
77 |
+
>>> import torch
|
78 |
+
|
79 |
+
>>> image = torch.rand(1, 3, 576, 960)
|
80 |
+
>>> output = model(image) # torch.Size([1, 1000])
|
81 |
+
```
|
82 |
+
|
83 |
+
---
|
84 |
+
|
85 |
+
## Results + Pretrained Models
|
86 |
+
|
87 |
+
### ImageNet-1K
|
88 |
+
**FasterViT ImageNet-1K Pretrained Models**
|
89 |
+
|
90 |
+
<table>
|
91 |
+
<tr>
|
92 |
+
<th>Name</th>
|
93 |
+
<th>Acc@1(%)</th>
|
94 |
+
<th>Acc@5(%)</th>
|
95 |
+
<th>Throughput(Img/Sec)</th>
|
96 |
+
<th>Resolution</th>
|
97 |
+
<th>#Params(M)</th>
|
98 |
+
<th>FLOPs(G)</th>
|
99 |
+
<th>Download</th>
|
100 |
+
</tr>
|
101 |
+
|
102 |
+
<tr>
|
103 |
+
<td>FasterViT-0</td>
|
104 |
+
<td>82.1</td>
|
105 |
+
<td>95.9</td>
|
106 |
+
<td>5802</td>
|
107 |
+
<td>224x224</td>
|
108 |
+
<td>31.4</td>
|
109 |
+
<td>3.3</td>
|
110 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1twI2LFJs391Yrj8MR4Ui9PfrvWqjE1iB">model</a></td>
|
111 |
+
</tr>
|
112 |
+
|
113 |
+
<tr>
|
114 |
+
<td>FasterViT-1</td>
|
115 |
+
<td>83.2</td>
|
116 |
+
<td>96.5</td>
|
117 |
+
<td>4188</td>
|
118 |
+
<td>224x224</td>
|
119 |
+
<td>53.4</td>
|
120 |
+
<td>5.3</td>
|
121 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1r7W10n5-bFtM3sz4bmaLrowN2gYPkLGT">model</a></td>
|
122 |
+
</tr>
|
123 |
+
|
124 |
+
<tr>
|
125 |
+
<td>FasterViT-2</td>
|
126 |
+
<td>84.2</td>
|
127 |
+
<td>96.8</td>
|
128 |
+
<td>3161</td>
|
129 |
+
<td>224x224</td>
|
130 |
+
<td>75.9</td>
|
131 |
+
<td>8.7</td>
|
132 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1n_a6s0pgi0jVZOGmDei2vXHU5E6RH5wU">model</a></td>
|
133 |
+
</tr>
|
134 |
+
|
135 |
+
<tr>
|
136 |
+
<td>FasterViT-3</td>
|
137 |
+
<td>84.9</td>
|
138 |
+
<td>97.2</td>
|
139 |
+
<td>1780</td>
|
140 |
+
<td>224x224</td>
|
141 |
+
<td>159.5</td>
|
142 |
+
<td>18.2</td>
|
143 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1tvWElZ91Sia2SsXYXFMNYQwfipCxtI7X">model</a></td>
|
144 |
+
</tr>
|
145 |
+
|
146 |
+
<tr>
|
147 |
+
<td>FasterViT-4</td>
|
148 |
+
<td>85.4</td>
|
149 |
+
<td>97.3</td>
|
150 |
+
<td>849</td>
|
151 |
+
<td>224x224</td>
|
152 |
+
<td>424.6</td>
|
153 |
+
<td>36.6</td>
|
154 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1gYhXA32Q-_9C5DXel17avV_ZLoaHwdgz">model</a></td>
|
155 |
+
</tr>
|
156 |
+
|
157 |
+
<tr>
|
158 |
+
<td>FasterViT-5</td>
|
159 |
+
<td>85.6</td>
|
160 |
+
<td>97.4</td>
|
161 |
+
<td>449</td>
|
162 |
+
<td>224x224</td>
|
163 |
+
<td>975.5</td>
|
164 |
+
<td>113.0</td>
|
165 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1mqpai7XiHLr_n1tjxjzT8q369xTCq_z-">model</a></td>
|
166 |
+
</tr>
|
167 |
+
|
168 |
+
<tr>
|
169 |
+
<td>FasterViT-6</td>
|
170 |
+
<td>85.8</td>
|
171 |
+
<td>97.4</td>
|
172 |
+
<td>352</td>
|
173 |
+
<td>224x224</td>
|
174 |
+
<td>1360.0</td>
|
175 |
+
<td>142.0</td>
|
176 |
+
<td><a href="https://drive.google.com/uc?export=download&id=12jtavR2QxmMzcKwPzWe7kw-oy34IYi59">model</a></td>
|
177 |
+
</tr>
|
178 |
+
|
179 |
+
</table>
|
180 |
+
|
181 |
+
|
182 |
+
### Robustness (ImageNet-A - ImageNet-R - ImageNet-V2)
|
183 |
+
|
184 |
+
All models use `crop_pct=0.875`. Results are obtained by running inference on ImageNet-1K pretrained models without finetuning.
