--- license: cc-by-nc-4.0 pipeline_tag: image-text-to-text library_name: transformers base_model: - google/paligemma-3b-mix-448 - Qwen/Qwen2.5-1.5B-Instruct - google/siglip-so400m-patch14-384 base_model_relation: merge language: - multilingual tags: - eagle - VLM --- # Eagle-2 [\[📂 GitHub\]](https://github.com/NVlabs/EAGLE) [\[📜 Eagle2 Tech Report\]](http://arxiv.org/abs/2501.14818) [\[🗨️ Chat Demo\]](http://eagle-vlm.xyz/) [\[🤗 HF Demo\]](TODO) ## Introduction We are thrilled to release our latest Eagle2 series Vision-Language Model. Open-source Vision-Language Models (VLMs) have made significant strides in narrowing the gap with proprietary models. However, critical details about data strategies and implementation are often missing, limiting reproducibility and innovation. In this project, we focus on VLM post-training from a data-centric perspective, sharing insights into building effective data strategies from scratch. By combining these strategies with robust training recipes and model design, we introduce Eagle2, a family of performant VLMs. Our work aims to empower the open-source community to develop competitive VLMs with transparent processes. In this repo, we are open-sourcing Eagle2-2B, a lightweight model that achieves remarkable efficiency and speed while maintaining solid performance. ## Model Zoo We provide the following models: | model name | LLM | Vision | Max Length| HF Link| | ----------- | ------- |---------|-|-| | Eagle2-1B | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | Siglip | 16K| [🤗 link](https://huggingface.co/NVIDIA/Eagle2-1B)| | Eagle2-2B | [Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) | Siglip | 16K| [🤗 link](https://huggingface.co/NVIDIA/Eagle2-2B)| | Eagle2-9B | [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) | Siglip+ConvNext | 16K| [🤗 link](https://huggingface.co/NVIDIA/Eagle2-9B)| ## Benchmark Results | Benchmark | InternVL2-2B | InternVL2.5-2B | InternVL2-4B |Qwen2-VL-2B| Eagle2-2B| | :--------------------------: | :------------------: | :----------------: | :----------: |:----------: |:----------: | | DocVQAtest | 86.9 | 88.7 | 89.2 |90.1|88.0| | ChartQAtest | 76.2 | 79.2 | 81.5 |73.0|82.0| | InfoVQAtest | 58.9 | 60.9 | 67.0 |65.5|65.8| | TextVQAval | 73.4 | 74.3 | 74.4 |79.7|79.1| | OCRBench | 784 | 804 | 788 |809|818| | MMEsum | 1876.8 | 2138.2 | 2059.8 |1872.0 | 2109.8 | RealWorldQA | 57.3 | 60.1 | 60.7 |62.6|63.1| | AI2Dtest | 74.1 | 74.9 | 74.7 | 78.9 |79.3| | MMMUval | 36.3 | 43.6 | 47.9 |41.1|43.1| | MMVetGPT-4-Turbo | 39.5 | 60.8 | 51.0 | 49.5|53.8| | HallBenchavg | 37.9 | 42.6 | 41.9 |41.7|45.8 | MathVistatestmini | 46.3 | 51.3 | 58.6 |43.0|54.7| | MMstar | 50.1 | 53.7 | 54.3|48.0|56.4| ## Quick Start We provide a [demo inference script](./demo.py) to help you quickly start using the model. We support different input types: - pure text input - single image input - multiple image input - video input ### 0. Install the dependencies ```bash pip install transformers==4.37.2 pip install flash-attn ``` **Note**: Latest version of transformers is not compatible with the model. ### 1. Prepare the Model worker
Click to expand ```python """ A model worker executes the model. Copied and modified from https://github.com/OpenGVLab/InternVL/blob/main/streamlit_demo/model_worker.py """ # Importing torch before transformers can cause `segmentation fault` from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer, AutoConfig import argparse import base64 import json import os import decord import threading import time from io import BytesIO from threading import Thread import math import requests import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode import numpy as np IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) SIGLIP_MEAN = (0.5, 0.5, 0.5) SIGLIP_STD = (0.5, 0.5, 0.5) def get_seq_frames(total_num_frames, desired_num_frames=-1, stride=-1): """ Calculate the indices of frames to extract from a video. Parameters: