File size: 3,045 Bytes
1823db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
language:
- hi
base_model: nurzhanit/whisper-enhanced-ml
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Hi - Sanchit Gandhi
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: default
      split: None
      args: 'config: hi, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 35.622895622895626
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of [nurzhanit/whisper-enhanced-ml](https://huggingface.co/nurzhanit/whisper-enhanced-ml) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Wer: 35.6229

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 3.2948        | 0.2688 | 50   | 2.0785          | 12.9293 |
| 1.4104        | 0.5376 | 100  | 1.1845          | 2.6263  |
| 0.5806        | 0.8065 | 150  | 0.3972          | 24.0404 |
| 0.0701        | 1.0753 | 200  | 0.0263          | 48.0471 |
| 0.0023        | 1.3441 | 250  | 0.0012          | 39.2593 |
| 0.0006        | 1.6129 | 300  | 0.0005          | 39.8653 |
| 0.0004        | 1.8817 | 350  | 0.0004          | 31.7508 |
| 0.0003        | 2.1505 | 400  | 0.0003          | 32.7609 |
| 0.0002        | 2.4194 | 450  | 0.0002          | 34.6801 |
| 0.0002        | 2.6882 | 500  | 0.0002          | 31.4141 |
| 0.0002        | 2.9570 | 550  | 0.0002          | 38.2155 |
| 0.0001        | 3.2258 | 600  | 0.0001          | 33.6364 |
| 0.0001        | 3.4946 | 650  | 0.0001          | 36.2290 |
| 0.0001        | 3.7634 | 700  | 0.0001          | 35.7239 |
| 0.0001        | 4.0323 | 750  | 0.0001          | 34.9158 |
| 0.0001        | 4.3011 | 800  | 0.0001          | 37.2727 |
| 0.0001        | 4.5699 | 850  | 0.0001          | 35.2862 |
| 0.0001        | 4.8387 | 900  | 0.0001          | 35.5892 |
| 0.0001        | 5.1075 | 950  | 0.0001          | 34.9158 |
| 0.0001        | 5.3763 | 1000 | 0.0001          | 35.6229 |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1