|
185 |
+
<table>
|
186 |
+
<tr>
|
187 |
+
<th>Name</th>
|
188 |
+
<th>A-Acc@1(%)</th>
|
189 |
+
<th>A-Acc@5(%)</th>
|
190 |
+
<th>R-Acc@1(%)</th>
|
191 |
+
<th>R-Acc@5(%)</th>
|
192 |
+
<th>V2-Acc@1(%)</th>
|
193 |
+
<th>V2-Acc@5(%)</th>
|
194 |
+
</tr>
|
195 |
+
|
196 |
+
<tr>
|
197 |
+
<td>FasterViT-0</td>
|
198 |
+
<td>23.9</td>
|
199 |
+
<td>57.6</td>
|
200 |
+
<td>45.9</td>
|
201 |
+
<td>60.4</td>
|
202 |
+
<td>70.9</td>
|
203 |
+
<td>90.0</td>
|
204 |
+
</tr>
|
205 |
+
|
206 |
+
<tr>
|
207 |
+
<td>FasterViT-1</td>
|
208 |
+
<td>31.2</td>
|
209 |
+
<td>63.3</td>
|
210 |
+
<td>47.5</td>
|
211 |
+
<td>61.9</td>
|
212 |
+
<td>72.6</td>
|
213 |
+
<td>91.0</td>
|
214 |
+
</tr>
|
215 |
+
|
216 |
+
<tr>
|
217 |
+
<td>FasterViT-2</td>
|
218 |
+
<td>38.2</td>
|
219 |
+
<td>68.9</td>
|
220 |
+
<td>49.6</td>
|
221 |
+
<td>63.4</td>
|
222 |
+
<td>73.7</td>
|
223 |
+
<td>91.6</td>
|
224 |
+
</tr>
|
225 |
+
|
226 |
+
<tr>
|
227 |
+
<td>FasterViT-3</td>
|
228 |
+
<td>44.2</td>
|
229 |
+
<td>73.0</td>
|
230 |
+
<td>51.9</td>
|
231 |
+
<td>65.6</td>
|
232 |
+
<td>75.0</td>
|
233 |
+
<td>92.2</td>
|
234 |
+
</tr>
|
235 |
+
|
236 |
+
<tr>
|
237 |
+
<td>FasterViT-4</td>
|
238 |
+
<td>49.0</td>
|
239 |
+
<td>75.4</td>
|
240 |
+
<td>56.0</td>
|
241 |
+
<td>69.6</td>
|
242 |
+
<td>75.7</td>
|
243 |
+
<td>92.7</td>
|
244 |
+
</tr>
|
245 |
+
|
246 |
+
<tr>
|
247 |
+
<td>FasterViT-5</td>
|
248 |
+
<td>52.7</td>
|
249 |
+
<td>77.6</td>
|
250 |
+
<td>56.9</td>
|
251 |
+
<td>70.0</td>
|
252 |
+
<td>76.0</td>
|
253 |
+
<td>93.0</td>
|
254 |
+
</tr>
|
255 |
+
|
256 |
+
<tr>
|
257 |
+
<td>FasterViT-6</td>
|
258 |
+
<td>53.7</td>
|
259 |
+
<td>78.4</td>
|
260 |
+
<td>57.1</td>
|
261 |
+
<td>70.1</td>
|
262 |
+
<td>76.1</td>
|
263 |
+
<td>93.0</td>
|
264 |
+
</tr>
|
265 |
+
|
266 |
+
</table>
|
267 |
+
|
268 |
+
A, R and V2 denote ImageNet-A, ImageNet-R and ImageNet-V2 respectively.
|
269 |
+
|
270 |
+
## Citation
|
271 |
+
|
272 |
+
Please consider citing FasterViT if this repository is useful for your work.
|
273 |
+
|
274 |
+
```
|
275 |
+
@article{hatamizadeh2023fastervit,
|
276 |
+
title={FasterViT: Fast Vision Transformers with Hierarchical Attention},
|
277 |
+
author={Hatamizadeh, Ali and Heinrich, Greg and Yin, Hongxu and Tao, Andrew and Alvarez, Jose M and Kautz, Jan and Molchanov, Pavlo},
|
278 |
+
journal={arXiv preprint arXiv:2306.06189},
|
279 |
+
year={2023}
|
280 |
+
}
|
281 |
+
```
|
282 |
+
|
283 |
+
|
284 |
+
## Licenses
|
285 |
+
|
286 |
+
Copyright © 2023, NVIDIA Corporation. All rights reserved.
|
287 |
+
|
288 |
+
This work is made available under the NVIDIA Source Code License-NC. Click [here](LICENSE) to view a copy of this license.
|
289 |
+
|
290 |
+
For license information regarding the timm repository, please refer to its [repository](https://github.com/rwightman/pytorch-image-models).
|
291 |
+
|
292 |
+
For license information regarding the ImageNet dataset, please see the [ImageNet official website](https://www.image-net.org/).
|
293 |
+
|
294 |
+
## Acknowledgement
|
295 |
+
This repository is built on top of the [timm](https://github.com/huggingface/pytorch-image-models) repository. We thank [Ross Wrightman](https://rwightman.com/) for creating and maintaining this high-quality library.
|