total_num_frames (int): Total number of frames in the video. desired_num_frames (int): Desired number of frames to extract. Returns: list: List of indices of frames to extract. """ assert desired_num_frames > 0 or stride > 0 and not (desired_num_frames > 0 and stride > 0) if stride > 0: return list(range(0, total_num_frames, stride)) # Calculate the size of each segment from which a frame will be extracted seg_size = float(total_num_frames - 1) / desired_num_frames seq = [] for i in range(desired_num_frames): # Calculate the start and end indices of each segment start = int(np.round(seg_size * i)) end = int(np.round(seg_size * (i + 1))) # Append the middle index of the segment to the list seq.append((start + end) // 2) return seq def build_video_prompt(meta_list, num_frames, time_position=False): # if time_position is True, the frame_timestamp is used. # 1. pass time_position, 2. use env TIME_POSITION time_position = os.environ.get("TIME_POSITION", time_position) prefix = f"This is a video:\n" for i in range(num_frames): if time_position: frame_txt = f"Frame {i+1} sampled at {meta_list[i]:.2f} seconds: \n" else: frame_txt = f"Frame {i+1}: \n" prefix += frame_txt return prefix def load_video(video_path, num_frames=64, frame_cache_root=None): if isinstance(video_path, str): video = decord.VideoReader(video_path) elif isinstance(video_path, dict): assert False, 'we not support vidoe: "video_path" as input' fps = video.get_avg_fps() sampled_frames = get_seq_frames(len(video), num_frames) samepld_timestamps = [i / fps for i in sampled_frames] frames = video.get_batch(sampled_frames).asnumpy() images = [Image.fromarray(frame) for frame in frames] return images, build_video_prompt(samepld_timestamps, len(images), time_position=True) def load_image(image): if isinstance(image, str) and os.path.exists(image): return Image.open(image) elif isinstance(image, dict): if 'disk_path' in image: return Image.open(image['disk_path']) elif 'base64' in image: return Image.open(BytesIO(base64.b64decode(image['base64']))) elif 'url' in image: response = requests.get(image['url']) return Image.open(BytesIO(response.content)) elif 'bytes' in image: return Image.open(BytesIO(image['bytes'])) else: raise ValueError(f'Invalid image: {image}') else: raise ValueError(f'Invalid image: {image}') def build_transform(input_size, norm_type='imagenet'): if norm_type == 'imagenet': MEAN, STD = IMAGENET_MEAN, IMAGENET_STD elif norm_type == 'siglip': MEAN, STD = SIGLIP_MEAN, SIGLIP_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): """ previous version mainly foucs on ratio. We also consider area ratio here. """ best_factor = float('-inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area """ new area > 60% of original image area is enough. """ factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \ min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio) if factor_based_on_area_n_ratio > best_factor: best_factor = factor_based_on_area_n_ratio best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def split_model(model_path, device): device_map = {} world_size = torch.cuda.device_count() config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) num_layers = config.llm_config.num_hidden_layers print('world_size', world_size) num_layers_per_gpu_ = math.floor(num_layers / (world_size - 1)) num_layers_per_gpu = [num_layers_per_gpu_] * world_size num_layers_per_gpu[device] = num_layers - num_layers_per_gpu_ * (world_size-1) print(num_layers_per_gpu) layer_cnt = 0 for i, num_layer in enumerate(num_layers_per_gpu): for j in range(num_layer): device_map[f'language_model.model.layers.{layer_cnt}'] = i layer_cnt += 1 device_map['vision_model'] = device device_map['mlp1'] = device device_map['language_model.model.tok_embeddings'] = device device_map['language_model.model.embed_tokens'] = device device_map['language_model.output'] = device device_map['language_model.model.norm'] = device device_map['language_model.lm_head'] = device device_map['language_model.model.rotary_emb'] = device device_map[f'language_model.model.layers.