# -------------------------------------------------------- # Eagle2 # Copyright (c) 2025 NVIDIA # Licensed under The Apache License [see LICENSE for details] # -------------------------------------------------------- import copy from transformers import AutoConfig, LlamaConfig from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from .configuration_siglip import SiglipVisionConfig from .configuration_qwen2 import Qwen2Config from .configuration_multi_backbone_channel_concatentation_model import MultiBackboneChannelConcatenationVisionModelConfig logger = logging.get_logger(__name__) class Eagle2ChatConfig(PretrainedConfig): model_type = 'eagle_chat' is_composition = True def __init__( self, vision_config=None, llm_config=None, use_backbone_lora=0, use_llm_lora=0, select_layer=-1, force_image_size=None, downsample_ratio=0.5, template=None, dynamic_image_size=False, use_thumbnail=False, min_dynamic_patch=1, max_dynamic_patch=6, mlp_checkpoint=True, pre_feature_reduction=False, keep_aspect_ratio=False, **kwargs): super().__init__(**kwargs) if vision_config is None: vision_config = {} logger.info('vision_config is None. Initializing Vision Encoders with default values.') if llm_config is None: llm_config = {} logger.info('llm_config is None. Initializing the LLM config with default values') if vision_config['model_type'] == 'siglip_vision_model': self.vision_config = SiglipVisionConfig(**vision_config) elif vision_config['model_type'].startswith("MOB"): self.vision_config = MultiBackboneChannelConcatenationVisionModelConfig(**vision_config) else: raise ValueError('Unsupported model_type: {}'.format(vision_config['model_type'])) if llm_config['architectures'][0] == 'LlamaForCausalLM': self.llm_config = LlamaConfig(**llm_config) elif llm_config['architectures'][0] == 'Qwen2ForCausalLM': self.llm_config = Qwen2Config(**llm_config) else: raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0])) self.use_backbone_lora = use_backbone_lora self.use_llm_lora = use_llm_lora self.select_layer = select_layer self.force_image_size = force_image_size self.downsample_ratio = downsample_ratio self.template = template self.dynamic_image_size = dynamic_image_size self.use_thumbnail = use_thumbnail self.min_dynamic_patch = min_dynamic_patch self.max_dynamic_patch = max_dynamic_patch self.mlp_checkpoint = mlp_checkpoint self.pre_feature_reduction = pre_feature_reduction self.keep_aspect_ratio = keep_aspect_ratio logger.info(f'keep_aspect_ratio: {self.keep_aspect_ratio}') logger.info(f'vision_select_layer: {self.select_layer}') logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}') logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}') def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output['vision_config'] = self.vision_config.to_dict() output['llm_config'] = self.llm_config.to_dict() output['model_type'] = self.__class__.model_type output['use_backbone_lora'] = self.use_backbone_lora output['use_llm_lora'] = self.use_llm_lora output['select_layer'] = self.select_layer output['force_image_size'] = self.force_image_size output['downsample_ratio'] = self.downsample_ratio output['template'] = self.template output['dynamic_image_size'] = self.dynamic_image_size output['use_thumbnail'] = self.use_thumbnail output['min_dynamic_patch'] = self.min_dynamic_patch output['max_dynamic_patch'] = self.max_dynamic_patch output['keep_aspect_ratio'] = self.keep_aspect_ratio return output