# -------------------------------------------------------- # Eagle2 # Copyright (c) 2025 NVIDIA # Licensed under The Apache License [see LICENSE for details] # -------------------------------------------------------- import warnings from typing import Any, List, Optional, Tuple, Union import torch.utils.checkpoint import transformers from torch import nn from torch.nn import CrossEntropyLoss from transformers import (AutoModel, GenerationConfig, LlamaTokenizer, LlamaForCausalLM) from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput, logging from peft import LoraConfig, get_peft_model from transformers.models.siglip.modeling_siglip import SiglipVisionModel from transformers.models.qwen2.modeling_qwen2 import Qwen2ForCausalLM logger = logging.get_logger(__name__) from .configuration_eagle_chat import Eagle2ChatConfig def version_cmp(v1, v2, op='eq'): import operator from packaging import version op_func = getattr(operator, op) return op_func(version.parse(v1), version.parse(v2)) class Eagle2ChatModel(PreTrainedModel): config_class = Eagle2ChatConfig main_input_name = 'pixel_values' _no_split_modules = ['LlamaDecoderLayer'] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = False _supports_cache_class = False _supports_quantized_cache = False _supports_static_cache = False _supports_attention_backend = False def __init__(self, config: Eagle2ChatConfig, vision_model=None, language_model=None): super().__init__(config) image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) self.select_layer = config.select_layer self.template = config.template self.downsample_ratio = config.downsample_ratio logger.info(f'num_image_token: {self.num_image_token}') if vision_model is not None: self.vision_model = vision_model else: if config.vision_config.model_type == 'siglip_vision_model': if version_cmp(transformers.__version__, '4.43.0', 'le'): config.vision_config._attn_implementation = 'eager' self.vision_model = SiglipVisionModel(config.vision_config) if language_model is not None: self.language_model = language_model else: if config.llm_config.architectures[0] == 'LlamaForCausalLM': self.language_model = LlamaForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM': self.language_model = Qwen2ForCausalLM(config.llm_config) else: raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.llm_config.hidden_size self.mlp1 = nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) self.img_context_token_id = None self.system_message = 'You are a helpful assistant.' # Default system message if config.use_backbone_lora: self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora) if config.use_llm_lora: self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora) def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): lora_config = LoraConfig( r=r, target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'], lora_alpha=lora_alpha, lora_dropout=lora_dropout, ) self.vision_model = get_peft_model(self.vision_model, lora_config) self.vision_model.print_trainable_parameters() def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): lora_config = LoraConfig( r=r, target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj', 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'], lora_alpha=lora_alpha, lora_dropout=lora_dropout, task_type='CAUSAL_LM' ) self.language_model = get_peft_model(self.language_model, lora_config) self.language_model.enable_input_require_grads() self.language_model.print_trainable_parameters() def forward( self, pixel_values: torch.FloatTensor, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_flags: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, num_patches_list: Optional[List[torch.Tensor]] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict image_flags = image_flags.squeeze(-1) input_embeds = self.language_model.get_input_embeddings()(input_ids) vit_embeds = self.extract_feature(pixel_values) if not isinstance(image_flags, list): image_flags = image_flags.squeeze(-1) vit_embeds = vit_embeds[image_flags == 1] vit_batch_size = pixel_values.shape[0] B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) if torch.distributed.get_rank() == 0: print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) try: input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) except Exception as e: vit_embeds = vit_embeds.reshape(-1, C) print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' f'vit_embeds.shape={vit_embeds.shape}') n_token = selected.sum() input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] input_embeds = input_embeds.reshape(B, N, C) outputs = self.language_model( inputs_embeds=input_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) logits = outputs.logits loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def pixel_shuffle(self, x, scale_factor=0.5): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) x = x.permute(0, 2, 1, 3).contiguous() return x def extract_feature(self, pixel_values): """ """ if self.select_layer == -1: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=False, return_dict=True) # if there is vit_embeds.last_hidden_state, use it. if hasattr(vit_embeds, 'last_hidden_state'): vit_embeds = vit_embeds.last_hidden_state else: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=True, return_dict=True).hidden_states[self.select_layer] if type(self.vision_model) == SiglipVisionModel: pass else: vit_embeds = vit_embeds[:, 1:, :] # torch.Size([B, 1024, 1024]) if self.training and self.neftune_alpha is not None: vit_embeds = self.noised_embed(vit_embeds, self.neftune_alpha) h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) # torch.Size([B, 1024, 1024]) -> torch.Size([B, 16, 16, 4096]) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) # torch.Size([B, 16, 16, 4096]) -> torch.Size([B, 256, 4096]) vit_embeds = self.mlp1(vit_embeds)#.to(pixel_values.device) return vit_embeds def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False, image_counts=None): if history is not None or return_history: print('Now multi-turn chat is not supported in batch_chat.') raise NotImplementedError if image_counts is not None: num_patches_list = image_counts print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') queries = [] for idx, num_patches in enumerate(num_patches_list): question = questions[idx] if pixel_values is not None and '' not in question: question = '\n' + question template_messages = [] sep = tokenizer.eos_token template_messages.append(('<|im_start|>user', question)) template_messages.append(('<|im_end|>assistant', None)) query = self.get_prompt(self.system_message, template_messages, sep) image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) queries.append(query) tokenizer.padding_side = 'left' model_inputs = tokenizer(queries, return_tensors='pt', padding=True) input_ids = model_inputs['input_ids'].cuda() attention_mask = model_inputs['attention_mask'].cuda() eos_token_id = tokenizer.convert_tokens_to_ids(sep) generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config ) responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) responses = [response.split(sep)[0].strip() for response in responses] return responses def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, num_patches_list=None, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False, llm_only=False): if history is None and pixel_values is not None and '' not in question: question = '\n' + question if num_patches_list is None: num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] assert pixel_values is None or len(pixel_values) == sum(num_patches_list) img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id template_messages = [] system_message = f'<|im_start|>system\n{self.system_message}' sep = tokenizer.eos_token eos_token_id = tokenizer.convert_tokens_to_ids(sep) history = [] if history is None else history for (old_question, old_answer) in history: template_messages.append(('<|im_start|>user', old_question)) template_messages.append(('<|im_start|>assistant', old_answer)) template_messages.append(('<|im_start|>user', question)) template_messages.append(('<|im_end|>assistant', None)) query = self.get_prompt(system_message, template_messages, sep) if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') for num_patches in num_patches_list: image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN if llm_only: query = query.replace('', '', 1) else: query = query.replace('', image_tokens, 1) model_inputs = tokenizer(query, return_tensors='pt') input_ids = model_inputs['input_ids'].cuda() attention_mask = model_inputs['attention_mask'].cuda() generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config ) response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] response = response.split(sep)[0].strip() history.append((question, response)) if return_history: return response, history else: query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '') if verbose: print(query_to_print, response) return response def get_prompt(self, system_prompt, messages, sep) -> str: """Get the prompt for generation.""" ret = '' if system_prompt == '' else system_prompt + sep + '\n' for role, message in messages: if message: ret += role + '\n' + message + sep + '\n' else: ret += role + '\n' return ret @torch.no_grad() def generate( self, pixel_values: Optional[torch.FloatTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, visual_features: Optional[torch.FloatTensor] = None, generation_config: Optional[GenerationConfig] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **generate_kwargs, ) -> torch.LongTensor: assert self.img_context_token_id is not None if pixel_values is not None: if visual_features is not None: vit_embeds = visual_features else: vit_embeds = self.extract_feature(pixel_values) input_embeds = self.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) input_embeds = input_embeds.reshape(B, N, C) else: input_embeds = self.language_model.get_input_embeddings()(input_ids) outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask, generation_config=generation_config, output_hidden_states=output_hidden_states, use_cache=True, **generate_kwargs, ) return outputs def get_input_embeddings(self): return self.language_model.get_input_embeddings() def get_output_embeddings(self): return self.language_model.get_output_embeddings()