{num_layers - 1}'] = device return device_map class ModelWorker: def __init__(self, model_path, model_name, load_8bit, device): if model_path.endswith('/'): model_path = model_path[:-1] if model_name is None: model_paths = model_path.split('/') if model_paths[-1].startswith('checkpoint-'): self.model_name = model_paths[-2] + '_' + model_paths[-1] else: self.model_name = model_paths[-1] else: self.model_name = model_name print(f'Loading the model {self.model_name}') tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) tokens_to_keep = ['', '', '', ''] tokenizer.additional_special_tokens = [item for item in tokenizer.additional_special_tokens if item not in tokens_to_keep] self.tokenizer = tokenizer config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) model_type = config.vision_config.model_type self.device = torch.cuda.current_device() if model_type == 'siglip_vision_model': self.norm_type = 'siglip' elif model_type == 'MOB': self.norm_type = 'siglip' else: self.norm_type = 'imagenet' if any(x in model_path.lower() for x in ['34b']): device_map = split_model(model_path, self.device) else: device_map = None if device_map is not None: self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map=device_map, trust_remote_code=True, load_in_8bit=load_8bit).eval() else: self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True, load_in_8bit=load_8bit).eval() if not load_8bit and device_map is None: self.model = self.model.to(device) self.load_8bit = load_8bit self.model_path = model_path self.image_size = self.model.config.force_image_size self.context_len = tokenizer.model_max_length self.per_tile_len = 256 def reload_model(self): del self.model torch.cuda.empty_cache() if self.device == 'auto': os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # This can make distributed deployment work properly self.model = AutoModel.from_pretrained( self.model_path, load_in_8bit=self.load_8bit, torch_dtype=torch.bfloat16, device_map=self.device_map, trust_remote_code=True).eval() else: self.model = AutoModel.from_pretrained( self.model_path, load_in_8bit=self.load_8bit, torch_dtype=torch.bfloat16, trust_remote_code=True).eval() if not self.load_8bit and not self.device == 'auto': self.model = self.model.cuda() @torch.inference_mode() def generate(self, params): system_message = params['prompt'][0]['content'] send_messages = params['prompt'][1:] max_input_tiles = params['max_input_tiles'] temperature = params['temperature'] top_p = params['top_p'] max_new_tokens = params['max_new_tokens'] repetition_penalty = params['repetition_penalty'] video_frame_num = params.get('video_frame_num', 64) do_sample = True if temperature > 0.0 else False global_image_cnt = 0 history, pil_images, max_input_tile_list = [], [], [] for message in send_messages: if message['role'] == 'user': prefix = '' if 'image' in message: for image_data in message['image']: pil_images.append(load_image(image_data)) prefix = prefix + f'\n' global_image_cnt += 1 max_input_tile_list.append(max_input_tiles) if 'video' in message: for video_data in message['video']: video_frames, tmp_prefix = load_video(video_data, num_frames=video_frame_num) pil_images.extend(video_frames) prefix = prefix + tmp_prefix global_image_cnt += len(video_frames) max_input_tile_list.extend([1] * len(video_frames)) content = prefix + message['content'] history.append([content, ]) else: history[-1].append(message['content']) question, history = history[-1][0], history[:-1] if global_image_cnt == 1: question = question.replace('\n', '\n') history = [[item[0].replace('\n', '\n'), item[1]] for item in history] try: assert len(max_input_tile_list) == len(pil_images), 'The number of max_input_tile_list and pil_images should be the same.' except Exception as e: from IPython import embed; embed() exit() print(f'Error: {e}') print(f'max_input_tile_list: {max_input_tile_list}, pil_images: {pil_images}') # raise e old_system_message = self.model.system_message self.model.system_message = system_message transform = build_transform(input_size=self.image_size, norm_type=self.norm_type) if len(pil_images) > 0: max_input_tiles_limited_by_contect = params['max_input_tiles'] while True: image_tiles = [] for current_max_input_tiles, pil_image in zip(max_input_tile_list, pil_images): if self.model.config.dynamic_image_size: tiles = dynamic_preprocess( pil_image, image_size=self.image_size, max_num=min(current_max_input_tiles, max_input_tiles_limited_by_contect), use_thumbnail=self.model.config.use_thumbnail) else: tiles = [pil_image] image_tiles += tiles if (len(image_tiles) * self.per_tile_len < self.context_len): break else: max_input_tiles_limited_by_contect -= 2 if max_input_tiles_limited_by_contect < 1: break pixel_values = [transform(item) for item in image_tiles] pixel_values = torch.stack(pixel_values).to(self.model.device, dtype=torch.bfloat16) print(f'Split images to {pixel_values.shape}') else: pixel_values = None generation_config = dict( num_beams=1, max_new_tokens=max_new_tokens, do_sample=do_sample, temperature=temperature, repetition_penalty=repetition_penalty, max_length=self.context_len, top_p=top_p, ) response = self.model.chat( tokenizer=self.tokenizer, pixel_values=pixel_values, question=question, history=history, return_history=False, generation_config=generation_config, ) self.model.system_message = old_system_message return {'text': response, 'error_code': 0} if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model-path', type=str, default='nvidia/Eagle2-2B') parser.add_argument('--model-name', type=str, default='Eagle2-2B') parser.add_argument('--device', type=str, default='cuda') parser.add_argument('--load-8bit', action='store_true') args = parser.parse_args() print(f'args: {args}') worker = ModelWorker( args.model_path, args.model_name, args.load_8bit, args.device) ```
### 2. Prepare the Prompt - Single image input ```python prompt = [ {'role': 'system', 'content': 'You are a helpful assistant.'}, {'role': 'user', 'content': 'Describe this image in details.', 'image':[ {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/01-nvidia-logo-vert-500x200-2c50-d@2x.png'} ], } ] ``` - Multiple image input ```python prompt = [ {'role': 'system', 'content': 'You are a helpful assistant.'}, {'role': 'user', 'content': 'Describe these two images in details.', 'image':[ {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/01-nvidia-logo-vert-500x200-2c50-d@2x.png'}, {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/01-nvidia-logo-vert-500x200-2c50-d@2x.png'} ], } ] ``` - Video input ```python prompt = [ {'role': 'system', 'content': 'You are a helpful assistant.'}, {'role': 'user', 'content': 'Describe this video in details.', 'video':[ 'path/to/your/video.mp4' ], } ] ``` ### 3. Generate the response ```python params = { 'prompt': prompt, 'max_input_tiles': 24, 'temperature': 0.7, 'top_p': 1.0, 'max_new_tokens': 4096, 'repetition_penalty': 1.0, } worker.generate(params) ``` ## TODO - [ ] Support vLLM Inference - [ ] Provide AWQ Quantization Weights - [ ] Provide fine-tuning scripts ## License/Terms of Use - The code is released under the Apache 2.0 license as found in the [LICENSE](https://huggingface.co/NVEagle/Eagle-X5-13B-Chat/blob/main/LICENSE) file. - The pretrained model weights are released under the [Creative Commons Attribution: Non-Commercial 4.0 International](https://spdx.org/licenses/CC-BY-NC-4.0)
- The service is a research preview intended for non-commercial use only, and is subject to the following licenses and terms: - Model License of Qwen2.5-1.5B-Instruct: [Apache-2.0](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct/blob/main/LICENSE) - Model License of PaliGemma: [Gemma license](https://ai.google.dev/gemma/terms) ## Citation ## Ethical Considerations NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).